Concentrations of metals in water, sediments and aquatic macrophytes in a river located in a region with a hot semi-arid climate
Concentrações de metais na água, sedimentos e macrófitas aquáticas em um rio localizado em uma região de clima semiárido quente
Camila Tâmires Alves Oliveira; Antonio Fernando Monteiro Camargo; Eulene Francisco da Silva; Gustavo Gonzaga Henry-Silva
Abstract
Keywords
Resumo
Palavras-chave
References
A. M. Arsenic, 1996. Method 3050b. Acid Digestion of Sediments, Sludges, and Soils. Washington, DC: A.M. Arsenic.
Adamiec, E., Jarosz-Krzemińska, E., & Wieszala, R., 2016. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ. Monit. Assess. 188(6), 369. PMid:27226173.
Alfadul, S.M.S., & Al-Fredan, M.A.A., 2013. Effects of Cd, Cu, Pb, and Zn combinations on
Ali, M.M., Ali, M.L., Islam, M.S., & Rahman, M.Z., 2016. Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environ. Nanotechnol. Monit. Manag. 5, 27-35.
Antoniadis, V., Levizou, E., Shaheen, S.M., Ok, Y.S., Sebastian, A., Baum, C., Prasad, M.N.V., Wenzel, W.W., & Rinklebe, J., 2017. Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation–A review. Earth Sci. Rev. 171, 621-645.
Araújo, J.B.D.S., & Pinto Filho, J.L.O., 2010. Identificação de fontes poluidoras de metais pesados nos solos da bacia hidrográfica do Rio Apodi, Mossoró, RN, na área urbana de Mossoró, RN. Rev. Verde Agroecol. Desenvolv. Sustent. 5(2), 13.
Aydin-Önen, S., & Öztürk, M., 2017. Investigation of heavy metal pollution in eastern Aegean Sea coastal waters by using
Azaizeh, H., Salhani, N., Sebesvari, Z., Shardendu, S., Emons, H., 2006. Phytoremediation of selenium using subsurface-flow constructed wetland. Int J of Phytoremediation, 8(3), 187-198.
Balle, M.G., Ferragute, C., Coelho, L.H.G., & Jesus, T.A., 2021. Phosphorus and metals immobilization by periphyton in a shallow eutrophic reservoir. Acta Limnol. Bras. 33, e11. https://doi.org/10.1590/S2179-975X0320.
Belkhiri, L., Mouni, L., Narany, T.S., & Tiri, A., 2017. Evaluation of potential health risk of heavy metals in groundwater using the integration of indicator kriging and multivariate statistical methods. Groundw. Sustain. Dev. 4, 12-22.
Bonanno, G., & Giudice, R.L., 2010. Heavy metal bioaccumulation by the organs of
Bonanno, G., 2011. Trace element accumulation and distribution in the organs of
Borisova, G., Chukina, N., Maleva, M., & Prasad, M.N.V., 2014.
Borisova, G., Chukina, N., Maleva, M., Kumar, A., & Prasad, M.N.V., 2016. Thiols as biomarkers of heavy metal tolerance in the aquatic macrophytes of Middle Urals, Russia. Int. J. Phytoremediation 18(10), 1037-1045. PMid:27167595.
C.A.S. Element, 2007. Method 3015a. Microwave Assisted Acid Digestion of Aqueous Samples and Extracts. Washington, DC: C.A.S. Element.
Campagna-Fernandes, A.F., Farias-Júnio, J.W.M., Silva, A.C.A., Costa Segundo, H.P., & Aquino, D.D. (2022). Estudos ecotoxicológicos no rio Apodi-Mossoró. In: Henry-Silva, G.G., Camargo, A.F.M., orgs. A Bacia do Rio Apodi-Mossoró: aspectos ambientais, sociais e econômicos de uma bacia hidrográfica do semiárido do Rio Grande do Norte. Mossoró: EDUFERSA, vol. 1, 129-148.
Chopra, A.K., Pathak, C., & Prasad, G., 2009. Scenario of heavy metal contamination in agricultural soil and its management. J. Appl. Nat. Sci. 1(1), 99-108.
Chowdhury, S., Mazumder, MJ., Al-Attas, O., Husain, T. (2016). Heavy metals in drinking water: occurrences, implications, and future needs in developing countries. Sci. Total Environ. 569-570, 476-488.
Clemente, R., Escolar, A., & Bernal, M.P., 2006. Heavy metals fractionation and organic matter mineralisation in contaminated calcareous soil amended with organic materials. Bioresour. Technol. 97(15), 1894-1901. PMid:16223584.
Das, S., Goswami, S., & Talukdar, A.D., 2016. Physiological responses of water hyacinth,
Duong, T.T., & Lee, B., 2011. Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. J. Environ. Manage. 92(3), 554-562. PMid:20937547.
El-Badry, A.E.A., & El-Kammar, A.M., 2018. Spatial distribution and environmental geochemistry of zinc metal in water and surficial bottom sediments of Lagoon Burullus, Egypt. Mar. Pollut. Bull. 127, 811-816. PMid:29042108.
Ergönül, M.B., Nassouhi, D., & Atasağun, S., 2019. Modeling of the bioaccumulative efficiency of
Fazio, F., Piccione, G., Tribulato, K., Ferrantelli, V., Giangrosso, G., Arfuso, F., & Faggio, C., 2014. Bioaccumulation of heavy metals in blood and tissue of striped mullet in two Italian lakes. J. Aquat. Anim. Health 26(4), 278-284. PMid:25369146.
Garba, S.T., Osemeahon, A.S., Maina, H.M., & Barminas, J.T., 2012. Ethylenediaminetetraacetate (EDTA)-Assisted phytoremediation of heavy metal contaminated soil by
Goldin, A., 1987. Reassessing the use of loss‐on‐ignition for estimating organic matter content in noncalcareous soils. Commun. Soil Sci. Plant Anal. 18(10), 1111-1116.
Gómez-Bernal, J.M., Ruiz, H.E.A., Armienta, H.M.A., & Luna, P.V.M., 2017. Evaluation of the removal of heavy metals in a natural wetland impacted by mining activities in Mexico. Environ. Earth Sci. 76(23), 801.
Griboff, J., Wunderlin, D.A., & Monferran, M.V., 2017. Metals, As and Se determination by inductively coupled plasma-mass spectrometry (ICP-MS) in edible fish collected from three eutrophic reservoirs. Their consumption represents a risk for human health? Microchem. J. 130, 236-244.
Guo, G., Wu, F., Xie, F., & Zhang, R., 2012. Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China. J. Environ. Sci. (China) 24(3), 410-418. PMid:22655353.
Gupta, A.K., & Sinha, S., 2007. Phytoextraction capacity of the plants growing on tannery sludge dumping sites. Bioresour. Technol. 98(9), 1788-1794. PMid:16973356.
Hassan, S., Schmieder, K., & Böcker, R., 2010. Spatial patterns of submerged macrophytes and heavy metals in the hypertrophic, contaminated, shallow reservoir Lake Qattieneh/Syria. Limnologica 40(1), 54-60.
Henry-Silva, G.G., & Camargo, A.F.M., 2006. Efficiency of aquatic macrophytes to treat Nile tilapia pond effluents. Sci. Agric. 63(5), 433-438.
Henry-Silva, G.G., Moura, R.S.T., & Dantas, L.L.O., 2010. Richness and distribution of aquatic macrophytes in Brazilian semi-arid aquatic ecosystems. Acta Limnol. Bras. 22(2), 147-156.
Henry-Silva, G., & Camargo, A.F.M., (2022). A Bacia do Rio Apodi-Mossoró: aspectos ambientais, sociais e econômicos de uma bacia hidrográfica no semiárido do Rio Grande do Norte. Mossoró: EDUFERSA, 410 p.
Hesami, R., Salimi, A., & Ghaderian, S.M., 2018. Lead, zinc, and cadmium uptake, accumulation, and phytoremediation by plants growing around Tang-e Douzan lead–zinc mine, Iran. Environ. Sci. Pollut. Res. Int. 25(9), 8701-8714. PMid:29322395.
Hossain, M.S., Ahmed, K., Sarker, S., & Rahman, S., 2020. Seasonal variations of trace metals from water and sediment samples in the northern Bay of Bengal. Ecotoxicol. Environ. Saf. 193, 110347. PMid:32114239.
Huang, J., Ge, X., & Wang, D., 2012. Distribution of heavy metals in the water column, suspended particulate matters and the sediment under hydrodynamic conditions using an annular flume. J. Environ. Sci. (China) 24(12), 2051-2059. PMid:23534200.
Instituto Brasileiro de Geografia E Estatistica – IBGE, 2010. Censo de 2010. Retrieved in 2021, Mar 12, from
Instituto de Gestão das Águas do Rio Grande do Norte – IGARN, 2018. Bacia Apodi/Mossoró. Retrieved in 2018, Sep 17, from
International Plant Nutrition Institute – IPNI, 2016. Nutri-Fatos: Informação agronômica sobre nutrients para as plantas, níquel. Retrieved in 2019, Apr 4, from
Justo, A., Santos, W.L.A., & Souza, F.C.S., 2016. A bacia do Rio Apodi Mossoró (RN) como objeto de pesquisa em programas de pós-graduação. Rev. Principia 31, 97-105.
Jutsz, A.M., & Gnida, A., 2015. Mechanisms of stress avoidance and tolerance by plants used in phytoremediation of heavy metals. Arch. Environ. Prot. 41(104), 114.
Kamari, A., Yusof, N., Abdullah, H., Haraguchi, A., & Abas, M.F., 2017. Assessment of heavy metals in water, sediment,
Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F., 2006. World Map of Köppen-Geiger climate classification updated. Meteorol. Z. (Berl.) 15(3), 259-263.
Krishnamurti, G.S., Subashchandrabose, S.R., Megharaj, M., & Naidu, R., 2015. Assessment of bioavailability of heavy metal pollutants using soil isolates of
Kumar, V., Chopra, A.K., Srivastava, S., Singh, J., & Thakur, R.K., 2017. Irrigating okra with secondary treated municipal wastewater: observations regarding plant growth and soil characteristics. Int. J. Phytoremediation 19(5), 490-499. PMid:27739866.
Li, X., Shen, H., Zhao, Y., Cao, W., Hu, C., & Sun, C., 2019. Distribution and potential ecological risk of heavy metals in water, sediments, and aquatic macrophytes: a case study of the junction of four rivers in Linyi city, China. Int. J. Environ. Res. Public Health 16(16), 2861. PMid:31405094.
Lin, Z., Li, J., Luan, Y., & Dai, W., 2020. Application of algae for heavy metal adsorption: A 20-year meta-analysis. Ecotoxicol. Environ. Saf. 190, 110089. PMid:31896472.
Lira de Carvalho, H.R., & Henry-Silva, G.G., 2022. Análise altimétrica e morfométrica da bacia hidrográfica do rio Apodi-Mossoró. In: Henry-Silva, G.G., Camargo, A.F.M., orgs. A Bacia do Rio Apodi-Mossoró: aspectos ambientais, sociais e econômicos de uma bacia hidrográfica do semiárido do Rio Grande do Norte. Mossoró: EDUFERSA, pp. 83-91.
Loureiro, R.C., & Hepp, L.U., (2020). Stream contamination by trace elements: biota incorporation and phytoremediation. Acta Limnol. Bras. 32, e201. https://doi.org/10.1590/S2179-975X2219.
Malik, R.N., Husain, S.Z., & Nazir, I., 2010. Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan. Pak. J. Bot. 42(1), 291-301.
Martins, T.F.G., Ferreira, K.S., Rani-Borges, B., Biamont-Rojas, I.E., Cardoso-Silva, S., Moschini-Carlos, V., & Pompêo, M.L.M., 2021. Land use, spatial heterogeneity of organic matter, granulometric fractions and metal complexation in reservoir sediments. Acta Limnol. Bras. 33, e23. https://doi.org/10.1590/S2179-975X3521.
Medeiros, E.L., Oliveira, C.T.A., & Henry-Silva, G.G., 2023. Assessment of environmental, social and economic sustainability of a hydrographic basin in the Brazilian semiarid region. Desenvolv. Meio Ambient. 61, 1-17. http://doi.org/10.5380/dma.v61i0.78914.
Miranda, J., & Krishnakumar, G., 2015. Microalgal diversity in relation to the physicochemical parameters of some Industrial sites in Mangalore, South India. Environ. Monit. Assess. 187(11), 664. PMid:26433901.
Mishra, S., & Maiti, A., 2017. The efficiency of
Mishra, V.K., & Tripathi, B.D., 2008. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour. Technol. 99(15), 7091-7097. PMid:18296043.
Mohiuddin, K.M., Ogawa, Y.Z.H.M., Zakir, H.M., Otomo, K., & Shikazono, N., 2011. Heavy metals contamination in water and sediments of an urban river in a developing country. Int. J. Environ. Sci. Technol. 8(4), 723-736.
National Institute of Standards and Technology – NIST, 2016. Standard Reference Material 928. Retrieved in 2019, Apr 4, from
Napaldet, J.T., & Buot Junior, I.E.J., 2020. Absorption of lead and mercury in dominant aquatic macrophytes of balili river and its implication to phytoremediation of water bodies. Trop. Life Sci. Res. 31(2), 19-32. PMid:32922667.
Núñez, S.R., Negrete, J.M., Rios, J.A., Hadad, H.R., & Maine, M.A., 2011. Hg, Cu, Pb, Cd, and Zn accumulation in macrophytes growing in tropical wetlands. Water Air Soil Pollut. 216(1-4), 361-373.
Paula Filho, F.J., Marins, R.V., Santos, D.V., Pereira Junio, R.F., Menezes, J.M.C., da Gastão, F.G.C., Guzzi, A., & Teixeira, R.N.P., 2021. Assessment of heavy metals in sediments of the Parnaíba River Delta in the semi-arid coast of Brazil. Environ. Earth Sci. 80(167), 167.
R Core Team, 2018. R: A language and environment for statistical computing [online]. Vienna: R Foundation for Statistical Computing. Retrieved in 2018, September 17, from
Said, I., Jalaludin, M.N., Upe, A., & Wahab, A.W., 2009. Determination of heavy metal Cr and Pb concentrations in estuary sediment of Matangpondo River Palu. J. Chem. 10(2), 40-47.
Saleem, M., Iqbal, J., & Shah, M.H., 2015. Geochemical speciation, anthropogenic contamination, risk assessment and source identification of selected metals in freshwater sediments: a case study from Mangla Lake, Pakistan. Environ. Nanotechnol. Monit. Manag. 4, 27-36.
Secretaria Estadual de Meio Ambiente e Recursos Hídricos do Estado do Rio Grande do Norte – SEMARH, 2017. Bacias hidrográficas do Rio Grande do Norte. Plano Estadual de Recursos Hídricos [online]. Retrieved in 2018, September 17, from
Shakouri, A., & Gheytasi, H., 2018. Bioaccumulation of heavy metals in oyster (
Sijakova-Ivanova, T., Boev, B., Zajkova-Paneva, V., Boev, I., & Karakaseva, E., 2017. Bioaccumulation and translocation factor of heavy metals in the plants
Singh, K.P., Malik, A., Sinha, S., Singh, V.K., & Murthy, R.C., 2005. Estimation of source of heavy metal contamination in sediments of Gomti River (India) using principal component analysis. Water Air Soil Pollut. 166(1-4), 321-341.
Siqueira, R.M.B., Moura, R.S.T., & Henry-Silva, G.G., 2022. Caracterização limnológica da bacia hidrográfica do rio Apodi-Mossoró. In: Henry-Silva, G.G., & Camargo, A.F.M., orgs. A Bacia do Rio Apodi-Mossoró: aspectos ambientais, sociais e econômicos de uma bacia hidrográfica do semiárido do Rio Grande do Norte. Mossoró: EDUFERSA, pp. 93-104.
Sun, X., Fan, D., Liu, M., Tian, Y., Pang, Y., & Liao, H., 2018. Source identification, geochemical normalization and influence factors of heavy metals in Yangtze River Estuary sediment. Environ. Pollut. 241, 938-949. PMid:29929160.
Torregroza-Espinosa, A.C., Martínez-Mera, E., Castañeda-Valbuena, D., González-Márquez, L.C., & Torres-Bejarano, F., 2018. Contamination level and spatial distribution of heavy metals in water and sediments of El Guajaro reservoir, Colombia. Bull. Environ. Contam. Toxicol. 101(1), 61-67. PMid:29797013.
Ugya, A.Y., 2015. The efficiency of
Vanhoudt, N., Van Ginneken, P., Nauts, R., & Van Hees, M., 2018. Potential of four aquatic plant species to remove 60 Co from contaminated water under changing experimental conditions. Environ. Sci. Pollut. Res. Int. 25(27), 27187-27195. PMid:30027375.
Vymazal, J., 2011. Constructed wetlands for wastewater treatment: five decades of experience. Environ. Sci. Technol. 45(1), 61-69.
Wan, L., Xu, L., & Fu, Y., 2016. Contamination and risk assessment of heavy metals in lake bed sediment of a large lake scenic area in China. Int. J. Environ. Res. Public Health 13(5), 741. PMid:27455296.
Xia, F., Qu, L., Wang, T., Luo, L., Chen, H., Dahlgren, R.A., Zhang, M., Mei, K., & Huang, H., 2018. Distribution and source analysis of heavy metal pollutants in sediments of a rapid developing urban river system. Chemosphere 207, 218-228. PMid:29800822.
Xu, Y., Wu, Y., Han, J., & Li, P., 2017. The current status of heavy metal in lake sediments from China: pollution and ecological risk assessment. Ecol. Evol. 7(14), 5454-5466. PMid:28770081.
Yang, Y.A.N.G., Zhengchao, Z.H.O.U., Yanying, B.A.I., Yimin, C.A.I., & Weiping, C.H.E.N., 2016. Risk assessment of heavy metal pollution in sediments of the Fenghe River by the fuzzy synthetic evaluation model and multivariate statistical methods. Pedosphere 26(3), 326-334.
Yoon, J., Cao, X., Zhou, Q., & Ma, L.Q., 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ. 368(2-3), 456-464. PMid:16600337.
Yu, H., Ni, S.J., He, Z.W., Zhang, C.J., Nan, X., Kong, B., & Weng, Z.Y., 2014. Analysis of the spatial relationship between heavy metals in soil and human activities based on landscape geochemical interpretation. J. Geochem. Explor. 146, 136-148.
Zayed, A.M., & Terry, N., 2003. Chromium in the environment: factors affecting biological remediation. Plant Soil 249(1), 139-156.
Zhang, S., Bai, J., Wang, W., Huang, L., Zhang, G., & Wang, D., 2018. Heavy metal contents and transfer capacities of
Zhao, L., Gong, D., Zhao, W., Lin, L., Yang, W., Guo, W., Tang, X., & Li, Q., 2020. Spatial-temporal distribution characteristics and health risk assessment of heavy metals in surface water of the Three Gorges Reservoir, China. Sci. Total Environ. 704, 134883. PMid:31780178.
Zhou, F., Guo, H., & Liu, L., 2007. Quantitative identification and source apportionment of anthropogenic heavy metals in marine sediment of Hong Kong. Environ. Geol. (Berl.) 53(2), 295-305.
Submitted date:
07/04/2023
Accepted date:
04/18/2024
Publication date:
06/11/2024