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Abstract: Aim: i) is there a difference in the level of contamination in the different parts of the basin 
in the water, sediment and aquatic macrophytes compartments? and ii) do the three compartments 
respond similarly to metal contamination?  Methods: Samples of water, sediment and aquatic 
macrophytes (Salvinia auriculata Aubl., Pistia stratiotes L., Ludwigia helminthorrhiza (Mart.) H. Hara 
and Eichhornia crassipes (Mart.) Solms) were collected at 10 sampling sites in different stretches of 
a tropical hydrographic basin. We determined the metal concentrations of Fe, Pb, Ni, Zn, Mn, Cr, 
Cu and Cd, and to the results we applied Principal Component Analysis (PCA), separately for each 
compartment, to order the sampling sites.  Results: Fe and Mn had higher concentrations than other 
metals in plants and sediment. With the exception of Mn, the order of metals was similar between water 
and sediment. However, the PCAs ordered the sampling sites differently. Our results demonstrated that 
the ordering of sampling sites by metal concentrations differs among water, sediment and macrophytes.  
Conclusions: We conclude that to evaluate the contamination of aquatic environments by metals 
and the effects of contamination on the food chain, it is not enough to evaluate them only in water 
or sediment, but also in an aquatic community. 

Keywords: metallic contaminants; water pollution; fluvial ecosystem; aquatic macrophytes.

Resumo: Objetivo: i) existe diferença no grau de contaminação nas diferentes partes da bacia nos 
compartimentos água, sedimento e macrófitas aquáticas? e ii) os três compartimentos respondem de 
forma semelhante à contaminação por metais?  Metódos: Amostras de água, sedimento e macrófitas 
aquáticas (Salvinia auriculata Aubl., Pistia stratiotes L., Ludwigia helminthorrhiza (Mart.) H. Hara e 
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2018). Thus, monitoring of metal pollutants only 
in the water column is insufficient to assess the 
contamination of aquatic environments by metals, 
since sediments can cause secondary pollution to the 
aquatic environment (Xu et al., 2017). Therefore, 
sediment is an important compartment (Wan et al., 
2016; Yang et al., 2016) to be studied, as well as the 
aquatic organisms that are at the base of the trophic 
web and absorb metallic contaminants.

Aquatic macrophytes underlie the trophic 
web, playing an important role in nutrient cycling 
through active and passive transport of elements 
(Azaizeh  et  al., 2006; Yoon  et  al., 2006). These 
plants absorb nutrients and other ions from water 
and/or sediment, and can be used in the treatment 
of effluents, due to their ability to accumulate 
contaminants and store them in biomass (Henry-
Silva & Camargo, 2006; Mishra & Tripathi, 2008; 
Hassan et al., 2010; Jutsz & Gnida, 2015; Ugya, 
2015; Kumar et al., 2017; Mishra & Maiti, 2017). 
In addition, aquatic macrophytes can be used to 
assess metal contamination in aquatic ecosystems 
(Griboff et al., 2017; Sijakova-Ivanova et al., 2017; 
Hesami et al., 2018; Zhang et al., 2018).

The Apodi-Mossoró river basin located in 
a semi-arid region has great socioeconomic 
importance, however, the water bodies have many 
environmental impacts (Medeiros et al, 2023). 
The water resources of the river basin are used in 
the most diverse human activities, among them, the 
watering of animals and for human consumption 
after treatment. Araújo & Pinto Filho (2010) 
identified several polluting sources of heavy metals 
in the soils of the Apodi-Mossoró river basin. Paula 
Filho et al. (2021) evaluated metal concentrations 
in the sediment of the Parnaíba river estuary 
(Brazilian semi-arid region) and Campagna-
Fernandes et al. (2022) developed ecotoxicological 
studies on water and sediment samples from the 
Apodi-Mossoró river. Furhtermore, studies on metal 
concentrations in water, sediments and aquatic 

1. Introduction

Metals are natural elements of the earth’s 
crust, however, due to anthropic activities, the 
concentration of these elements in the most 
diverse ecosystems has been increasing. Thus, the 
pollution of aquatic environments by metals has 
attracted worldwide attention, as they persist in 
nature, as they are not destroyed (Chopra  et  al., 
2009), originate from different sources (Guo et al., 
2012; Yu et al., 2014) and accumulate in aquatic 
organisms, which can be magnified in the food web 
(Aydin-Önen & Öztürk, 2017; Loureiro & Hepp, 
2020). Metals have high toxicity, being harmful 
to most aquatic organisms and can cause harm to 
human health (Chowdhury et al., 2016; Ali et al., 
2016; Antoniadis et al., 2017).

Many studies analyze the concentration of 
metals in aquatic environments, however, most 
studies determine the concentration of metals only 
in water and sediment (Torregroza-Espinosa et al., 
2018; Hossain  et  al., 2020; Zhao  et  al., 2020). 
Furhtermore, it is essential to understand whether 
different compartments of the aquatic ecosystem 
behave the same way in relation to contamination 
by metals. Thus, it is necessary to analyze the 
concentrations of metals in water, sediment and 
in aquatic organisms, since the metals have the 
capacity to be transferred constantly from one 
compartment to another. Therefore, analysis of 
water, sediment and aquatic communities, such 
as aquatic macrophytes, should be performed to 
assess general metal pollution and the impact of 
these contaminants on aquatic ecosystems (Li et al., 
2019).

The metals released into rivers and lakes 
can become deposited in the sediments and, 
later, be released again to the water column 
(Huang  et  al., 2012) to later be absorbed and 
accumulated in the tissues of the organisms in the 
trophic web (Said et al., 2009; Fazio et al., 2014; 
Krishnamurti et al., 2015; Shakouri & Gheytasi, 

Eichhornia crassipes (Mart.) Solms) foram coletadas em 10 locais de amostragem em diferentes trechos 
de uma bacia hidrográfica tropical. Foram determinadas as concentrações de Fe, Pb, Ni, Zn, Mn, Cr, 
Cu e Cd e aos resultados nós aplicamos uma Análise de Componentes Principais (ACP), separadamente 
para cada compartimento, para ordenar os locais de coleta.  Resultados: Fe e Mn mostraram maiores 
concentrações do que os outros metais nas plantas e no sedimento. Com exceção do Mn, a ordem dos 
metais foi similar na água e no sedimento. No entanto, a ACP ordenou os locais de coleta de forma 
diferente. Nossos resultados demonstraram que a ordenação dos locais de amostragem por concentração 
de metais difere entre água, sedimento e macrófitas.  Conclusão: Nós concluímos que avaliar a 
contaminação de ambientes aquáticos por metais e os efeitos da contaminação na cadeia alimentar, 
não basta avalia-los apenas na água e sedimento, mas também em alguma comunidade aquática. 

Palavras-chave: contaminantes metálicos; poluição da água; ecossistema fluvial; macrófitas aquáticas.
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organisms have not been carried out in the region. 
In this context, we evaluated the concentrations 
of metals (copper, iron, manganese, zinc, nickel, 
chromium, lead and cadmium) in water, sediment 
and aquatic macrophytes S. auriculata, P. stratiotes, 
L. helminthorrhiza and E. crassipes in different sites 
in a hydrographic basin in the semi-arid region of 
Brazil. Our objectives were to answer the following 
questions: i) is there a difference in the level of 
contamination in the different parts of the basin 
in the water, sediment and aquatic macrophytes 
compartments? and ii) do the three compartments 
respond similarly to metal contamination?

2. Methods

2.1. Study area

This study was conducted in aquatic environments 
of the River Apodi-Mossoró hydrographic basin 
located in semiarid Brazil (Figure  1). Average 
precipitation in the hydrographic basin is 700 mm 
per year (SEMARH, 2017) and the average annual 
air temperature is 28 ° C, with an average maximum 
of 36°C and an average minimum of 20°C, while 
the relative humidity of the air (annual average) 
is 68%. The climate of the region, according to 
the Köppen climate classification (Kottek  et  al., 
2006), is type BSwh, that is, very hot and semi-arid 
climate with the rainy season covering the months 
of February, March, April and May. The basin 
occupies an area of 14,276 km2, and constitutes 

the main source of surface water for the region 
(IGARN, 2018). The hydrographic basin has an 
altitude that varies from 1m to 830 m, and the 
total length of channels ranging from the first to the 
seventh order is equivalent to 11,085.87 km (Lira 
de Carvalho & Henry-Silva, 2022). According to 
Siqueira et al. (2022), the Apodi-Mossoró River has 
stretches with eutrophic and hypereutrophic waters, 
in addition to a large amount of fecal coliforms, 
especially in the stretches where it crosses urban 
areas. In other stretches it was classified, by these 
authors, as mesotrophic, in addition the trophic 
state indices are higher in periods of drought. For 
more information about the basin see Henry-Silva 
& Camargo (2022).

The municipalities located in the hydrographic 
basin with the highest population densities 
according to the IBGE estimate for the year 2020 are 
Mossoró with an estimated 300,618 inhabitants, 
Pau dos Ferros with 30,600 and Apodi with 
35,874 inhabitants (IBGE, 2010). The activities 
developed in the hydrographic basin, such as oil 
extraction, sea salt production, irrigated fruit 
production, extensive livestock, limestone mining, 
agriculture and livestock are sources of pollutants for 
water. The basin has an area of crystalline geological 
formation, consisting of igneous and metamorphic 
rocks and another area of sedimentary formation, 
formed by sandy-clay and limestone rocks. The first 
area is approximately 6,500 km2 and the second, 
4,500 km2 (Justo et al., 2016).

Figure 1. Location of the study area. The numbers indicate the sampling sites in the Apodi-Mossoró river basin, state 
of Rio Grande do Norte, Northeastern Brazil. Caption: Water flows from site 1 to 10. Sites 3, 7 and 8 are tributaries 
and the rest are mains streams.
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2.2. Sampling procedure

We sampled 10 sites in the River Apodi-
Mossoró hydrographic basin (Figure 1) in stretches 
that cross urban center in October 2017, in the 
dry season. This study was carried out in the dry 
season because at this time there is less dilution 
and, consequently, higher concentrations of 
substances and chemical elements in the water. 
Generally higher concentrations of metals in water 
are detected in water bodies during the dry season 
(Kamari et al., 2017). In these places we collected 
water, sediment and S. auriculata, P. stratiotes, 
L. helminthorrhiza and E.crassipes. A sample was 
collected at each of the sites.

The sampling sites were selected according to 
the occurrence of the studied aquatic macrophytes 
and also aiming to contemplate stretches of the river 
that cross the cities with the highest population 
density, with seven of the sampling sites (4 to 10) 
being located in the city with the largest number 
of habitats and greater occurrence of aquatic 
macrophytes in the river. In the hydrographic 
basin of the River Apodi-Mossoró, several species 
of aquatic macrophytes occur, with the lowest 
richness observed in the estuarine region and the 
highest in the upper part of the hydrographic basin. 
The most frequent free-floating species in the basin 
are E. crassipes, P. stratiotes, and S. auriculata, which 
occur predominantly in stretches surrounded by 
urban centers and the most frequent rooted floating-
leaf species is L. helminthorrhiza (Henry-Silva et al., 
2010).

Direct measurements and water samples were 
performed at approximately 50 cm deep near 
the margin at each sampling sites. Total dissolved 
solids (TDS) and pH were obtained with Horiba 
U10 equipment. Water samples of 150 ml were 
collected in pre-sterilized bottles washed with nitric 
acid (HNO3), to which 2 ml of HNO3 (concentrate) 
was added for preservation. Samples of surface 
sediment (approximately 1 kg) were collected and 
stored in plastic bags for transport to the laboratory. 
The species of aquatic macrophytes were collected 
at the sampling sites where they occurred (Table 1) 

in sufficient quantity for subsequent determination 
of metals. We tried to sample species with similar 
characteristics, that is, green leaves and a healthy 
appearance.

2.3. Laboratory procedure

The sediment samples were dried in an oven at 
60°C until constant mass, and were subsequently 
incinerated in a muffle furnace, according to the 
method described by Goldin (1987), to determine 
organic matter (OM). The samples of aquatic 
macrophytes (leaf, rhizomes and root) were washed 
first with running water and then with distilled 
water, then dried in an oven at 60°C, ground in 
a Willey mill and stored in labeled plastic pots. 
Next, 2.0 g of macrophyte samples and 0.400 g of 
crushed sediment samples were placed in a crucible 
and baked in a muffle furnace for two hours 
at a temperature of 560°C to remove organic 
matter. Subsequently, 10 ml of hydrochloric acid 
(concentrate) and 3 ml of nitric acid (concentrate) 
were added and the macrophyte samples were 
heated to 300°C in a block heater. After cooling, the 
samples were transferred to 100 ml volumetric flasks 
and the volume completed with deionized water. 
The acids used to analyze metals in water, sediment 
and macrophytes were used in the same proportion 
to compose the blanks used in the analyses. 
All determinations were carried out in accordance 
with quality control. For quality assurance we use 
standard reagents analysis of certified reference 
(Table 2). The precision of analysis for heavy metals 
was validated through Standard Reference Material 
sample – SRM 928 NIST (US National Institute of 
Standards and Technology) (NIST, 2016). Standard 
curves were constructed using standard solutions 
with known con-centrations to calculate sample 
concentrations. All metal analyzes were performed 
in duplicate.

Metal analysis of the water used the 3015a 
method (C.A.S. Element, 2007) while of the 
sediment was performed by the 3050b method 
(A. M. Arsenic, 1996). Determination of metals 
in macrophytes followed an adaptation of the 
3050b method (A. M. Arsenic, 1996). The metals 

Table 1. Occurrence of the four studied species of aquatic macrophytes among sampling sites of River Apodi-Mossoró, 
state of Rio Grande do Norte, Northeast Brazil.

Species Biological form Sampling sites
L. helminthorrhiza Rooted with floating leaves 2, 3, 5, 9

S. auriculata Free floating 2, 3, 9
P. stratiotes Free floating 3, 5, 9, 10
E. crassipes Free floating 1, 4, 5, 6, 7, 8, 9, 10
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analyzed in the three compartments were copper 
(Cu), iron (Fe), manganese (Mn), zinc (Zn), 
nickel (Ni), chromium (Cr), lead (Pb) and 
cadmium (Cd). All analyses were performed using 
a Varian model AA240FS atomic absorption 
spectrophotometer.

2.4. Statistical analysis

For the values of concentration of metals in 
water, sediment and aquatic macrophytes, we 
applied Principal Component Analysis (PCA) 
separately for each compartment. The purpose 
of applying the PCAs was to verify whether the 
three compartments respond equally to metal 
concentrations, that is, the ordering of sites would 
be similar or different for the three compartments. 
Before applying the PCA, the values were 
standardized to minimize the influence arising 
from the difference in metal concentration in the 
sampled locations (Singh et al., 2005; Zhou et al., 
2007). Correlation tests (p<0,05) were applied 
between the concentrations of metals in water 
and in of macrophyte E. crassipes. We applied 
correlations only to E. crassipes, as the other 
species occurred in few sites. Statistical analysis 
was performed in the free software R Core Team 
(2018) using the Vegan package.

3. Results

3.1. Physical and chemical variables

Physical and chemical analyses of water found 
the pH to range from 6.9 at sampling site 1 to 8.6 at 
site 2 and was alkaline at all the other sampling sites. 
Total dissolved solids (TDS) ranged from 0.23 g.L 
at site 2 to 1.70 g.L at site 8. Percentage OM of 
sediment ranged from 0.4% at site 3 to 26% at 
site 1 (Table 3).

3.2. Metals in water and sediment

The analysis of metals from sediment samples 
revealed that the metal with the highest concentration 
was Fe, with a value of 16,244.91 mg.kg-1 at sampling 
site 10, whereas Cd had the lowest value, with a 
minimum of 1.73 mg.kg-1 at site 6. The highest 
concentrations of metals in water samples occurred at 
site 5, with 0.049 mg.L-1 of Cu; 1.143 mg.L-1 of Zn; 
0.066 mg.L-1 of Cr; 0.486 mg.L-1 of Ni; 0.025 mg.L-1 of 
Cd and 0.485 mg.L-1 of Pb. Site 4 had the highest 
concentration of Fe (1.386 mg.L-1) and site 6 had 
the highest concentration of Mn (0.242 mg.L-1) 
(Figure 2).

3.3. Metals in aquatic macrophytes

Metals with the highest concentrations in 
macrophyte plant tissues were Fe and Mn, 
while the lowest concentrations were for Cd 
and Cr. The highest concentration of Cu 
was 31.35 mg.kg-1 for S. auriculata at site 3, 
while the highest concentration of Mn was 
17,827.31 mg.kg-1 for L. helminthorrhiza at site 
2. The highest concentrations of Fe, Zn and Cr 
were 10,909.53 mg.kg-1, 219.82 mg.kg-1 and 
10.17 mg.kg-1, respectively, for P. stratiotes at site 
3. The highest concentrations of Pb and Cd were 
both for P. stratiotes, with 73.13 mg.kg-1 at site 9 and 
1.45 mg.kg-1 at site 10, respectively. The species 

Table 2. Values of certified reference standard reagents.
Heavy metal Certified values (mg kg−1)

Cu 0.978 ± 0.004
Fe 0.977 ± 0.053
Mn 0.979 ± 0.005
Zn 0.979 ± 0.004
Cr 9.545 ± 0.044
Cd 9.597 ± 0.039
Ni 0.977 ± 0.005
Pb 9.619 ± 0.039

Table 3. Values for hydrogen potential (pH) and total dissolved solids (TDS) in water and organic matter (OM) in 
sediment of sampling sites of a river located in a semiarid climate region.

Sampling Site pH TDS (g.L) OM (%)
1 6.9 0.91 26
2 8.6 0.23 1
3 8.4 0.60 0.4
4 8.4 1.41 5
5 7.7 1.68 13
6 7.9 1.64 1
7 7.7 1.24 6
8 7.8 1.70 2
9 8.5 1.38 7

10 8.4 1.66 16
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E. crassipes had the highest concentration of Ni with 
18.80 mg.kg-1 at site 8 (Table 4).

The first two axes of the Principal Component 
Analysis explained 65.64% of the data for metal in 
water samples, 66.16% for sediments and 58.36% 
for the metal data in the macrophytes (Figure 3 and 
Table 5). In the water PCA, all metals are negatively 
correlated with axis 1. Thus, sites 5 and 4 are the 
ones with the highest concentrations of metals, 
especially Zn, Ni and Pb, which are the ones with 
the highest correlation with axis 1. In the sediment 
PCA most metals are positively correlated with axis 
1 and the metals with the highest correlation are Fe, 
Zn and Cr. In the PCA of macrophytes, some metals 
are positively correlated and others are negatively 
correlated. The ones with the highest positive 

correlation are Cu and Ni and with the highest 
correlation which is negative Pb. In addition, in the 
PCA applied to aquatic macrophytes P. stratiotes has 
more Pb in site 9, while in site 3, P. stratiotes and 
S. auriculata have higher concentrations of Cr and Fe.

Significant correlations were found between the 
concentrations of Mn, Fe and Cr in the sediment 
and the percentage of organic matter in the 
sediments (Figure 4).

No significant correlation was found between 
the concentrations of metals in the water and in the 
macrophyte E. crassipes present in eight sampling 
sites. In the other species of aquatic macrophytes, 
L. helminthorrhiza, S. auriculata and P. stratiotes, 
correlation tests were not carried out due to the 
small number of samples.

Figure 2. Metal concentration of surface sediment (mg.kg-1) and water (mg.L-1) in sampling sites of the Apodi-
Mossoró river basin.
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4. Discussion

Our results showed that the concentrations of 
metals in water, sediments and aquatic macrophytes 
do not have the same pattern. The PCAs order the 
sampling sites very differently, and the correlations 
of metals with the axes are also quite different. These 
differences were probably due to the characteristics 
of each compartment, such as the granulometric 
texture of sediment, which influences metal 
distribution (Sun et al., 2018). The concentration 
of metals in the different compartments of the 
sampling sites depends on opposing processes, 
such as resuspension and sedimentation and the 
physiology of macrophytes in absorbing or excreting 
metals (Xia et al., 2018). Moreover, urbanization 
also influences metal concentrations, as can be 

observed in locations 2 and 3, which are less 
urbanized areas and have the lowest concentrations 
of metals in water and sediments.

The different concentrations of metals in the 
sediment can be explained by the characteristics 
of this compartment. For example, sediments 
with higher organic matter content tend to 
accumulate more metals (Martins  et  al., 2021). 
The reduced amounts of organic matter preclude 
the formation of stable complexes between metals 
and humic substances present in organic matter 
(Clemente et al., 2006). Sites 2 and 3, for example, 
had a small percentage of organic matter, with 1% 
and 0.4%, respectively, so probably, metals did not 
accumulate in the sediment, as observed by the 
lower concentrations for Cu, Mn, Fe and Cr in the 
sediment of these sites. It was possible to observe a 

Table 4. Metal concentrations (mg.kg-1) in aquatic macrophytes collected from sampling sites of a river located in 
a semiarid climate region. 

Species Site Cu Mn Fe Zn Cr Ni Cd Pb
L. helminthorrhiza 2 4.47 17,827.31 3,188.30 15.47 1.39 5.82 0.55 12.73

3 22.28 1,357.17 2,593.96 31.91 3.74 9.75 0.42 10.73
5 27.30 840.83 1,081.76 36.93 1.80 8.31 0.85 18.97
9 1.67 445.53 502.86 32.29 0.90 2.07 1.27 19.91

S. auriculata 2 6.94 2,715.18 945.57 14.96 0.99 3.60 0.75 11.74
3 31.35 3,158.55 9,155.04 35.35 6.64 8.74 0.72 11.74
9 5.29 484.47 2,144.20 34.04 4.62 4.19 1.17 16.47

P. stratiotes 3 15.15 3,813.17 10,909.53 55.12 10.17 14.60 1.12 18.94
5 4.09 1,390.33 912.46 27.80 2.22 7.53 1.27 19.95
9 1.58 692.24 1,282.48 219.82 1.91 1.36 1.08 73.13

10 4.24 2,269.26 2,272.07 25.51 4.12 3.44 1.45 18.47
E. crassipes 1 6.79 260.37 834.98 20.13 1.60 9.55 0.39 8.60

4 7.27 2,564.08 1,204.89 17.54 1.50 6.44 0.69 15.92
5 18.23 987.32 1,772.13 34.05 4.68 12.27 1.16 24.32
6 4.95 700.02 324.13 8.79 1.22 11.76 1.43 14.28
7 22.43 508.82 310.32 9.91 1.51 12.93 0.90 15.01
8 5.41 627.79 1,348.95 15.91 2.81 18.80 1.06 17.15
9 20.65 1,015.28 2,077.21 33.52 4.20 5.28 1.10 21.31

10 1.02 326.66 340.05 12.47 0.96 11.24 0.39 10.79
Cu = copper; Mn = manganese; Fe = iron; Zn = zinc; Cr = chromium; Ni = nickel; Cd = cadmium; Pb = lead.

Table 5. Factorial coordinates of the parameters, based on correlations from the Principal Component Analysis.

Parameters
PCA Water PCA Sediment PCA Macrophytes

Axis 1 Axis 2 Axis 1 Axis 2 Axis 1 Axis 2
Cu -0.60 -0.44 0.63 0.61 0.62 -0.29
Mn -0.29 -0.52 0.69 -0.18 0.19 0.07
Fe -0.42 -0.59 0.95 -0.15 0.62 -0.68
Zn -0.85 0.07 0.74 0.53 -0.62 0.68
Cr -0.59 -0.52 0.82 -0.48 0.57 -0.75
Ni -0.75 0.57 -0.02 0.54 0.61 0.06
Cd -0.66 0.53 0.26 -0.79 -0.30 -0.37
Pb -0.86 0.16 0.22 0.49 -0.73 -0.61
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significant correlation between the organic matter 
present in the sediments and the metals Mn, Fe 
and Cr.

Metal concentrations in water also differed 
among sampling sites. Low concentrations in 
water may be the result of absorption by free 
floating aquatic macrophytes or sediment retention. 
At site 10, for example, Mn and Fe concentrations 
were high in the sediment that containing high 

percentages of organic matter and in the biomass 
of P. stratiotes. In fact, organic matter influences 
the distribution and dispersion of metals through 
chelation and cation exchange mechanisms (El-
Badry & El-Kammar, 2018), while metals present 
in the water column are largely absorbed by 
macrophytes (Ergönül et al., 2019).

In this study, the metals that showed the highest 
concentrations in water and sediments were Fe and 
Mn. However, de Paula Filho et al. (2021) observed 
in sediments from the estuary of the Parnaíba 
River (semiarid northeast of Brazil) the following 
ranking: Al > Fe > Mn > Zn > Cr > Ni > Cu > Pb > Cd, 
which with the exception of Al followed the 
same pattern that we observed. We highlight 
that this study has a geochemical bias and metals 
were not evaluated in any aquatic community. 
Hossain et al. (2020) in a study on metals in the 
Kutubdia Channel near Matarbari, Cox’s Bazar, 
Bangladesh, identified that the contaminants with 
the highest concentrations in water and sediments 
were Fe and Mn and associated this result with 
the origin of these contaminants. The presence of 
these pollutants in aquatic ecosystems is associated 
with processes of natural origin and also human 
intervention in the biogeochemistry of the metal 
cycle (Saleem et al., 2015). The anthropic sources 
of these metals are domestic and industrial effluents, 
agricultural fertilizers, vehicle exhaust particles 
emission, tire wear particles, worn pavement surface 
particles (Duong & Lee 2011; Mohiuddin et al., 
2011; Adamiec  et  al., 2016; Belkhiri  et  al., 
2017) among other sources. In fact, the source 
of metals at sampling site 2 was possibly from 
agricultural fertilizers, as it has close agricultural 
areas. The anthropic sources of metals in the 
other sampling sites were possibly originated from 
domestic effluents that are discharged along the 
river, and from particles from vehicle exhaust, 
from tire wear and from worn pavement surfaces, 
considering that these sampling sites are located in 
urban areas. In fact, Campagna-Fernandes  et  al. 
(2022) carried out ecotoxicological studies of water 
and sediment samples from urban areas of the 
Apodi-Mossoró basin and observed moderate toxic 
effects on some organisms.

Metal concentrations in biomass were very 
different among the different aquatic macrophyte 
species, in which metals also accumulate differently. 
Concentrations of Fe, Mn and Zn in the four 
macrophyte species were higher than the other metals 
studied. This result is probably related to the fact 
that these elements are essential micronutrients for 

Figure 3. Principal Component Analysis of metals 
contained in (A) water, (B) sediment and (C) aquatic 
macrophytes and their respective correlation values 
between variables and principal components 1 and 
2. Numbers correspond to sampling sites along 
of a river located in a semiarid climate region. L = 
L. helminthorrhiza; S = S. auriculata; P = P. stratiotes; 
E = E. crassipes.
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plants. The four macrophyte species accumulated, 
in most places, lower concentrations of Cr and Cd, 
because in addition to these metals being in low 
concentrations in water and sediment, this result 

was probably also due to the high toxicity of these 
metals even in small amounts as demonstrated by 
other authors (Zayed & Terry, 2003; Bonanno & 
Giudice, 2010; Alfadul & Al-Fredan, 2013; Gómez-

Figure 4. Correlation graph between metal concentrations and percentage of organic matter in the sediment.
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Bernal  et  al., 2017). Although Ni is an essential 
micronutrient for plants, only small concentrations 
of this element were observed in the studied species, 
probably because high concentrations of Zn and Fe 
inhibit Ni uptake because they are competing metals 
(IPNI, 2016), while lower Cu concentrations in 
plants may be due to small amounts of this metal 
in water.

The accumulation of metals in the plant biomass 
of aquatic macrophytes can also be influenced 
by pH. Vanhoudt  et  al. (2018) identified a 
higher absorption capacity for cobalt metal by 
four macrophyte species at pH of 5 to 7 and 
lower absorption starting at pH 9, while the 
high pH (> 8.0) does not seem to stimulate the 
bioaccumulation of the metals (Lin et al., 2020). 
However, although the pH of the sampled sites 
varied between 6.9 and 8.6, the macrophytes were 
able to bioaccumulate the metals, demonstrating 
that other factors have a greater influence on their 
absorption and accumulation of metals, such as 
temperature (Balle et al., 2021).

The presence of total dissolved solids (TDS) 
is another factor that can affect the absorption of 
metals by aquatic plants since they can be composed 
of dissolved substances such as chlorides, sulfates 
and bicarbonates (Miranda & Krishnakumar, 
2015) that can bind to metals and prevent them 
from being absorbed by macrophytes. The species 
L.helminthorrhiza and S. auriculata in site 2, 
presented higher concentrations of metals than 
those same species located in site 9. In site 2 the 
dissolved solids values are 6 times smaller than 
the values in site 9. Which can explain our results. 
On the other hand, other factors such as the 
concentration of metals in the abiotic compartments 
and also the toxicity of each metal presented by 
macrophytes also interfere in the accumulation of 
these contaminants in plant biomass. Thus, the 
influence of pH and total dissolved solids cannot be 
considered single in a natural aquatic environment.

Similar to Cd and Cr, Pb is a toxic metal, 
however, it accumulated in higher concentrations in 
the biomass of the four aquatic macrophyte species 
analyzed when compared to the accumulation of Cd 
and Cr metals by the same species. Li et al. (2019) 
in a study about the concentrations of metals in the 
biomass of Potamogeton crispus Linn. and Salvinia 
natans L. in a river in China, identified that P. crispus 
accumulated higher levels of Cr, Ni, Cu and Zn, 
while S. natans showed high efficiency to accumulate 
Pb and Zn. Napaldet & Buot Junior (2020) and 
Malik et al. (2010) indicated that Eleusine indica is 

a good phytoaccumulator of Pb, however, this same 
species is inefficient for removing other metals, such 
as Cu, Cd, Cr and Co (Garba et al., 2012). Thus, 
it is evident that the concentration of Pb in the 
biomass of aquatic macrophytes is also related to the 
concentrations of this metal in water and sediments 
that were higher than those presented by Cd and 
Cr, and the influence of environmental conditions, 
also depends on the ability that each species of 
macrophyte presents to accumulate this metal.

No relationship was observed between the 
concentration of metals in water and in E. crassipes. 
This result shows that the concentration of metals 
in plant biomass does not only depend on the 
concentration in water, since the absorption of 
metals by plants is influenced by the bioavailability 
of metals and the absorption capacity of each plant 
species (Gupta & Sinha, 2007; Núñez et al., 2011; 
Borisova  et  al., 2014, 2016). In addition, plant 
defense mechanisms reduce metal absorption 
(Bonanno, 2011; Vymazal, 2011). Another point 
to note is that the metal absorption capacity 
of E. crassipes is more efficient in places with 
reduced metal concentrations (Das  et  al., 2016). 
This result indicates that, despite absorbing the 
metals contained in aquatic ecosystems, caution 
is necessary when stating that E. crassipes is a good 
indicator of contamination, since it is necessary to 
consider the response of the species to each metal, 
due to their toxicity, and the physical and chemical 
conditions of the aquatic environment that can 
interfere with metal absorption.

5. Conclusions

We conclude that the assessment of metal 
concentrations in water or sediment is not sufficient 
to indicate contamination in aquatic biota. Higher 
concentrations in these compartments do not 
necessarily indicate higher concentrations in any 
aquatic community, such as macrophytes. Thus, 
for the monitoring of metal contamination of an 
aquatic environment, it is necessary that research 
address metal concentrations in water, sediment 
and some aquatic organism.
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