Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X8324
Acta Limnologica Brasiliensia
Original Article

Asymmetric dispersal in freshwater species distribution models varies depending on the spatial pattern of fish species

A dispersão assimétrica em modelos de distribuição de espécies de água doce varia dependendo do padrão espacial das espécies de peixes

Micael Rosa Parreira; João Carlos Nabout

Downloads: 0
Views: 121

Abstract

Aim: We estimated the relative contribution of environmental and dispersal predictors in distribution models of freshwater species with different distribution ranges (29 fish species). Specifically, we tested whether model performances vary depending on the fish species' range and distribution across sub-basins and whether the relationship with those predictors is stronger depending on the type of variables (environmental or asymmetrical dispersal) used for modeling.

Methods: The study area used for modeling was the Tocantins-Araguaia River basin, encompassing the entire hydrographic network. We applied six niche modeling methods to project the geographic distributions of 29 fish species within the Tocantins-Araguaia River basin, using environmental and asymmetrical dispersal predictors.

Results: Generally, the models built using dispersal predictors generated more accurate predictions than those using environmental variables. However, although we found no significant difference in the accuracy among models built using different variables, their accuracy metrics were correlated with the species range and distribution across sub-basins. Also, more restricted species (i.e., lower range and distribution limited to one sub-basin) showed a greater difference in model accuracy between models built using dispersal and environmental predictors, with more accurate models being generated for restricted species when modelled using dispersal-related predictors only.

Conclusions: the use of asymmetric dispersal predictors in SDM, besides generating accurate models, avoids/reduces model overpredictions to geographically close and climatically suitable areas, especially for restricted species, by predicting the species’ distribution based on their dispersal routes through the actual directional gradient of the basin’s hydrographic network.

Keywords

 asymmetric eigenvector maps; Tocantins; Araguaia; range size

Resumo

Objetivo: Estimamos a contribuição relativa de preditores ambientais e de dispersão em modelos de distribuição de espécies de água doce com diferentes amplitudes de distribuição (um total de 29 espécies de peixes). Especificamente, testamos se o desempenho dos modelos varia em função da amplitude de distribuição das espécies de peixes e da distribuição delas entre as sub-bacias, e se essa relação com os preditores é mais forte considerando os tipos de variáveis (ambientais ou de dispersão assimétrica) usadas para modelagem.

Métodos: A área de estudo utilizada para a modelagem foi a bacia do Rio Tocantins-Araguaia, abrangendo toda a rede hidrográfica. Aplicamos seis métodos de modelagem de nicho para projetar as distribuições geográficas de 29 espécies de peixes na bacia do Rio Tocantins-Araguaia, utilizando preditores ambientais e de dispersão assimétrica.

Resultados: Em geral, os modelos construídos usando preditores de dispersão geraram previsões mais precisas do que aqueles que usaram variáveis ambientais. No entanto, embora não tenhamos encontrado uma diferença significativa na precisão entre os modelos construídos com diferentes variáveis, as métricas de precisão estavam correlacionadas com a amplitude e a distribuição das espécies entre as sub-bacias. Além disso, espécies mais restritas (ou seja, com menor amplitude e distribuição limitada a uma sub-bacia) apresentaram uma maior diferença na precisão dos modelos entre aqueles construídos com preditores de dispersão e preditores ambientais, sendo que modelos mais precisos foram gerados para espécies restritas quando modelados usando apenas preditores relacionados à dispersão.

Conclusões: O uso de preditores de dispersão assimétrica em modelos de distribuição de espécies (SDM), além de gerar modelos precisos, evita/reduz superestimativas de distribuição em áreas geograficamente próximas e climaticamente adequadas, especialmente para espécies restritas, ao prever a distribuição das espécies com base em suas rotas de dispersão através do gradiente direcional real da rede hidrográfica da bacia.

Palavras-chave

mapas de autovetores assimétricos; Tocantins; Araguaia; amplitude de distribuição

References

Allouche, O., Steinitz, O., Rotem, D., Rosenfeld, A., & Kadmon, R., 2008. Incorporating distance constraints into species distribution models. J. Appl. Ecol. 45(2), 599-609. http://doi.org/10.1111/j.1365-2664.2007.01445.x.

Allouche, O., Tsoar, A., & Kadmon, R., 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43(6), 1223-1232. http://doi.org/10.1111/j.1365-2664.2006.01214.x.

Anderson, R.P., 2013. A framework for using niche models to estimate impacts of climate change on species distributions. Ann. N. Y. Acad. Sci. 1297(1), 8-28. PMid:25098379. http://doi.org/10.1111/nyas.12264.

Araújo, M.B., & Peterson, A.T., 2012. Uses and misuses of bioclimatic envelope modeling. Ecology 93(7), 1527-1539. PMid:22919900. http://doi.org/10.1890/11-1930.1.

Bahn, V., & McGill, B.J., 2007. Can niche-based distribution models outperform spatial interpolation? Glob. Ecol. Biogeogr. 16(6), 733-742. http://doi.org/10.1111/j.1466-8238.2007.00331.x.

Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T., Soberón, J., & Villalobos, F., 2011. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Modell. 222(11), 1810-1819. http://doi.org/10.1016/j.ecolmodel.2011.02.011.

Blanchet, F.G., Legendre, P., & Borcard, D., 2008. Modelling directional spatial processes in ecological data. Ecol. Modell. 215(4), 325-336. http://doi.org/10.1016/j.ecolmodel.2008.04.001.

Breiman, L., 2001. Random forests. Mach. Learn. 45(1), 5-32. http://dx.doi.org/10.1023/A:1010933404324.

Buisson, L., Thuiller, W., Casajus, N., Lek, S., & Grenouillet, G., 2010. Uncertainty in ensemble forecasting of species distribution. Glob. Change Biol. 16(4), 1145-1157. http://doi.org/10.1111/j.1365-2486.2009.02000.x.

Carpenter, G., Gillison, A.N., & Winter, J., 1993. Domain - a flexible modeling procedure for mapping potential distributions of plants and animals. Biodivers. Conserv. 2(6), 667-680. http://dx.doi.org/10.1007/BF00051966.

Chaine, A.S. & Clobert, J., 2012. Dispersal. In: Candolin, U., & Wong, B.B.M., eds. Behavioural responses to a changing world. Oxford: Oxford University Press, 63-79. http://doi.org/10.1093/acprof:osobl/9780199602568.003.0005.

Clobert, J., Ims, R.A. & Rousset, F., 2004. Causes, mechanisms and consequences of dispersal. In: Hanski, I., ed. Ecology, genetics and evolution of metapopulations. Amsterdam: Elsevier, 307-335. http://doi.org/10.1016/B978-012323448-3/50015-5.

Dray, S., Bauman, D., Blanchet, G., Borcard, D., Clappe, S., Guenard, G., Jombart, T., Larocque, G., Legendre, P., Madi, N. & Wagner, H.H., 2019. adespatial: Multivariate Multiscale Spatial Analysis [software]. Vienna: R Foundation for Statistical Computing.

Elith, J., & Graham, C.H., 2009. Do they? How do they? WHY do they differ? on finding reasons for differing performances of species distribution models. Ecography 32(1), 66-77. http://doi.org/10.1111/j.1600-0587.2008.05505.x.

Franklin, J., Wejnert, K.E., Hathaway, S.A., Rochester, C.J., & Fisher, R.N., 2009. Effect of species rarity on the accuracy of species distribution models for reptiles and amphibians in southern California. Divers. Distrib. 15(1), 167-177. http://doi.org/10.1111/j.1472-4642.2008.00536.x.

Guélat, J., & Kéry, M., 2018. Effects of spatial autocorrelation and imperfect detection on species distribution models. Methods Ecol. Evol. 9(6), 1614-1625. http://doi.org/10.1111/2041-210X.12983.

Guisan, A., & Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecol. Modell. 135(2-3), 147-186. http://doi.org/10.1016/S0304-3800(00)00354-9.

Hernandez, P.A., Graham, C.H., Master, L.L., & Albert, D.L., 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29(5), 773-785. http://doi.org/10.1111/j.0906-7590.2006.04700.x.

Hijmans, R.J. 2019. raster: geographic data analysis and modeling [software]. Vienna: R Foundation for Statistical Computing.

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., & Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25(15), 1965-1978. http://doi.org/10.1002/joc.1276.

Hijmans, R.J., Phillips, S.J., Leathwick, J.R. & Hortal, J., 2016. dismo: Species Distribution Modeling. R package version 1.1-1 [software]. Vienna: R Foundation for Statistical Computing.

Holloway, P., Miller, J.A., & Gillings, S., 2016. Incorporating movement in species distribution models: how do simulations of dispersal affect the accuracy and uncertainty of projections? Int. J. Geogr. Inf. Sci. 30, 1-25. http://doi.org/10.1080/13658816.2016.1158823.

Jackson, D.A., 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74(8), 2204-2214. http://doi.org/10.2307/1939574.

Jiménez-Valverde, A., Lobo, J., & Hortal, J., 2009. The effect of prevalence and its interaction with sample size on the reliability of species distribution models. Community Ecol. 10(2), 196-205. http://doi.org/10.1556/ComEc.10.2009.2.9.

Jiménez-Valverde, A., Lobo, J.M., & Hortal, J., 2008. Not as good as they seem: the importance of concepts in species distribution modelling. Divers. Distrib. 14(6), 885-890. http://doi.org/10.1111/j.1472-4642.2008.00496.x.

Liu, C., Newell, G., & White, M., 2019. The effect of sample size on the accuracy of species distribution models: considering both presences and pseudo-absences or background sites. Ecography 42(3), 535-548. http://doi.org/10.1111/ecog.03188.

Marco Júnior, P., Diniz-Filho, J.A.F., & Bini, L.M., 2008. Spatial analysis improves species distribution modelling during range expansion. Biol. Lett. 4(5), 577-580. PMid:18664417. http://doi.org/10.1098/rsbl.2008.0210.

Mendes, P., Velazco, S.J.E., Andrade, A.F.A., & Marco Júnior, P., 2020. Dealing with overprediction in species distribution models: how adding distance constraints can improve model accuracy. Ecol. Modell. 431, 109180. http://doi.org/10.1016/j.ecolmodel.2020.109180.

Miller, J.A., & Holloway, P., 2015. Incorporating movement in species distribution models. Prog. Phys. Geogr. 39(6), 837-849. http://doi.org/10.1177/0309133315580890.

Monsimet, J., Devineau, O., Pétillon, J., & Lafage, D., 2020. Explicit integration of dispersal-related metrics improves predictions of SDM in predatory arthropods. Sci. Rep. 10(1), 16668. PMid:33028838. http://doi.org/10.1038/s41598-020-73262-2.

Nelder, J.A., & Wedderburn, R.W.M., 1972. Generalized linear models. J. R. Stat. Soc. Ser. A Stat. Soc. 135(3), 370-384. http://dx.doi.org/10.2307/2344614.

Nix, H.A., 1986. A biogeographic analysis of Australian elapid snakes. In: Longmore, R., ed. Atlas of elapid snakes of Australia. Canberra: Australian Government Publishing Service, 4-15.

Padial, A.A., Ceschin, F., Declerck, S.A.J., De Meester, L., Bonecker, C.C., Lansac-Tôha, F.A., Rodrigues, L., Rodrigues, L.C., Train, S., Velho, L.F.M., & Bini, L.M., 2014. Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS One 9(10), e111227. PMid:25340577. http://doi.org/10.1371/journal.pone.0111227.

Parreira, M.R., Tessarolo, G., & Nabout, J.C., 2023. Incorporating symmetrical and asymmetrical dispersal into Ecological Niche Models in freshwater environments. Acta Limnol. Bras. 35, e16. http://doi.org/10.1590/s2179-975x2723.

Perrin, S.W., Englund, G., Blumentrath, S., Brian O’Hara, R., Amundsen, P., & Gravbrøt Finstad, A., 2020. Integrating dispersal along freshwater ecosystems into species distribution models. Divers. Distrib. 26(11), 1598-1611. http://doi.org/10.1111/ddi.13112.

Peterson, A.T., & Soberón, J., 2012. Species distribution modeling and ecological niche modeling: getting the concepts right. Nat. Conserv. 10(2), 102-107. http://doi.org/10.4322/natcon.2012.019.

Peterson, A.T., Soberón, J., Pearson, R.G., Anderson, R.P., Martínez-Meyer, E., Nakamura, M. & Araújo, M.B., 2011. Ecological niches and geographic distributions. Princenton: Princenton University Press. http://doi.org/10.23943/princeton/9780691136868.001.0001.

Phillips, S.J., Anderson, R.P., & Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190(3-4), 231-259. http://dx.doi.org/10.1016/j.ecolmodel.2005.03.026.

R Core Team, 2023. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

Rangel, T.F., & Loyola, R.D., 2012. Labeling Ecological Niche Models. Nat. Conserv. 10(2), 119-126. http://dx.doi.org/10.4322/natcon.2012.030.

Revelle, W. 2019. psych: Procedures for Personality and Psychological Research [software]. Vienna: R Foundation for Statistical Computing.

Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., & Williamson, R.C., 2001. Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443-1471. PMid:11440593. http://dx.doi.org/10.1162/089976601750264965.

Segurado, P., Araújo, M.B., & Kunin, W.E., 2006. Consequences of spatial autocorrelation for niche-based models. J. Appl. Ecol. 43(3), 433-444. http://doi.org/10.1111/j.1365-2664.2006.01162.x.

Soberón, J., 2007. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10(12), 1115-1123. PMid:17850335. http://doi.org/10.1111/j.1461-0248.2007.01107.x.

Soberon, J., & Peterson, A.T., 2005. Interpretation of models of fundamental ecological niches and species’. Biodivers. Inform. 2(0), 1-10. http://doi.org/10.17161/bi.v2i0.4.

Soliman, T., Mourits, M.C.M., van der Werf, W., Hengeveld, G.M., Robinet, C., & Lansink, A.G.J.M.O., 2012. Framework for modelling economic impacts of invasive species, applied to pine wood nematode in Europe. PLoS One 7(9), e45505. PMid:23029059. http://doi.org/10.1371/journal.pone.0045505.

Stockwell, D.R.B., & Peterson, A.T., 2002. Effects of sample size on accuracy of species distribution models. Ecol. Modell. 148(1), 1-13. http://doi.org/10.1016/S0304-3800(01)00388-X.

Swets, J.A., 1988. Measuring the accuracy of diagnostic systems. Science 240(4857), 1285-1293. PMid:3287615. http://dx.doi.org/10.1126/science.3287615.

Tonkin, J.D., Altermatt, F., Finn, D.S., Heino, J., Olden, J.D., Pauls, S.U., & Lytle, D.A., 2018. The role of dispersal in river network metacommunities: patterns, processes, and pathways. Freshw. Biol. 63(1), 141-163. http://doi.org/10.1111/fwb.13037.

Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C.H., Guisan, 2008. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14(5), 763-773. http://doi.org/10.1111/j.1472-4642.2008.00482.x.
 


Submitted date:
09/20/2024

Accepted date:
06/20/2024

Publication date:
09/19/2025

68cdbaa7a95395771d785764 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections