Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X8720
Acta Limnologica Brasiliensia
Thematic Section: Limnology of Subtropical Aquatic Environments

Eating at the edges: the feeding mode and the individual-resource networks of a characid fish in the periphyton

Comendo pelas bordas: o modo de alimentação e a rede de interação de recursos individuais de um peixe caracídeo sobre o perifíton

Ubirajara Lima Fernandes; Grasiela Casas; Taise Miranda Lopes; Leandra Palheta; Liliana Rodrigues; Bárbara Dunck

Downloads: 0
Views: 1246

Abstract

Abstract: : Aim: We evaluated the predation interactions between Moenkhausia sanctaefilomenae and periphytic algae, in the presence or absence of an intermediate consumer (zooplankton). We tested the following hypotheses using a microcosms experiment: 1) fish consume zooplankton when available, therefore reducing algae consumption and increasing algal biomass; 2) fish consume the same algal species in the presence or absence of zooplankton; 3) species from the low-profile of the periphytic algal matrix are less consumed; 4) there is no difference in the nestedness of the networks between treatments, but the network in the treatment with zooplankton is modular; 5) the treatment with zooplankton shows higher interaction diversity, evenness and specialization degree.

Methods: The microcosms were separated in three treatments, control (no herbivores), T1 with periphytic algae and fish, and T2 with periphytic algae, fish and zooplankton. After seven days of experiment, the stomach contents were analyzed and quantified according to the algal profiles of the periphytic matrix. We also used the individual-resource network to investigate the differences in the individuals’ diet preferences between treatments.

Results: The fish diet did not differ between food webs with zooplankton presence or absence. They fed more on the algal medium profile, which also predominated in the control. The main food items were the diatoms Ulnaria ulna and Achnanthidium minutissimum. The interaction network results showed that the two treatments presented network modularity, and T2 (with zooplankton) presented nested network, in addition to showing greater interaction diversity and evenness, and less specialization of interactions.

Conclusions: Moenkhausia sanctaefilomenae can take advantage of a more abundant resource, and the presence or not of zooplankton did not alter the herbivory interaction. Considering the individual-resource network patterns, individuals of fish showed differences in how they share resources between treatments, with presence of opportunistic and selective individuals, and distinct distribution and diversity of interactions in the presence of zooplankton.

Keywords

complex networks, herbivory, trophic interactions, floodplain, subtropical

Resumo

Resumo: : Objetivo: Nós avaliamos as interações de predação entre Moenkhausia sanctaefilomenae e algas perifíticas, na presença ou não de um consumidor intermediário (zooplâncton). Nós testamos as seguintes hipóteses através de um experimento em microcosmos: 1) peixes consomem zooplâncton quando disponível, reduzindo o consumo de algas e aumentando a biomassa algal; 2) peixes consomem as mesmas espécies de algas na presença ou ausência de zooplâncton; 3) espécies do perfil inferior da matriz perifítica são menos consumidas; 4) não há diferença no aninhamento das redes entre os tratamentos, mas a rede no tratamento com zooplâncton é modular; 5) o tratamento com zooplâncton apresenta maior diversidade, equitabilidade e especialização das interações.

Métodos: Os microcosmos foram separados em três tratamentos, controle (ausência de herbívoros), T1 com algas perifíticas e peixes, e T2 com algas perifíticas, peixes e zooplâncton. Após sete dias de experimento, os conteúdos dos estômagos foram analisados e classificados de acordo com o perfil ocupado pelas algas na matriz perifítica. Nós também usamos análises de rede em nível de indivíduo para investigar as diferenças na dieta dos peixes entre tratamentos.

Resultados: A dieta dos peixes não diferiu entre as redes alimentares na presença ou ausência de zooplâncton. Eles se alimentaram mais de algas do perfil médio, que também predominaram no controle. Os principais itens alimentares foram as diatomáceas Ulnaria ulna e Achnanthidium minutissimum. Os resultados das redes de interação demonstraram que os dois tratamentos apresentaram modularidade de rede, e que T2 apresentou rede aninhada, além de maior equitabilidade e diversidade de interações, e menor especialização de interações.

Conclusões: Moenkhausia sanctaefilomenae pode aproveitar um recurso mais abundante e a presença ou não de zooplâncton não alterou a interação de herbivoria. Considerando padrões individuais de rede, os indivíduos de peixes demonstraram diferenças entre os tratamentos no modo em que compartilham recursos, com a presença de indivíduos generalistas e especialistas e distinta distribuição e diversidade de interações na presença de zooplâncton.
 

Palavras-chave

redes complexas, herbivoria, interações tróficas, planície de inundação, subtropical

References

ALANIS, J.G., SARMA, S.S.S. and NANDINI, S. Prey selectivity and functional response by larval red-eyed tetra Moenkhausia sanctaefilomenae (Steindachner, 1907) (Characiformes: Characidae). Brazilian Archives of Biology and Technology, 2009, 52(5), 1209-1216. http://dx.doi.org/10.1590/S1516-89132009000500019.

ALGARTE, V.M., RODRIGUES, L., LANDEIRO, V.L., SIQUEIRA, T. and BINI, L.M. Variance partitioning of deconstructed periphyton communities: does the use of biological traits matter? Hydrobiologia, 2014, 722(1), 279-290. http://dx.doi.org/10.1007/s10750-013-1711-6.

ALMEIDA-NETO, M. and ULRICH, W. A straightforward computational approach for measuring nestedness using quantitative matrices. Environmental Modelling & Software, 2011, 26(2), 173-178. http://dx.doi.org/10.1016/j.envsoft.2010.08.003.

ANAGNOSTIDIS, K. and KOMÁREK, J. Modern approach to the classification of Cyanophytes. 1- Introduction. Archiv für Hydrobiologie, 1985, 71(1-2), 291-302.

ARAÚJO, M.S. and GUIMARÃES JÚNIOR, P.R., SVANBÄCK, R., PINHEIRO, A., GUIMARÃES, P., REIS, S.F. and BOLNICK, D.I. Network analysis reveals contrasting effects of intraspecific competition on individual vs. population diets. Ecology, 2008, 89(7), 1981-1993. http://dx.doi.org/10.1890/07-0630.1. PMid:18705384.

ARAÚJO, M.S., MARTINS, E.G., CRUZ, L.D., FERNANDES, F.R., LINHARES, A.X., REIS, S.F. and GUIMARÃES JÚNIOR, P.R. Nested diets: a novel pattern of individual‐level resource use. Oikos, 2010, 119(1), 81-88. http://dx.doi.org/10.1111/j.1600-0706.2009.17624.x.

BASCOMPTE, J., JORDANO, P., MELIÁN, C.J. and OLESEN, J.M. The nested assembly of plant-animal mutualistic networks. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(16), 9383-9387. http://dx.doi.org/10.1073/pnas.1633576100. PMid:12881488.

BERSIER, L.F., BANASEK-RICHTER, C. and CATTIN, M.F. Quantitative descriptors of food-web matrices. Ecology, 2002, 83(9), 2394-2407. http://dx.doi.org/10.1890/0012-9658(2002)083[2394:QDOFWM]2.0.CO;2.

BIGGS, J.F., STEVENSON, R.J. and LOWE, R.L. A habitat matrix conceptual model for stream periphyton. Archiv für Hydrobiologie, 1998, 143(1), 21-56. http://dx.doi.org/10.1127/archiv-hydrobiol/143/1998/21.

BLÜTHGEN, N. Why network analysis is often disconnected from community ecology: a critique and an ecologist’s guide. Basic and Applied Ecology, 2010, 11(3), 185-195. http://dx.doi.org/10.1016/j.baae.2010.01.001.

BOLKER, B.M., HOLYOAK, V., KŘIVAN, V., ROWE, L. and SCHMITZ, O. Connecting theoretical and empirical studies of trait‐mediated interactions. Ecology, 2003, 84(5), 1101-1114. http://dx.doi.org/10.1890/0012-9658(2003)084[1101:CTAESO]2.0.CO;2.

BOLNICK, D.I., YANG, L.H., FORDYCE, J.A., DAVIS, J.M. and SVANBÄCK, R. Measuring individual‐level resource specialization. Ecology, 2002, 83(10), 2936-2941. http://dx.doi.org/10.1890/0012-9658(2002)083[2936:MILRS]2.0.CO;2.

BOTTRELL, H.H., DUNCAN, A., GLIWICZ, Z.M., GRYGIEREK, E., HERZIG, A., HILLBRICHT-ILKOWSKA, A., KURASAWA, H., LARSSON, P. and WEGLENSKA, T.A. Review of some problems in zooplankton production studies. Norwegian Journal of Zoology, 1976, 24, 419-456.

CAMARGO, N.F., OLIVEIRA, H.F.M., RIBEIRO, J.F., CAMARGO, A.J. and VIEIRA, E.M. A and VIEIRA, E.M. Availability of food resources and habitat structure shape the individual‐resource network of a Neotropical marsupial. Ecology and Evolution, 2019, 9(7), 3946-3957. http://dx.doi.org/10.1002/ece3.5024. PMid:31015979.

CANTOR, M., PIRES, M.M., LONGO, G.O., GUIMARÃES JÚNIOR, P.R. and SETZ, E.Z.F. Individual variation in resource use by opossums leading to nested fruit consumption. Oikos, 2013, 122(7), 1085-1093. http://dx.doi.org/10.1111/j.1600-0706.2012.00070.x.

CARNIATTO, N., FUGI, R., QUIRINO, B.A., CUNHA, E.R. and THOMAZ, S.M. An invasive and a native macrophyte species provide similar feeding habitat for fish. Ecology Freshwater Fish, 2019, 29(1), 112-120. http://dx.doi.org/10.1111/eff.12499.

CASATTI, L. Alimentação dos peixes em um riacho do parque estadual Morro do Diabo, bacia do alto rio Paraná, sudeste do Brasil. Biota Neotropica, 2002, 2(2), 1-14. http://dx.doi.org/10.1590/S1676-06032002000200012.

CASATTI, L., LANGEANI, F. and CASTRO, R.M.C. Peixes de riacho do Parque Estadual Morro do Diabo, Bacia do alto rio Paraná. Biota Neotropica, 2002, 1(1), 1-15.

CATTANEO, A. and KALFF, J. The effect of grazer size manipulation on periphyton communities. Oecologia, 1986, 69(4), 612-617. http://dx.doi.org/10.1007/BF00410371. PMid:28311624.

CONNELLY, S., PRINGLE, C.M., BARNUM, T., HUNTE-BROWN, M., KILHAM, S., WHILES, M.R., LIPS, K.R., COLÓN-GAUD, C. and BRENES, R. Initial versus longer-term effects of tadpole declines on algae in a Neotropical stream. Freshwater Biology, 2014, 59(6), 1113-1122. http://dx.doi.org/10.1111/fwb.12326.

CRAWLEY, M.J. The relative importance of vertebrate and invertebrate herbivores in plant population dynamics. In: E.A. BERNAYS, ed. Insect-plant interactions. Boca Raton: CRC Press, 1989, pp. 45-71.

CRIPPA, V.E.L., HAHN, N.S. and FUGI, R. Food resource used by small-sized fish in macrophyte patches in ponds of the upper Paraná river floodplain. Acta Scientiarum. Biological Sciences, 2009, 31(2), 119-125.

DIAS, R.M., ORTEGA, J.C.G., GOMES, L.C. and AGOSTINHO, A.A. Trophic relationships in fish assemblages of neotropical floodplain lakes: selectivity and feeding overlap mediated by food availability. Iheringia. Série Zoologia, 2017, 107(0), e2017035. http://dx.doi.org/10.1590/1678-4766e2017035.

DIBBLE, E.D. and PELICICE, F.M. Influence of aquatic plant-specific habitat on an assemblage of small neotropical floodplain fishes. Ecology Freshwater Fish, 2010, 19(3), 381-389. http://dx.doi.org/10.1111/j.1600-0633.2010.00420.x.

DORMANN, C. and STRAUSS, R. A method for detecting modules in quantitative bipartite networks. Methods in Ecology and Evolution, 2013, 5(1), 90-98. http://dx.doi.org/10.1111/2041-210X.12139.

DORMANN, C.F., GRUBER, B. and FRUND, J. The bipartite package version, 0.73. Leipzig: R Project for Statistical Computing, 2008.

DUFFY, J.E. Biodiversity and ecosystem function: the consumer connection. Oikos, 2002, 99(2), 201-219. http://dx.doi.org/10.1034/j.1600-0706.2002.990201.x.

DUNCK, B., AMARAL, D.C., FERNANDES, U.L., SANTANA, N.F., LOPES, T.M. and RODRIGUES, L. Herbivory effects on the periphytic algal functional diversity in lake ecosystems: an experimental approach. Hydrobiologia, 2018, 816(1), 231-241. http://dx.doi.org/10.1007/s10750-018-3587-y.

FEMINELLA, J.W. and HAWKINS, C.P. Interactions between stream herbivores and periphyton: a quantitative analysis of past experiments. Journal of the North American Benthological Society, 1995, 14(4), 465-509. http://dx.doi.org/10.2307/1467536.

HILLEBRAND, H. and CARDINALE, B. Consumer effects decline with prey diversity. Ecology Letters, 2004, 7(3), 192-201. http://dx.doi.org/10.1111/j.1461-0248.2004.00570.x.

HILLEBRAND, H. Meta-analysis of grazer control of periphyton biomass across aquatic ecosystems. Journal of Phycology, 2009, 45(4), 798-806. http://dx.doi.org/10.1111/j.1529-8817.2009.00702.x. PMid:27034208.

HILLEBRAND, H., WORM, B. and LOTZE, H.K. Marine microbenthic community structure regulated by nitrogen loading and grazing pressure. Marine Ecology Progress Series, 2000, 204, 27-38. http://dx.doi.org/10.3354/meps204027.

HUNTLY, N. Herbivores and the dynamics of communities and ecosystems. Annual Review of Ecology and Systematics, 1991, 22(1), 477-503. http://dx.doi.org/10.1146/annurev.es.22.110191.002401.

JAMONEAU, A., PASSY, S.I., SOININEN, J., LEBOUCHER, T. and TISON-ROSEBERY, J. Beta diversity of diatom species and ecological guilds: Response to environmental and spatial mechanisms along the stream watercourse. Freshwater Biology, 2018, 63(1), 1-12. http://dx.doi.org/10.1111/fwb.12980.

KUPFERBERG, S. Facilitation of periphyton production by tadpole grazing: functional differences between species. Freshwater Biology, 1997, 37(2), 427-439. http://dx.doi.org/10.1046/j.1365-2427.1997.00170.x.

LAMBERTI, G.A., ASHKENAS, L.R., GREGORY, S.V. and STEINMAN, A.D. Effects of three herbivores on periphyton communities in laboratory streams. Journal of the North American Benthological Society, 1987, 6(2), 92-104. http://dx.doi.org/10.2307/1467219.

LANGE-BERTALOT, H. Die diatomeen (Bacillariophyceae) em Ehrenberg’s Material von Cayenne, Guyana Gallica (1843) von Erwin Reichardt. Iconographia Diatomologica Koenigstein: Koeltz Scientific Books, 1995, 107 p.

LEGENDRE, P. and LEGENDRE, L. Numerical ecology. Amsterdam: Elsevier, 1998.

LEWINSOHN, T.M., PRADO, P.I., JORDANO, P., BASCOMPTE, J. and OLESEN, J.M. Structure in plant-animal interaction assemblages. Oikos, 2006a, 113(1), 174-184. http://dx.doi.org/10.1111/j.0030-1299.2006.14583.x.

LEWINSOHN, T.W., LOYOLA, R.D. and PRADO, P.I. Matrizes, redes e ordenações: a detecção de estrutura em comunidades interativas. Oecologia Brasiliensis, 2006b, 10(01), 90-104. http://dx.doi.org/10.4257/oeco.2006.1001.06.

LIESS, A. and HILLEBRAND, H. Direct and indirect effects in herbivore - periphyton interactions. Archiv für Hydrobiologie, 2004, 159(4), 433-453. http://dx.doi.org/10.1127/0003-9136/2004/0159-0433.

LOMAN, J. Effects of tadpole grazing on periphytic algae in ponds. Wetlands Ecology and Management, 2001, 9(2), 135-139. http://dx.doi.org/10.1023/A:1011106417883.

MATSUMURA-TUNDISI, T. Latitudinal distribution of Calanoida copepods in freshwater aquatic systems of Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, 1986, 46, 527-553.

MCCORMICK, P.V. and STEVENSON, R.J. Grazer control of nutrient availability in the periphyton. Oecologia, 1991, 86(2), 287-291. http://dx.doi.org/10.1007/BF00317542. PMid:28313212.

MOULTON, T.P. Why the world is green, the waters are blue and food webs in small streams in the Atlantic Rainforest are predominantly driven by microalgae? Oecologia Brasiliensis, 2006, 10(1), 78-89. http://dx.doi.org/10.4257/oeco.2006.1001.05.

NEURY-ORMANNI, J., VEDRENNE, J. and MORIN, S. Who eats who in biofilms? Exploring the drivers of microalgal and micro-meiofaunal abundance. Botany Letters, 2016, 163(2), 83-92. http://dx.doi.org/10.1080/23818107.2016.1151827.

NICOLA, D.M., MCINTIRE, C.D., LAMBERTI, G.A., GREGORY, S. and ASHKENAS, L.R. Temporal patterns of grazer-periphyton interactions in laboratory streams. Freshwater Biology, 1990, 23(3), 475-489. http://dx.doi.org/10.1111/j.1365-2427.1990.tb00289.x.

OKSANEN, J., BLANCHET, R.F.G., KINDT, P., LEGENDRE, P.R., MINCHIN, R.B., O’HARA, G.L., SIMPSON, M., SOLYMOS, H.P., STEVENS, H. and WAGNER, H. Vegan: Community ecology package. R package version [online]. Vienna: R Foundation for Statistical Computing, 2017 [viewed 11 Apr. 2020]. Available from: https://cran.r-project.org/package=vegan

PARADIS, E. and SCHLIEP, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 2019, 35(3), 526-528. http://dx.doi.org/10.1093/bioinformatics/bty633. PMid:30016406.

PASSY, S.I. Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running Waters. Aquatic Botany, 2007, 86(2), 171-178. http://dx.doi.org/10.1016/j.aquabot.2006.09.018.

PIRES, M.M., GUIMARÃES JÚNIOR, P.R., ARAÚJO, M.S., GIARETTA, A.A., COSTA, J.C.L. and REIS, S.F. The nested assembly of individual‐resource networks. Journal of Animal Ecology, 2011, 80(4), 896-903. http://dx.doi.org/10.1111/j.1365-2656.2011.01818.x. PMid:21644976.

POWER, M.E., STEWART, A.J. and MATTHEWS, W.J. Grazer control of attached algae in an Ozark Mountain stream: effects of short-term exclusion. Ecology, 1988, 69(6), 1894-1989. http://dx.doi.org/10.2307/1941166.

PRESCOTT, G.W., CROASDALE, H.T., VINIARD, W.C. and BICUDO, C.E.M. A synopsis of north american desmids: Parte II Desmidiaceae: Placodermae. Section 3. Linconl: University Nebraska Press, 1981.

R CORE TEAM. R: a language and environment for statistical computing [online]. Vienna: R Foundation for Statistical Computing, 2019 [viewed 11 Apr. 2020]. Available from: https:// www.R-project.org

REID, J. Chave de identificação e lista de referências bibliográficas para as espécies continentais sulamericanas de vida livre da ordem Cyclopoida (Crustacea, Copepoda). Boletim de Zoologia, 1985, 9(9), 17-143. http://dx.doi.org/10.11606/issn.2526-3358.bolzoo.1985.122293.

RODRIGUES, L. and BICUDO, D.C. Similarity among periphyton algal communities in a lentic-lotic gradient of the upper Paraná river floodplain, Brazil. Brazilian Journal of Botany, 2001, 24(3), 235-248. http://dx.doi.org/10.1590/S0100-84042001000300001.

ROUND, F.E. The biology of the algae. London: Edward Arnold, 1965.

ROUND, F.E. The taxonomy of the Chlorophyta, 2. British Journal of Psychology, 1971, 6(2), 235-264.

SANTAMARÍA, S., ENOKSEN, C.A., OLESEN, J.M., TAVECCHIA, G., ROTGER, A., IGUAL, J.M. and TRAVESET, A. Diet composition of the lizard Podarcis lilfordi (Lacertidae) on 2 small islands: an individual-resource network approach. Current Zoology, 2020, 66(1), 39-49. http://dx.doi.org/10.1093/cz/zoz028. PMid:32467703.

SANTANA-PORTO, E.A. and ANDRIAN, I.F. Trophic organization the ichthyofauna of two semi-lentic environments in a floodplain on the upper Paraná river, Brazil. Acta Limnologica Brasiliensia, 2009, 21(3), 359-366.

SANTOS, C., SANTOS, I.A.L. and SILVA, C.J. Ecologia trófica de peixes ocorrentes em bancos de macrófitas aquáticas na bacia Caiçara, Pantanal Mato-Grossense. Revista Brasileira de Biociências, 2009, 7(4), 473-476.

SCHMITZ, O.J. Herbivory from individuals to ecosystems. Annual Review of Ecology Evolution and Systematics, 2008, 39(1), 133-152. http://dx.doi.org/10.1146/annurev.ecolsys.39.110707.173418.

SILVA, M.R. and HAHN, N.S. Influência da dieta sobre a abundância de Moenkhausia dichroura (Characiformes, Characidae) no reservatório de Manso, Estado de Mato Grosso. Iheringia. Série Zoologia, 2009, 99(3), 324-328. http://dx.doi.org/10.1590/S0073-47212009000300016.

STEINMAN, A.D. Effects of grazers on freshwater benthic algae. In: R.J. STEVENSON, M.L. BOTHWELL and R.L. LOWE, eds. Algal ecology. San Diego: Academic Press, 1996, pp. 341-373. http://dx.doi.org/10.1016/B978-012668450-6/50041-2.

STEINMAN, A.D., MULHOLLAND, P.J. and HILL, W.R. Functional responses associated with growth form in stream algae. Journal of the North American Benthological Society, 1992, 11(2), 229-243. http://dx.doi.org/10.2307/1467388.

STROGATZ, S.H. Exploring complex networks. Nature, 2001, 6825(410), 268-276. http://dx.doi.org/10.1038/35065725. PMid:11258382.

THOMPSON, R.M., BROSE, U., DUNNE, J.A., HALL JUNIOR, R.O., HLADYZ, S., KITCHING, R.L., MARTINEZ, N.D., RANTALA, H., ROMANUK, T.N., STOUFFER, D.B. and TYLIANAKIS, J.M. Food webs: reconciling the structure and function of biodiversity. Trends in Ecology & Evolution, 2012, 27(12), 689-697. http://dx.doi.org/10.1016/j.tree.2012.08.005. PMid:22959162.

TINKER, T.M. and GUIMARÃES JÚNIOR, P.R., NOVAK, M., MARQUITTI, F.M., BODKIN, J.L., STAEDLER, M., BENTALL, G. and ESTES, J.A. Structure and mechanism of diet specialisation: testing models of individual variation in resource use with sea otters. Ecology Letters, 2012, 15(5), 475-483. http://dx.doi.org/10.1111/j.1461-0248.2012.01760.x. PMid:22414160.

TÓFOLI, R.M., HAHN, N.S., ALVES, G.H.Z. and NOVAKOWSKI, G.C. Uso do alimento por duas espécies simpátricas de Moenkhausia (characiformes, Characidade) em um riacho da Região Centro-Oeste do Brasil. Iheringia. Série Zoologia, 2010, 100(3), 201-206. http://dx.doi.org/10.1590/S0073-47212010000300003.

UTERMÖHL, H. Zur Vervollkommnung der quantitativen phytoplankton-methodic. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie, 1958, 9, 1-39.

VELHO, L.F.M. and LANSAC-TÔHA, F.A. Testate amoebae (Rhizopodea-Sarcodina) from zooplankton of the high Paraná river floodplain, state of Mato Grosso do Sul, Brazil: II. Family Difflugidae. Studies on Neotropical Fauna and Environment, 1996, 31(3-4), 174-192. http://dx.doi.org/10.1076/snfe.31.3.179.13342.

VENABLES, W.N. and RIPLEY, B.D. Modern applied statistics with S. 4th ed. New York: Springer, 2002. http://dx.doi.org/10.1007/978-0-387-21706-2.

VUCETICH, M.C. Estudio de tecamebianos argentinos, en especial los del dominio pampasico. Revista del Museo de La Plata, 1973, 118, 287-322.

WICKHAM, H. and WINSTON, C. Ggplot2: an implementation of the grammar of graphics [online]. Vienna: R Foundation for Statistical Computing, 2016 [viewed 11 Apr. 2020]. Available from: https://CRAN.R-project.org/package=ggplot2

YANG, G. and DUDGEON, D. Response of grazing impacts of an algivorous fish (Pseudogastromyzon myersi: Balitoridae) to seasonal disturbance in Hong Kong streams. Freshwater Biology, 2010, 55(2), 411-423. http://dx.doi.org/10.1111/j.1365-2427.2009.02290.x.
 


Submitted date:
04/11/2020

Accepted date:
10/07/2020

Publication date:
11/25/2020

5fbe6ac80e88254f5df5cc93 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections