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Abstract: Aim: We estimated the relative contribution of environmental and dispersal predictors in 
distribution models of freshwater species with different distribution ranges (29 fish species). Specifically, 
we tested whether model performances vary depending on the fish species’ range and distribution 
across sub-basins and whether the relationship with those predictors is stronger depending on the 
type of variables (environmental or asymmetrical dispersal) used for modeling. Methods: The study 
area used for modeling was the Tocantins-Araguaia River basin, encompassing the entire hydrographic 
network. We applied six niche modeling methods to project the geographic distributions of 29 fish 
species within the Tocantins-Araguaia River basin, using environmental and asymmetrical dispersal 
predictors. Results: Generally, the models built using dispersal predictors generated more accurate 
predictions than those using environmental variables. However, although we found no significant 
difference in the accuracy among models built using different variables, their accuracy metrics were 
correlated with the species range and distribution across sub-basins. Also, more restricted species (i.e., 
lower range and distribution limited to one sub-basin) showed a greater difference in model accuracy 
between models built using dispersal and environmental predictors, with more accurate models being 
generated for restricted species when modelled using dispersal-related predictors only. Conclusions: 
the use of asymmetric dispersal predictors in SDM, besides generating accurate models, avoids/
reduces model overpredictions to geographically close and climatically suitable areas, especially for 
restricted species, by predicting the species’ distribution based on their dispersal routes through the 
actual directional gradient of the basin’s hydrographic network. 

Keywords: asymmetric eigenvector maps; Tocantins; Araguaia; range size.

Resumo: Objetivo: Estimamos a contribuição relativa de preditores ambientais e de dispersão 
em modelos de distribuição de espécies de água doce com diferentes amplitudes de distribuição (um 
total de 29 espécies de peixes). Especificamente, testamos se o desempenho dos modelos varia em 
função da amplitude de distribuição das espécies de peixes e da distribuição delas entre as sub-bacias, 
e se essa relação com os preditores é mais forte considerando os tipos de variáveis (ambientais ou de 
dispersão assimétrica) usadas para modelagem. Métodos: A área de estudo utilizada para a modelagem 
foi a bacia do Rio Tocantins-Araguaia, abrangendo toda a rede hidrográfica. Aplicamos seis métodos 
de modelagem de nicho para projetar as distribuições geográficas de 29 espécies de peixes na bacia 
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1. Introduction

Dispersal plays a fundamental role in the 
survival and persistence of species, the structuring of 
populations and communities, and the geographic 
distribution of species, among others (Clobert et al., 
2004). Additionally, dispersal is essential for species 
facing changes in habitats due to anthropogenic 
or natural pressures, where when they move to 
other environments, they counteract the effects 
of environmental changes (Chaine & Clobert, 
2012). In freshwater environments, the physical 
organization of the basin’s hydrographic network has 
a significant influence on the dispersal of organisms 
(Tonkin et al., 2018). Specifically for freshwater fish, 
the dendritic structure of rivers, besides being vital for 
the development of the life cycle of these organisms 
(e.g., spawning), is essential to determine their 
geographic distribution as they use river and stream 
channels as dispersal routes (Padial et al., 2014). In this 
sense, when evaluating the geographic distributions of 
freshwater species, such as for conservation approaches, 
the methods used for predicting potentially suitable 
areas should consider the species’ dispersal routes.

Species Distribution Models (SDMs) are 
tools often used by biogeographers and ecologists 
to predict potentially suitable areas for species 
distribution (Peterson  et  al., 2011). There are 
different frameworks for building an SDM 
depending on the objective (Anderson, 2013; 
Soliman et al., 2012), which can generate inaccurate 
and biased predictions when their conceptual basis 
is ignored (Araújo & Peterson, 2012; Jiménez-
Valverde et al., 2008; Peterson & Soberón, 2012). 
In this sense, there are three main components 
for the studied distribution area of species: the 
abiotic (A) factors the species exists within, the 
biotic (B) interactions, and the “movement” (M) 
defined by the reachable areas and limitations 
of species dispersal (Barve  et  al., 2011; Soberón, 

do Rio Tocantins-Araguaia, utilizando preditores ambientais e de dispersão assimétrica. Resultados: 
Em geral, os modelos construídos usando preditores de dispersão geraram previsões mais precisas do 
que aqueles que usaram variáveis ambientais. No entanto, embora não tenhamos encontrado uma 
diferença significativa na precisão entre os modelos construídos com diferentes variáveis, as métricas de 
precisão estavam correlacionadas com a amplitude e a distribuição das espécies entre as sub-bacias. Além 
disso, espécies mais restritas (ou seja, com menor amplitude e distribuição limitada a uma sub-bacia) 
apresentaram uma maior diferença na precisão dos modelos entre aqueles construídos com preditores 
de dispersão e preditores ambientais, sendo que modelos mais precisos foram gerados para espécies 
restritas quando modelados usando apenas preditores relacionados à dispersão. Conclusões: O uso 
de preditores de dispersão assimétrica em modelos de distribuição de espécies (SDM), além de gerar 
modelos precisos, evita/reduz superestimativas de distribuição em áreas geograficamente próximas e 
climaticamente adequadas, especialmente para espécies restritas, ao prever a distribuição das espécies 
com base em suas rotas de dispersão através do gradiente direcional real da rede hidrográfica da bacia. 

Palavras-chave: mapas de autovetores assimétricos; Tocantins; Araguaia; amplitude de distribuição.

2007; Soberon & Peterson, 2005). However, many 
studies using SDMs consider only the abiotic 
components as environmental variables in their 
predictions (Peterson  et  al., 2011). Therefore, 
species dispersal capacity (movement) is often 
ignored when modelling the species’ distribution 
(Miller & Holloway, 2015), which can generate 
overpredictions to unreachable but climatically 
suitable areas for the species (Mendes et al., 2020).

Species movement can be inserted into models 
by including accessible areas through spatial 
barriers or the historical species dispersal capacity 
(Barve  et  al., 2011; Miller & Holloway, 2015). 
Specifically for freshwater environments, species 
movement can be incorporated by considering 
the hierarchical structure and flow directionality 
of rivers, which are dispersal routes for species to 
migrate (Perrin et al., 2020; Tonkin et al., 2018). 
A method for assessing dispersal in the model’s 
predictions is by incorporating symmetric spatial 
filters as predictors in SDMs (Allouche et al., 2008; 
Marco Júnior  et  al., 2008), while for freshwater 
environments, it should consider the directionality 
and hierarchical structure of the hydrographic 
network. In this case, asymmetric spatial filters 
(AEM) are more appropriate since they consider the 
dispersal routes and directionality through rivers, 
which is assessed through an edge-by-site directional 
binary matrix simulating the connections of the 
basin’s hydrographic network (Blanchet et al., 2008).

However, it is necessary to consider the dispersal 
capacity of fish species in the predictions of potential 
distribution. For terrestrial models, it is possible 
to evaluate different dispersal ranges via dispersal/
migration rates using, for example, distance buffers 
around the current distribution or species-specific 
fixed dispersal rates, which can be included as dispersal-
related predictors in SDMs (Holloway et al., 2016; 
Monsimet et al., 2020). This becomes important as 



3	 Asymmetric dispersal in freshwater species distribution models varies…	

Acta Limnologica Brasiliensia, 2025, vol. 37, e16

models can be affected by the size of the accessible 
area used for modelling where more restricted species 
(i.e., lower dispersal capacity) generate models with 
higher performances given their smaller historically 
accessible areas (Barve et al., 2011). Indeed, there are 
many factors, other than extension size, that may affect 
the performance of SDMs (Elith & Graham, 2009), 
such as spatial autocorrelation (Guélat & Kéry, 2018; 
Segurado et al., 2006), uncertainty (Buisson et al., 2010) 
and species-specific factors such as prevalence (i.e., the 
presence/absence ratio; [Jiménez-Valverde et al., 2009]), 
environmental tolerance (Hernandez  et  al., 2006), 
species rarity (Franklin et al., 2009) and the sample 
size/distribution range (Liu et al., 2019; Stockwell & 
Peterson, 2002; Wisz et al., 2008). Therefore, since 
species dispersal is a fundamental mechanism for the 
distribution of freshwater fishes and varies depending 
on species-specific characteristics (Tonkin et al., 2018), it 
becomes essential to evaluate how models incorporating 
dispersal-related predictors perform and are affected by 
species-specific characteristics in comparison to those 
using traditional climate variables.

In this sense, we estimate the relative contribution 
of environmental and dispersal predictors in 
distribution models of freshwater species with 
different distribution ranges. Specifically, we tested 
whether the models’ performances vary depending on 
the species range and distribution among sub-basins 

and if this relationship with those predictors is higher 
depending on the type of variables (environmental 
or asymmetrical dispersal) used for modelling. We 
expected a significant effect of species range and 
distribution among sub-basins on the models’ 
performance, especially for models built using 
asymmetrical dispersal (AEM) since these models 
consider the species directionality throughout the 
basin. This prediction is based on the hypothesis 
that inserting asymmetrical dispersal into SDMs 
will generate more accurate and realistic models, 
especially in species with more restricted distribution 
(lower range and limited to one sub-basin) due to a 
higher dispersal cost because it adds to the prediction 
of a directional effect of dispersal through rivers, 
avoiding overprediction to climatically similar but 
non-accessible areas or with difficult access.

2. Material and Methods

2.1. Study area

The study area used for modelling was the 
Tocantins-Araguaia River basin, covering the entire 
hydrographic network. This basin has two major 
rivers (Tocantins and Araguaia), forming two sub-
basins that merge at one point up in the north 
region, close to the mouth (Figure 1). Therefore, a 
species occurring exclusively in one sub-basin must 

Figure 1. Study area of the Tocantins-Araguaia River basin with all species occurrences (black dots).
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disperse through the main river course to occupy the 
other sub-basin. Thus, this basin is an interesting 
area for studies on dispersal limitation because it 
shows the species’ effort to disperse between the two 
basins (Tocantins and Araguaia) via downstream 
connectivity. The entire hydrographic network was 
rasterized into grid-cells of 0.5º spatial resolution 
(latitude and longitude) totalling 282 cells for the 
Tocantins-Araguaia basin.

2.2. Species occurrences

We selected 29 freshwater species native to 
the Tocantins-Araguaia River basin. The fish 
occurrence records were obtained in the online 
databases Species Link (specieslink.net), Gbif (gbif.
org) and FishBase (fishbase.org). The species have 
different distribution range sizes, where the species 
with the most restricted range is Gymnotocinclus 
anosteos and the widest range is Hypostomus ericae 
(Table 1). These species were chosen based on their 
distributions being restricted to the studied basin 
and having more than five unique occurrences (non-
duplicated within grid-cells). In this sense, for each 
species we removed duplicated occurrences (more 
than one coordinate within a cell) by assigning a 
cell ID to each coordinate that fell within a cell, 
then removing the points with duplicated cell 
IDs, resulting in unique occurrences (only one 
occurrence per cell). These unique occurrence 
records (coordinates) for each species were later 
used to generate the models.

2.3. Environmental variables

The environmental variables used were derived 
from the 19 bioclimatic variables available in 
the Worldclim online database for the current 
scenario (worldclim.com). These variables were 
derived from monthly temperature and rainfall 
values to generate more biologically meaningful 
variables (Hijmans  et  al., 2005). These variables 
were rescaled to a spatial resolution of 0.5º (55.6 
km at the equator) using the function aggregate of 
package raster (Hijmans, 2019) available in the R 
software (R Core Team, 2023). The non-collinear 

environmental variables (ENV) used for modelling 
were selected using functions of the package psych 
(Revelle, 2019) available in the R software. The 
number of necessary non-orthogonal axes were 
determined using the fa function that compares the 
eigenvalues of factors (axes) in a scree plot, which 
retained four factors. Then, we selected the variables 
with the highest either positive or negative loadings 
in each of the four axes, and the following variables 
were selected: BIO1 = Annual Mean Temperature, 
BIO2 = Mean Diurnal Temperature Range, BIO13 
= Precipitation of Wettest Month and BIO15 = 
Precipitation Seasonality (Figure S2).

2.4. Asymmetric dispersal variables

The asymmetric eigenvector map (AEM) 
variables (hereafter called asymmetric dispersal 
variables) were generated using the function aem of 
the adespatial package (Dray et al., 2019) available 
in the R software. The calculation of these variables 
in this function is based on the Singular Value 
Decomposition (SVD) analysis using an asymmetric 
site-by-edge binary matrix. In our study, this matrix 
is represented by a binary matrix of directional 
connectivity (asymmetric) using the grid cells as sites 
with nodes between grid cells and tributaries and the 
edge as the river path until it reaches a riverbed. The 
first edge (E1) represents the longest river path until 
it reaches the farthest riverbed. The subsequent edge 
is the same as the previous minus the first node (grid 
cell), changing only when it reaches a connection to 
a lower-order river tributary, which creates one or 
more edges (depending on tributary size and sub-
connections) exclusive to this river branching. After 
finishing every tributary edge, the edges that count 
return to the main connection (river), receiving a 
1 for the remaining grid cells (nodes) in the edge 
and a 0 for the nodes already included in previous 
edges, until it reaches the farthest node (grid cell 
with the farthest source) (see Parreira et al., 2023 
for more explanation on the matrix’s construction). 
The construction of this binary matrix is based on 
Blanchet et al. (2008), who modelled the directional 
spatial processes in freshwater environments. 

Table 1. ANCOVA results for both response variables (AUC, Area Under Curve, and TSS, True Skill Statistic).
AUC TSS

Df SS MS F P Df SS MS F P
Range 1 0.108 0.108 10.49 0.00* Range 1 0.435 0.435 22.88 0.00*

Var_type 2 0.003 0.001 0.14 0.87 Var_type 2 0.020 0.010 0.59 0.56
Residuals 83 0.851 0.010 Residuals 83 1.578 0.019
*Significance level at 5%. The range indicates the number of grid cells occupied by the species, and var_type 
indicates sets of variables used for modelling (i.e., AEM, asymmetric dispersal predictors, ENV, environmental 
variables, or both ENV_AEM).
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Posteriorly, we used the broken stick method 
(Jackson, 1993) to determine the number of non-
collinear asymmetric eigenvectors (AEM). These 
selected axes (eigenvectors) were used as asymmetric 
dispersal predictors for generating the species 
distribution models (see Figure  S3 for mapped 
predictors).

2.5. Modelling procedures

Species distribution models (SDMs) were built 
using 75% of the presence and absence points 
for training (model’s construction) and 25% 
for testing the models’ performance (Guisan & 
Zimmermann, 2000) that were randomly selected 
from each species’ unique presence and the 56 
randomly generated pseudo-absences. The set of 
presence and absence points selected for training 
(constructing) were used together with modelling 
methods (algorithms) and sets of environmental and 
spatial variables. We used six algorithms: Bioclim 
(Nix, 1986), Domain (Carpenter  et  al., 1993), 
Support Vector Machines (SVM; Schölkopf et al., 
2001), Generalized Linear Models (GLM; Nelder 
and Wedderburn, 1972), Maximum Entropy 
(MaxEnt; Phillips  et  al., 2006) and Random 
Forest (Breiman, 2001). The algorithms used are 
available in the R package dismo (Hijmans et al., 
2016) and were chosen because they consider 
different statistical methods (climatic envelopes, 
environmental distances, machine-learning, 
regressions) (Rangel & Loyola, 2012). In addition 
to algorithms, the models were built using different 
types of variables (predictors): environmental 
variables (ENV), asymmetric dispersal (AEM) and 
the combination of environmental and dispersal 
variables (ENV+AEM). The model’s training 
and validation occurred 20 times through cross-
validation (using the selected presences and pseudo-
absences) for all combinations of algorithms and 
types of variables for each species. In this sense, we 
built 360 models (20 repetitions x 6 algorithms 
x 3 types of variables) for each of the 29 species, 
totalling 10,440 models.

All models generated were evaluated using the 
Area Under the “receiver operating characteristic” 
Curve (AUC; Swets, 1988), which is a threshold-
independent evaluation metric (the limit for 
determination of presences/absences) that compares 
predicted with observed values and the True Skill 
Statistic (TSS; Allouche  et  al., 2006), which 
compares the number of correct predictions minus 
those attributable to random guessing not affected 
by the prevalence and size of the validation set. The 

final map of potential distribution is a consensus 
map (ensemble) built using the mean suitability 
values of all models with AUC > 0.7 weighted by 
the AUC values for each species. The models were 
generated and evaluated using functions from the 
dismo package (Hijmans et al., 2016) available in 
the R software (R Core Team, 2023).

2.6. Calculation of variables

During model evaluation in each run, we 
obtained the evaluation metrics (AUC and TSS) 
for each model. The metrics (accuracy) were then 
summarized for each species, where the overall 
mean AUC and TSS values for each species were 
calculated using the mean accuracy metric values of 
models built using the six different algorithms for 
each of the three different sets of variables (AEM, 
ENV, AEM+ENV). Thus, we ended up with overall 
mean AUC and TSS values for each species for each 
set of variables, which are hereafter used as response 
variables for the analysis.

The distribution range of species was calculated 
using the Minimum Convex Polygon (MCP) 
approach, which is the smallest possible polygon 
with straight lines that contains all occurrence 
records. We calculated the MCP in Km2 using 
the function Minimum Bounding Geometry, which 
is available in the ArcGIS software version 10.5. 
We also calculated the number of non-duplicated 
records for each species to be used as the species 
range. However, since this variable was highly 
correlated with MCP values (r = 0.87), we kept only 
MCP since it better represents the distribution of 
poorly surveyed species (e.g., few occurrences widely 
distributed throughout the basin).

Finally, through the distribution maps of 
each species, we assessed whether the occurrence 
records fall within only one sub-basin (Tocantins 
or Araguaia) or two sub-basins (Tocantins and 
Araguaia). Also, for species with distributions in 
only one sub-basin, we determined which sub-basin 
it was. These variables were mainly used to control 
the effect of accuracy on models using species with 
a small range size but distributed across both sub-
basins (e.g., Acestrocephalus maculosus – Figure S1.1 
in Supplementary Material) and a large range but 
within only one sub-basin (e.g., Moenkhausia 
tergimacula – Figure S1.22).

2.7. Data analysis

First, we calculated an Analysis of Variance 
(ANOVA) to test the difference between mean 
AUC and TSS values of each species among the 
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type of variables. We used an Analysis of Covariance 
(ANCOVA) to test the relationship between species 
range and the model’s evaluation metrics (AUC and 
TSS) and if this relationship varies according to 
the variables used (ENV, AEM, ENV+AEM). For 
these analyses, AUC and TSS were the dependent 
variables (continuous, varying from 0 to 1), species 
range was the continuous independent variable 
and the type of variables used for modelling was 
the covariate (nominal categoric) with three levels: 
ENV (environmental variables), AEM (asymmetric 
dispersal variables) and ENV+AEM (environment 
and asymmetric dispersal variables) (Table S1).

Subsequently, we tested whether the accuracy 
metrics were significantly different between AEM-
based and ENV-based models by calculating delta 
AUC and TSS. The delta accuracy here was the 
mean accuracy values from the AEM models 
subtracted from mean accuracy values from the 
ENV models (Δ=AEM-ENV). In this sense, AUC 
and TSS positive values represent models that, 
for those specific species, AEM generated models 
with higher performance in comparison to models 
built using ENV. On the contrary, AUC and TSS 
negative values show for which species the models 
built using ENV had a higher performance in 
comparison to AEM-based models. Additionally, we 
took those delta accuracy values (response variables) 
and calculated an ANOVA to test a relationship 
between Delta accuracy and the Number of basins 
each species occurs within (Delta_AUC ~ Nbasins 
and Delta_TSS ~ Nbasins). We also calculated a 
linear regression between Delta accuracy and the 
distribution range of species. For all statistical tests, 
we considered p-values less than 0.05 as significant.

3. Results

Among the 29 species modelled, most species 
(18 species or 62%) had models with the best 
performance (both AUC and TSS) when modelled 
using AEM predictors, while 21% (six species) 
had better performance using ENV predictors 
and 17% (five species) using the combination of 
AEM and ENV predictors. In general, the models 
built for each species had good performances 
(Figure  2). Among the models built using only 
asymmetric dispersal (AEM), 24 (83%) species had 
models considered adequate (AUC ≥ 0.75, TSS ≥ 
0.5). For models using environmental variables 
(ENV), 21 (72%) had performances above the 
acceptance threshold, and for models using both 
ENV and AEM, 23 (79%) species had models with 
performances above the threshold. However, the 

overall difference among types of variables using 
the mean accuracy values of each species model was 
not statistically significant (AUC: p = 0.87; TSS: 
p = 0.62), indicating that AEM and ENV models 
presented similar performances (Figure 2).

The ANCOVA analyses for both evaluation 
metrics (AUC and TSS) showed no significant 
difference between types of variables (Table  1). 
However, the species range showed a significant 
relationship with both accuracy values. Therefore, 
models built for species with more restricted 
distributions showed better performance, i.e., 
with more realistic predictions, regardless of the 
type of variables used for modelling (Table 1 and 
Figure  3). There are no significant differences in 
the performance of models using different types of 
variables and species ranges.

The comparison of delta accuracy values (AUC 
and TSS) between the AEM and ENV models 
for each species had different but complementary 
results among the number of sub-basins and 
distribution ranges for each species. We found no 
relationship between range and accuracy metrics 
between the AEM and ENV models for both 
AUC (R2 = 0.04, p = 0.29) and TSS (R2 = 0.04, p 
= 0.26) metrics. However, the delta accuracy was 
significantly different between models for species 
distributed only in one sub-basin and distributed 
in both sub-basins for both AUC (F(1, 27) = 9.18, p 
< 0.01) and TSS (F(1, 27) = 8.50, p < 0.01) metrics 
(Figure 4), meaning that species distributed in only 
one basin modelled using asymmetric dispersal 
(AEM) generally had higher performance than using 
environmental variables (ENV), and this positive 
delta was significantly different from models for 
species distributed in both basins. That difference 
is especially higher for more restricted species 

Figure 2. Difference in the models’ performances using 
AUC (Area Under Curve) and TSS (True Skill Statistic) 
evaluation metrics among models built using different 
variables for all species (aem, asymmetric dispersal 
predictors, env, environmental variables, or both env_aem).



7	 Asymmetric dispersal in freshwater species distribution models varies…	

Acta Limnologica Brasiliensia, 2025, vol. 37, e16

distributed within the same sub-basin (Figure 4) 
with the exception of species widely distributed 
latitudinally but still within the same sub-basin, 
such as Moenkhausia tergimacula (Figure S1.21), 
which also had a higher accuracy when modelled 
using AEM than ENV. Nevertheless, ENV models 
for each species had a generally higher performance 
for highly dispersed species in both basins (regardless 
of distribution range). For example, Moenkhausia 
pyrophthalma and Ammoglanis diaphanus have quite 
different distribution range sizes but both had a 
higher performance when modelled using ENV 
than AEM.

4. Discussion

Although not significantly different, in our 
study, the models’ accuracies were generally higher 
for AEM models than ENV models. Moreover, 
this difference of accuracy among the built SDMs 
varies depending on the species range size combined 

with the species distribution within the main sub-
basins where restricted species, when modelled 

Figure 3. Relationship between A) AUC, Area Under Curve; and B) TSS True Skill Statistic; and the species range 
(Km2/100) among the models built using different types of variables (aem, asymmetric dispersal predictors, env, 
environmental variables, or both env_aem).

Figure 4. Delta values (Δ=AEM-ENV) of accuracy 
metrics (AUC, Area Under Curve, and TSS, True Skill 
Statistic) of all species modelled using AEM (asymmetric 
dispersal predictors) and ENV (environmental variables) 
distributed within one or two sub-basins
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using AEM, had models with higher accuracy and 
less overprediction to areas climatically suitable 
but longitudinally disconnected. Therefore, the 
insertion of asymmetric dispersal (AEM) predictors 
into freshwater SDMs, besides generating models 
with overall high accuracy for the fish species 
evaluated (higher for most species), avoids or 
reduces the overprediction to climatically close but, 
in many cases, disconnected areas that occur when 
using only traditional environmental variables.

In general, models built using asymmetric 
dispersal predictors (AEM) had higher performances 
than those built using only environmental predictors 
(ENV) and the combination of AEM and ENV 
predictors. This trend continues specifically for most 
species, having models with higher performance 
and above the acceptable threshold using AEM 
predictors. Even though this effect could be due to 
environmental or physical variables not measured 
here (e.g., water flow velocity), the inclusion of 
spatial predictors in species distribution models 
can generate accurate models by including the 
spatial structure (variation) of the studied area 
(e.g., coordinates [x and y gradients] and large- 
and fine-spatial filters) (Bahn & McGill, 2007; 
Stockwell & Peterson, 2002), spatial autocorrelation 
(Guélat & Kéry, 2018) and species dispersal, either 
symmetric through dispersal rates (Holloway et al., 
2016; Monsimet  et  al., 2020) or asymmetric 
(Parreira et al., unpublished data). In this sense, the 
inclusion of species dispersal (movement) through 
asymmetric dispersal (AEM) predictors can generate 
more reliable and accurate models by reducing 
overprediction to close, and thus climatically 
similar but disconnected areas (e.g., rivers separated 
by physical barriers [natural: elevation; artificial: 
dams]) by including a directional gradient into 
the predictors that matches the hierarchy and flow 
direction of river basins (Blanchet et al., 2008).

Species more restricted (i.e., small range) tend 
to have models with higher accuracy (Stockwell & 
Peterson, 2002) with no overall differences in this 
relationship depending on the predictors used for 
modelling. However, the difference among predictors 
arises when considering the basin limitation (limited 
accessible areas) for species distribution. In our 
study, species with more restricted distributions 
due to their small range and distribution limited to 
a sub-basin had models with higher performances 
(accuracy). These restricted species can generate 
models with higher performances (accuracy) due to 
their historically limited accessible areas (Barve et al., 
2011) with prediction accuracy decreasing as the 
range size increases (Stockwell & Peterson, 2002). 

Furthermore, by correlating these predictors with 
the model’s delta accuracy for each species, we found 
a higher and significant difference in performance 
between models built using only AEM and only 
ENV, with models built using AEM having higher 
accuracy, especially for restricted species. AEM-
based models increase accuracy since they include 
the longitudinal disconnection between the main 
sub-basins (Araguaia and Tocantins) which act as a 
dispersal barrier between sub-basins; thus, including 
the directionality for the species dispersal into 
models. Hence, the insertion of asymmetric dispersal 
into freshwater SDMs, besides generating more 
accurate predictions, more realistically represent 
the actual distribution of continental fish through 
rivers, increasing the ecological reality of predictions.

One of the issues of using only environmental 
predictors when modelling is not considering 
dispersal movement (Miller & Holloway, 2015), 
either a priori during the modelling process (e.g., 
as explanatory variables) or a posteriori (e.g., by 
overlapping accessible and suitable areas), generating 
overpredictions (Mendes et al., 2020). In this study, 
the species most affected by overprediction when 
modelled using only environmental variables 
are species with restricted or wide distributions 
throughout one sub-basin but with few occurrence 
points in the other sub-basin geographically close 
to the species’ core distribution. For example, both 
Moenkhausia pyrophthalma (wide distribution) and 
Ammoglanis diaphanus (restricted distribution) had 
quite higher performances when modelled using 
ENV than AEM predictors due to not considering 
the species dispersal route throughout the rivers 
to reach the geographically close and climatically 
suitable areas, but disconnected in the upper 
portion of the basin, generating overpredicted 
distribution when modelling these species with only 
environmental variables.

Therefore, the models built using environmental 
and dispersal-related variables show different 
accuracies (positive or negative deltas) depending 
on the species’ range size and distribution across 
sub-basins. However, those differences in accuracy 
for models built using those variables for each 
species are small and not statistically significant 
for the overall difference among models. Besides, 
some species have quite small sample sizes due 
to their narrow distribution in large grid cells 
(i.e., small unique presences and low prevalence), 
which in turn generate models with poor accuracy, 
results already expected for accuracy in models 
built with small samples (Liu et al., 2019) and low 
prevalence (Jiménez-Valverde et al., 2009). Despite 
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that, AEM-based models were able to address this 
problem, avoiding overprediction to areas outside 
the restricted species core distribution, generating 
overall higher performance for those species with 
limited distribution and sample size.

We conclude that since the predicted suitability 
distributions and accuracy between AEM and ENV 
models did not vary much or were slightly higher for 
restricted species using asymmetric dispersal (AEM) 
predictors, dispersal predictors can be used as a 
surrogate of climate-based environmental variables 
or as complementary variables to insert dispersal 
restrictions into SDMs, aiming to reduce model 
overprediction. Furthermore, the use of asymmetric 
dispersal in SDMs should be explored further in 
larger-scale studies (e.g., assessing dispersal restrictions 
among basins) and in freshwater studies modelling 
species distributions in areas with anthropogenic 
dispersal restrictions. For example, building SDMs 
with asymmetric dispersal predictors enables the 
insertion of river disconnections due to anthropic 
actions, such as hydroelectric power plants (HPP) or 
water dams, that can be inserted as disconnections 
(0s in the asymmetric binary matrix) in grid cells that 
have built or planned HPPs, assessing this effect on 
the species’ potential distribution. Therefore, using 
dispersal-related predictors in SDMs allows a better 
representation of the species habitat and movement, 
avoiding/reducing overprediction to unreachable 
climatically suitable areas.
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