Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X6523
Acta Limnologica Brasiliensia
Artigo Original

Concentrations of metals in water, sediments and aquatic macrophytes in a river located in a region with a hot semi-arid climate

Concentrações de metais na água, sedimentos e macrófitas aquáticas em um rio localizado em uma região de clima semiárido quente

Camila Tâmires Alves Oliveira; Antonio Fernando Monteiro Camargo; Eulene Francisco da Silva; Gustavo Gonzaga Henry-Silva

Downloads: 0
Views: 559

Abstract

Aim: i) is there a difference in the level of contamination in the different parts of the basin in the water, sediment and aquatic macrophytes compartments? and ii) do the three compartments respond similarly to metal contamination?

Methods: Samples of water, sediment and aquatic macrophytes (Salvinia auriculata Aubl., Pistia stratiotes L., Ludwigia helminthorrhiza (Mart.) H. Hara and Eichhornia crassipes (Mart.) Solms) were collected at 10 sampling sites in different stretches of a tropical hydrographic basin. We determined the metal concentrations of Fe, Pb, Ni, Zn, Mn, Cr, Cu and Cd, and to the results we applied Principal Component Analysis (PCA), separately for each compartment, to order the sampling sites.

Results: Fe and Mn had higher concentrations than other metals in plants and sediment. With the exception of Mn, the order of metals was similar between water and sediment. However, the PCAs ordered the sampling sites differently. Our results demonstrated that the ordering of sampling sites by metal concentrations differs among water, sediment and macrophytes.

Conclusions: We conclude that to evaluate the contamination of aquatic environments by metals and the effects of contamination on the food chain, it is not enough to evaluate them only in water or sediment, but also in an aquatic community.

Keywords

metallic contaminants, water pollution, fluvial ecosystem, aquatic macrophytes

Resumo

Objetivo: i) existe diferença no grau de contaminação nas diferentes partes da bacia nos compartimentos água, sedimento e macrófitas aquáticas? e ii) os três compartimentos respondem de forma semelhante à contaminação por metais?

Metódos: Amostras de água, sedimento e macrófitas aquáticas (Salvinia auriculata Aubl., Pistia stratiotes L., Ludwigia helminthorrhiza (Mart.) H. Hara e Eichhornia crassipes (Mart.) Solms) foram coletadas em 10 locais de amostragem em diferentes trechos de uma bacia hidrográfica tropical. Foram determinadas as concentrações de Fe, Pb, Ni, Zn, Mn, Cr, Cu e Cd e aos resultados nós aplicamos uma Análise de Componentes Principais (ACP), separadamente para cada compartimento, para ordenar os locais de coleta.

Resultados: Fe e Mn mostraram maiores concentrações do que os outros metais nas plantas e no sedimento. Com exceção do Mn, a ordem dos metais foi similar na água e no sedimento. No entanto, a ACP ordenou os locais de coleta de forma diferente. Nossos resultados demonstraram que a ordenação dos locais de amostragem por concentração de metais difere entre água, sedimento e macrófitas.

Conclusão: Nós concluímos que avaliar a contaminação de ambientes aquáticos por metais e os efeitos da contaminação na cadeia alimentar, não basta avalia-los apenas na água e sedimento, mas também em alguma comunidade aquática.

Palavras-chave

contaminantes metálicos, poluição da água, ecossistema fluvial, macrófitas aquáticas

Referências

A. M. Arsenic, 1996. Method 3050b. Acid Digestion of Sediments, Sludges, and Soils. Washington, DC: A.M. Arsenic.

Adamiec, E., Jarosz-Krzemińska, E., & Wieszala, R., 2016. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ. Monit. Assess. 188(6), 369. PMid:27226173. http://doi.org/10.1007/s10661-016-5377-1.

Alfadul, S.M.S., & Al-Fredan, M.A.A., 2013. Effects of Cd, Cu, Pb, and Zn combinations on Phragmites australis metabolism, metal accumulation and distribution. Arab. J. Sci. Eng. 38(1), 11-19. http://doi.org/10.1007/s13369-012-0393-0.

Ali, M.M., Ali, M.L., Islam, M.S., & Rahman, M.Z., 2016. Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environ. Nanotechnol. Monit. Manag. 5, 27-35. http://doi.org/10.1016/j.enmm.2016.01.002.

Antoniadis, V., Levizou, E., Shaheen, S.M., Ok, Y.S., Sebastian, A., Baum, C., Prasad, M.N.V., Wenzel, W.W., & Rinklebe, J., 2017. Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation–A review. Earth Sci. Rev. 171, 621-645. http://doi.org/10.1016/j.earscirev.2017.06.005.

Araújo, J.B.D.S., & Pinto Filho, J.L.O., 2010. Identificação de fontes poluidoras de metais pesados nos solos da bacia hidrográfica do Rio Apodi, Mossoró, RN, na área urbana de Mossoró, RN. Rev. Verde Agroecol. Desenvolv. Sustent. 5(2), 13.

Aydin-Önen, S., & Öztürk, M., 2017. Investigation of heavy metal pollution in eastern Aegean Sea coastal waters by using Cystoseira barbata, Patella caerulea, and Liza aurata as biological indicators. Environ. Sci. Pollut. Res. Int. 24(8), 7310-7334. PMid:28105592. http://doi.org/10.1007/s11356-016-8226-4.

Azaizeh, H., Salhani, N., Sebesvari, Z., Shardendu, S., Emons, H., 2006. Phytoremediation of selenium using subsurface-flow constructed wetland. Int J of Phytoremediation, 8(3), 187-198. http://doi.org/10.1080/15226510600846723.

Balle, M.G., Ferragute, C., Coelho, L.H.G., & Jesus, T.A., 2021. Phosphorus and metals immobilization by periphyton in a shallow eutrophic reservoir. Acta Limnol. Bras. 33, e11. https://doi.org/10.1590/S2179-975X0320.

Belkhiri, L., Mouni, L., Narany, T.S., & Tiri, A., 2017. Evaluation of potential health risk of heavy metals in groundwater using the integration of indicator kriging and multivariate statistical methods. Groundw. Sustain. Dev. 4, 12-22. http://doi.org/10.1016/j.gsd.2016.10.003.

Bonanno, G., & Giudice, R.L., 2010. Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol. Indic. 10(3), 639-645. http://doi.org/10.1016/j.ecolind.2009.11.002.

Bonanno, G., 2011. Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications. Ecotoxicol. Environ. Saf. 74(4), 1057-1064. PMid:21316762. http://doi.org/10.1016/j.ecoenv.2011.01.018.

Borisova, G., Chukina, N., Maleva, M., & Prasad, M.N.V., 2014. Ceratophyllum demersum L. and Potamogeton alpinus Balb. from Iset’river, Ural region, Russia differ in adaptive strategies to heavy metals exposure–a comparative study. Int. J. Phytoremediation 16(6), 621-633. PMid:24912247. http://doi.org/10.1080/15226514.2013.803022.

Borisova, G., Chukina, N., Maleva, M., Kumar, A., & Prasad, M.N.V., 2016. Thiols as biomarkers of heavy metal tolerance in the aquatic macrophytes of Middle Urals, Russia. Int. J. Phytoremediation 18(10), 1037-1045. PMid:27167595. http://doi.org/10.1080/15226514.2016.1183572.

C.A.S. Element, 2007. Method 3015a. Microwave Assisted Acid Digestion of Aqueous Samples and Extracts. Washington, DC: C.A.S. Element.

Campagna-Fernandes, A.F., Farias-Júnio, J.W.M., Silva, A.C.A., Costa Segundo, H.P., & Aquino, D.D. (2022). Estudos ecotoxicológicos no rio Apodi-Mossoró. In: Henry-Silva, G.G., Camargo, A.F.M., orgs. A Bacia do Rio Apodi-Mossoró: aspectos ambientais, sociais e econômicos de uma bacia hidrográfica do semiárido do Rio Grande do Norte. Mossoró: EDUFERSA, vol. 1, 129-148.

Chopra, A.K., Pathak, C., & Prasad, G., 2009. Scenario of heavy metal contamination in agricultural soil and its management. J. Appl. Nat. Sci. 1(1), 99-108. http://doi.org/10.31018/jans.v1i1.46.

Chowdhury, S., Mazumder, MJ., Al-Attas, O., Husain, T. (2016). Heavy metals in drinking water: occurrences, implications, and future needs in developing countries. Sci. Total Environ. 569-570, 476-488. http://doi.org/10.1016/j.scitotenv.2016.06.166.

Clemente, R., Escolar, A., & Bernal, M.P., 2006. Heavy metals fractionation and organic matter mineralisation in contaminated calcareous soil amended with organic materials. Bioresour. Technol. 97(15), 1894-1901. PMid:16223584. http://doi.org/10.1016/j.biortech.2005.08.018.

Das, S., Goswami, S., & Talukdar, A.D., 2016. Physiological responses of water hyacinth, Eichhornia crassipes (Mart.) Solms, to cadmium and its phytoremediation potential. Turk. J. Biol. 40(1), 84-94. http://doi.org/10.3906/biy-1411-86.

Duong, T.T., & Lee, B., 2011. Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. J. Environ. Manage. 92(3), 554-562. PMid:20937547. http://doi.org/10.1016/j.jenvman.2010.09.010.

El-Badry, A.E.A., & El-Kammar, A.M., 2018. Spatial distribution and environmental geochemistry of zinc metal in water and surficial bottom sediments of Lagoon Burullus, Egypt. Mar. Pollut. Bull. 127, 811-816. PMid:29042108. http://doi.org/10.1016/j.marpolbul.2017.10.002.

Ergönül, M.B., Nassouhi, D., & Atasağun, S., 2019. Modeling of the bioaccumulative efficiency of Pistia stratiotes exposed to Pb, Cd, and Pb+ Cd mixtures in nutrient-poor media. Int. J. Phytoremediation 22(2), 201-209. PMid:31475565. http://doi.org/10.1080/15226514.2019.1652566.

Fazio, F., Piccione, G., Tribulato, K., Ferrantelli, V., Giangrosso, G., Arfuso, F., & Faggio, C., 2014. Bioaccumulation of heavy metals in blood and tissue of striped mullet in two Italian lakes. J. Aquat. Anim. Health 26(4), 278-284. PMid:25369146. http://doi.org/10.1080/08997659.2014.938872.

Garba, S.T., Osemeahon, A.S., Maina, H.M., & Barminas, J.T., 2012. Ethylenediaminetetraacetate (EDTA)-Assisted phytoremediation of heavy metal contaminated soil by Eleusine indica L. Gearth. J. Environ. Chem. Ecotoxicol. 4(5), 103-109. http://doi.org/10.5897/JECE11.078.

Goldin, A., 1987. Reassessing the use of loss‐on‐ignition for estimating organic matter content in noncalcareous soils. Commun. Soil Sci. Plant Anal. 18(10), 1111-1116. http://doi.org/10.1080/00103628709367886.

Gómez-Bernal, J.M., Ruiz, H.E.A., Armienta, H.M.A., & Luna, P.V.M., 2017. Evaluation of the removal of heavy metals in a natural wetland impacted by mining activities in Mexico. Environ. Earth Sci. 76(23), 801. http://doi.org/10.1007/s12665-017-7144-1.

Griboff, J., Wunderlin, D.A., & Monferran, M.V., 2017. Metals, As and Se determination by inductively coupled plasma-mass spectrometry (ICP-MS) in edible fish collected from three eutrophic reservoirs. Their consumption represents a risk for human health? Microchem. J. 130, 236-244. http://doi.org/10.1016/j.microc.2016.09.013.

Guo, G., Wu, F., Xie, F., & Zhang, R., 2012. Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China. J. Environ. Sci. (China) 24(3), 410-418. PMid:22655353. http://doi.org/10.1016/S1001-0742(11)60762-6.

Gupta, A.K., & Sinha, S., 2007. Phytoextraction capacity of the plants growing on tannery sludge dumping sites. Bioresour. Technol. 98(9), 1788-1794. PMid:16973356. http://doi.org/10.1016/j.biortech.2006.06.028.

Hassan, S., Schmieder, K., & Böcker, R., 2010. Spatial patterns of submerged macrophytes and heavy metals in the hypertrophic, contaminated, shallow reservoir Lake Qattieneh/Syria. Limnologica 40(1), 54-60. http://doi.org/10.1016/j.limno.2009.01.002.

Henry-Silva, G.G., & Camargo, A.F.M., 2006. Efficiency of aquatic macrophytes to treat Nile tilapia pond effluents. Sci. Agric. 63(5), 433-438. http://doi.org/10.1590/S0103-90162006000500003.

Henry-Silva, G.G., Moura, R.S.T., & Dantas, L.L.O., 2010. Richness and distribution of aquatic macrophytes in Brazilian semi-arid aquatic ecosystems. Acta Limnol. Bras. 22(2), 147-156. http://doi.org/10.1590/S2179-975X2010000200004.

Henry-Silva, G., & Camargo, A.F.M., (2022). A Bacia do Rio Apodi-Mossoró: aspectos ambientais, sociais e econômicos de uma bacia hidrográfica no semiárido do Rio Grande do Norte. Mossoró: EDUFERSA, 410 p.

Hesami, R., Salimi, A., & Ghaderian, S.M., 2018. Lead, zinc, and cadmium uptake, accumulation, and phytoremediation by plants growing around Tang-e Douzan lead–zinc mine, Iran. Environ. Sci. Pollut. Res. Int. 25(9), 8701-8714. PMid:29322395. http://doi.org/10.1007/s11356-017-1156-y.

Hossain, M.S., Ahmed, K., Sarker, S., & Rahman, S., 2020. Seasonal variations of trace metals from water and sediment samples in the northern Bay of Bengal. Ecotoxicol. Environ. Saf. 193, 110347. PMid:32114239. http://doi.org/10.1016/j.ecoenv.2020.110347.

Huang, J., Ge, X., & Wang, D., 2012. Distribution of heavy metals in the water column, suspended particulate matters and the sediment under hydrodynamic conditions using an annular flume. J. Environ. Sci. (China) 24(12), 2051-2059. PMid:23534200. http://doi.org/10.1016/S1001-0742(11)61042-5.

Instituto Brasileiro de Geografia E Estatistica – IBGE, 2010. Censo de 2010. Retrieved in 2021, Mar 12, from https://www.ibge.gov.br/cidades-e-estados

Instituto de Gestão das Águas do Rio Grande do Norte – IGARN, 2018. Bacia Apodi/Mossoró. Retrieved in 2018, Sep 17, from http://adcon.rn.gov.br/ACERVO/IGARN/doc/DOC000000000028892.PDF

International Plant Nutrition Institute – IPNI, 2016. Nutri-Fatos: Informação agronômica sobre nutrients para as plantas, níquel. Retrieved in 2019, Apr 4, from https://www.npct.com.br/publication/nutrifacts-brasil.nsf/book/NUTRIFACTS-BRASIL-16/$FILE/NutriFacts-BRASIL-16.pdf

Justo, A., Santos, W.L.A., & Souza, F.C.S., 2016. A bacia do Rio Apodi Mossoró (RN) como objeto de pesquisa em programas de pós-graduação. Rev. Principia 31, 97-105.

Jutsz, A.M., & Gnida, A., 2015. Mechanisms of stress avoidance and tolerance by plants used in phytoremediation of heavy metals. Arch. Environ. Prot. 41(104), 114. http://doi.org/10.1515/aep-2015-0045.

Kamari, A., Yusof, N., Abdullah, H., Haraguchi, A., & Abas, M.F., 2017. Assessment of heavy metals in water, sediment, Anabas testudineus and Eichhornia crassipes in a former mining pond in Perak, Malaysia. Chem. Ecol. 33(7), 637-651. http://doi.org/10.1080/02757540.2017.1351553.

Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F., 2006. World Map of Köppen-Geiger climate classification updated. Meteorol. Z. (Berl.) 15(3), 259-263. http://doi.org/10.1127/0941-2948/2006/0130.

Krishnamurti, G.S., Subashchandrabose, S.R., Megharaj, M., & Naidu, R., 2015. Assessment of bioavailability of heavy metal pollutants using soil isolates of Chlorella sp. Environ. Sci. Pollut. Res. Int. 22(12), 8826-8832. PMid:23702570. http://doi.org/10.1007/s11356-013-1799-2.

Kumar, V., Chopra, A.K., Srivastava, S., Singh, J., & Thakur, R.K., 2017. Irrigating okra with secondary treated municipal wastewater: observations regarding plant growth and soil characteristics. Int. J. Phytoremediation 19(5), 490-499. PMid:27739866. http://doi.org/10.1080/15226514.2016.1244169.

Li, X., Shen, H., Zhao, Y., Cao, W., Hu, C., & Sun, C., 2019. Distribution and potential ecological risk of heavy metals in water, sediments, and aquatic macrophytes: a case study of the junction of four rivers in Linyi city, China. Int. J. Environ. Res. Public Health 16(16), 2861. PMid:31405094. http://doi.org/10.3390/ijerph16162861.

Lin, Z., Li, J., Luan, Y., & Dai, W., 2020. Application of algae for heavy metal adsorption: A 20-year meta-analysis. Ecotoxicol. Environ. Saf. 190, 110089. PMid:31896472. http://doi.org/10.1016/j.ecoenv.2019.110089.

Lira de Carvalho, H.R., & Henry-Silva, G.G., 2022. Análise altimétrica e morfométrica da bacia hidrográfica do rio Apodi-Mossoró. In: Henry-Silva, G.G., Camargo, A.F.M., orgs. A Bacia do Rio Apodi-Mossoró: aspectos ambientais, sociais e econômicos de uma bacia hidrográfica do semiárido do Rio Grande do Norte. Mossoró: EDUFERSA, pp. 83-91.

Loureiro, R.C., & Hepp, L.U., (2020). Stream contamination by trace elements: biota incorporation and phytoremediation. Acta Limnol. Bras. 32, e201. https://doi.org/10.1590/S2179-975X2219.

Malik, R.N., Husain, S.Z., & Nazir, I., 2010. Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan. Pak. J. Bot. 42(1), 291-301.

Martins, T.F.G., Ferreira, K.S., Rani-Borges, B., Biamont-Rojas, I.E., Cardoso-Silva, S., Moschini-Carlos, V., & Pompêo, M.L.M., 2021. Land use, spatial heterogeneity of organic matter, granulometric fractions and metal complexation in reservoir sediments. Acta Limnol. Bras. 33, e23. https://doi.org/10.1590/S2179-975X3521.

Medeiros, E.L., Oliveira, C.T.A., & Henry-Silva, G.G., 2023. Assessment of environmental, social and economic sustainability of a hydrographic basin in the Brazilian semiarid region. Desenvolv. Meio Ambient. 61, 1-17. http://doi.org/10.5380/dma.v61i0.78914.

Miranda, J., & Krishnakumar, G., 2015. Microalgal diversity in relation to the physicochemical parameters of some Industrial sites in Mangalore, South India. Environ. Monit. Assess. 187(11), 664. PMid:26433901. http://doi.org/10.1007/s10661-015-4871-1.

Mishra, S., & Maiti, A., 2017. The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: a review. Environ. Sci. Pollut. Res. Int. 24(9), 7921-7937. PMid:28092006. http://doi.org/10.1007/s11356-016-8357-7.

Mishra, V.K., & Tripathi, B.D., 2008. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour. Technol. 99(15), 7091-7097. PMid:18296043. http://doi.org/10.1016/j.biortech.2008.01.002.

Mohiuddin, K.M., Ogawa, Y.Z.H.M., Zakir, H.M., Otomo, K., & Shikazono, N., 2011. Heavy metals contamination in water and sediments of an urban river in a developing country. Int. J. Environ. Sci. Technol. 8(4), 723-736. http://doi.org/10.1007/BF03326257.

National Institute of Standards and Technology – NIST, 2016. Standard Reference Material 928. Retrieved in 2019, Apr 4, from https://tsapps.nist.gov/srmext/certificates/928.pdf.

Napaldet, J.T., & Buot Junior, I.E.J., 2020. Absorption of lead and mercury in dominant aquatic macrophytes of balili river and its implication to phytoremediation of water bodies. Trop. Life Sci. Res. 31(2), 19-32. PMid:32922667. http://doi.org/10.21315/tlsr2020.31.2.2.

Núñez, S.R., Negrete, J.M., Rios, J.A., Hadad, H.R., & Maine, M.A., 2011. Hg, Cu, Pb, Cd, and Zn accumulation in macrophytes growing in tropical wetlands. Water Air Soil Pollut. 216(1-4), 361-373. http://doi.org/10.1007/s11270-010-0538-2.

Paula Filho, F.J., Marins, R.V., Santos, D.V., Pereira Junio, R.F., Menezes, J.M.C., da Gastão, F.G.C., Guzzi, A., & Teixeira, R.N.P., 2021. Assessment of heavy metals in sediments of the Parnaíba River Delta in the semi-arid coast of Brazil. Environ. Earth Sci. 80(167), 167. http://doi.org/10.1007/s12665-021-09456-2.

R Core Team, 2018. R: A language and environment for statistical computing [online]. Vienna: R Foundation for Statistical Computing. Retrieved in 2018, September 17, from https://www.R-project.org/

Said, I., Jalaludin, M.N., Upe, A., & Wahab, A.W., 2009. Determination of heavy metal Cr and Pb concentrations in estuary sediment of Matangpondo River Palu. J. Chem. 10(2), 40-47.

Saleem, M., Iqbal, J., & Shah, M.H., 2015. Geochemical speciation, anthropogenic contamination, risk assessment and source identification of selected metals in freshwater sediments: a case study from Mangla Lake, Pakistan. Environ. Nanotechnol. Monit. Manag. 4, 27-36. http://doi.org/10.1016/j.enmm.2015.02.002.

Secretaria Estadual de Meio Ambiente e Recursos Hídricos do Estado do Rio Grande do Norte – SEMARH, 2017. Bacias hidrográficas do Rio Grande do Norte. Plano Estadual de Recursos Hídricos [online]. Retrieved in 2018, September 17, from http://adcon.rn.gov.br/ACERVO/IGARN/doc/DOC000000000028892.PDF

Shakouri, A., & Gheytasi, H., 2018. Bioaccumulation of heavy metals in oyster (Saccostrea cucullata) from Chabahar bay coast in Oman Sea: Regional, seasonal and size-dependent variations. Mar. Pollut. Bull. 126, 323-329. PMid:29421106. http://doi.org/10.1016/j.marpolbul.2017.11.012.

Sijakova-Ivanova, T., Boev, B., Zajkova-Paneva, V., Boev, I., & Karakaseva, E., 2017. Bioaccumulation and translocation factor of heavy metals in the plants Linaria sp., Moricandia sp. and Viola lutea Huds from the Alšar locality–Republic of Macedonia. Geol. Macedonica 31(2), 143-156.

Singh, K.P., Malik, A., Sinha, S., Singh, V.K., & Murthy, R.C., 2005. Estimation of source of heavy metal contamination in sediments of Gomti River (India) using principal component analysis. Water Air Soil Pollut. 166(1-4), 321-341. http://doi.org/10.1007/s11270-005-5268-5.

Siqueira, R.M.B., Moura, R.S.T., & Henry-Silva, G.G., 2022. Caracterização limnológica da bacia hidrográfica do rio Apodi-Mossoró. In: Henry-Silva, G.G., & Camargo, A.F.M., orgs. A Bacia do Rio Apodi-Mossoró: aspectos ambientais, sociais e econômicos de uma bacia hidrográfica do semiárido do Rio Grande do Norte. Mossoró: EDUFERSA, pp. 93-104.

Sun, X., Fan, D., Liu, M., Tian, Y., Pang, Y., & Liao, H., 2018. Source identification, geochemical normalization and influence factors of heavy metals in Yangtze River Estuary sediment. Environ. Pollut. 241, 938-949. PMid:29929160. http://doi.org/10.1016/j.envpol.2018.05.050.

Torregroza-Espinosa, A.C., Martínez-Mera, E., Castañeda-Valbuena, D., González-Márquez, L.C., & Torres-Bejarano, F., 2018. Contamination level and spatial distribution of heavy metals in water and sediments of El Guajaro reservoir, Colombia. Bull. Environ. Contam. Toxicol. 101(1), 61-67. PMid:29797013. http://doi.org/10.1007/s00128-018-2365-x.

Ugya, A.Y., 2015. The efficiency of Lemna minor L. in the phytoremediation of Romi stream: A case study of Kaduna refinery and petrochemical company polluted stream. J. Appl. Biol. Biotechnol. 3, 11-14. http://doi.org/10.7324/JABB.2015.3102.

Vanhoudt, N., Van Ginneken, P., Nauts, R., & Van Hees, M., 2018. Potential of four aquatic plant species to remove 60 Co from contaminated water under changing experimental conditions. Environ. Sci. Pollut. Res. Int. 25(27), 27187-27195. PMid:30027375. http://doi.org/10.1007/s11356-018-2759-7.

Vymazal, J., 2011. Constructed wetlands for wastewater treatment: five decades of experience. Environ. Sci. Technol. 45(1), 61-69. http://doi.org/10.1021/es101403q.

Wan, L., Xu, L., & Fu, Y., 2016. Contamination and risk assessment of heavy metals in lake bed sediment of a large lake scenic area in China. Int. J. Environ. Res. Public Health 13(5), 741. PMid:27455296. http://doi.org/10.3390/ijerph13070741.

Xia, F., Qu, L., Wang, T., Luo, L., Chen, H., Dahlgren, R.A., Zhang, M., Mei, K., & Huang, H., 2018. Distribution and source analysis of heavy metal pollutants in sediments of a rapid developing urban river system. Chemosphere 207, 218-228. PMid:29800822. http://doi.org/10.1016/j.chemosphere.2018.05.090.

Xu, Y., Wu, Y., Han, J., & Li, P., 2017. The current status of heavy metal in lake sediments from China: pollution and ecological risk assessment. Ecol. Evol. 7(14), 5454-5466. PMid:28770081. http://doi.org/10.1002/ece3.3124.

Yang, Y.A.N.G., Zhengchao, Z.H.O.U., Yanying, B.A.I., Yimin, C.A.I., & Weiping, C.H.E.N., 2016. Risk assessment of heavy metal pollution in sediments of the Fenghe River by the fuzzy synthetic evaluation model and multivariate statistical methods. Pedosphere 26(3), 326-334. http://doi.org/10.1016/S1002-0160(15)60046-7.

Yoon, J., Cao, X., Zhou, Q., & Ma, L.Q., 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ. 368(2-3), 456-464. PMid:16600337. http://doi.org/10.1016/j.scitotenv.2006.01.016.

Yu, H., Ni, S.J., He, Z.W., Zhang, C.J., Nan, X., Kong, B., & Weng, Z.Y., 2014. Analysis of the spatial relationship between heavy metals in soil and human activities based on landscape geochemical interpretation. J. Geochem. Explor. 146, 136-148. http://doi.org/10.1016/j.gexplo.2014.08.010.

Zayed, A.M., & Terry, N., 2003. Chromium in the environment: factors affecting biological remediation. Plant Soil 249(1), 139-156. http://doi.org/10.1023/A:1022504826342.

Zhang, S., Bai, J., Wang, W., Huang, L., Zhang, G., & Wang, D., 2018. Heavy metal contents and transfer capacities of Phragmites australis and Suaeda salsa in the Yellow River Delta, China. Phys. Chem. Earth Parts ABC 104, 3-8. http://doi.org/10.1016/j.pce.2018.02.011.

Zhao, L., Gong, D., Zhao, W., Lin, L., Yang, W., Guo, W., Tang, X., & Li, Q., 2020. Spatial-temporal distribution characteristics and health risk assessment of heavy metals in surface water of the Three Gorges Reservoir, China. Sci. Total Environ. 704, 134883. PMid:31780178. http://doi.org/10.1016/j.scitotenv.2019.134883.

Zhou, F., Guo, H., & Liu, L., 2007. Quantitative identification and source apportionment of anthropogenic heavy metals in marine sediment of Hong Kong. Environ. Geol. (Berl.) 53(2), 295-305. http://doi.org/10.1007/s00254-007-0644-7.
 


Submetido em:
04/07/2023

Aceito em:
18/04/2024

Publicado em:
11/06/2024

66685a38a9539514485b3204 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections