Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X7024
Acta Limnologica Brasiliensia
Original Article

Predictive capacity of phytoplankton functional groups in a tropical wetland (Pantanal, Brazil)

Capacidade preditiva dos grupos funcionais fitoplanctônicos em uma área úmida tropical (Pantanal, Brasil)

Renata Felicio-Santos; Simoni Maria Loverde-Oliveira; Wilkinson Lopes Lázaro; Patricia Fernanda dos Santos de Loureiro Nunes; Carolina Joana da Silva

Downloads: 0
Views: 10

Abstract

Aim: Considering the prediction capacity of the phytoplankton community, this study analyzed the environmental factors that influenced the Reynolds Functional Groups (RFG) in hydrological period (dry, rising, flood and ebb) and the type of environment (river and lake), in the Pantanal wetland (Brazil). We expect environmental variability to reflect in the predictive ability of phytoplankton to describe habitat types and flood-pulse periods, where the seasonality (high and low water) are the main drivers of phytoplankton distribution, biomass and functional groups.

Methods: We collected environmental variables and phytoplankton quarterly in 2018 from 18 points in the flood, rising, dry and ebb.

Results: recorded 425 taxa distributed into 13 taxonomic groups and 20 RFGs, of which nine groups (D, F, J, G, K, MP, N, S1, and P), represented by green algae, cyanobacteria, and diatoms, had the highest predictive value, characterizing lentic environments as rich in nutrients and light, and the Paraguay River as having a lower availability of these resources for phytoplankton. The variation in biomass was related to the phases of the flood pulse, being higher in low waters in floodplain lakes and smaller in high waters in the river.

Conclusions: Thus, the predictability of the phytoplankton community structure was directly associated with the environment types in the Pantanal wetland and with the homogenization or isolation of the systems promoted by the flood pulse that acted as drivers of phytoplankton distribution, biomass and functional groups.

Keywords

environmental variability; microalgae; wetlands; predictive ability

Resumo

Objetivo: Considerando a capacidade de predição da comunidade fitoplanctônica, este estudo analisou os fatores ambientais que influenciaram os Grupos Funcionais de Reynolds (RFG) no período hidrológico (estiagem, enchente, cheia e vazante) e tipo de ambiente (rio e lago), no Pantanal (Brasil). Esperamos que a variabilidade ambiental reflita na capacidade preditiva do fitoplâncton para descrever tipos de habitat e períodos de pulso de inundação, onde a sazonalidade (águas altas e baixas) são os principais direcionadores de biomassa, distribuição de fitoplâncton e grupos funcionais.

Métodos: Coletamos variáveis ambientais e fitoplâncton trimestralmente em 2018 a partir de 18 pontos nos períodos de cheia, enchente, seca e vazante.

Resultados: Registramos 425 táxons distribuídos em 13 grupos taxonômicos e 20 RFGs, dos quais nove grupos (D, F, J, G, K, MP, N, S1 e P), representados por algas verdes, cianobactérias e diatomáceas, teve o maior valor preditivo, caracterizando ambientes lênticos como ricos em nutrientes e luz, e o rio Paraguai como tendo menor disponibilidade desses recursos para o fitoplâncton. A variação da biomassa foi relacionada às fases do pulso de inundação, sendo maior em águas baixas nos lagos e menor em águas altas no rio.

Conclusões: A previsibilidade da estrutura da comunidade fitoplanctônica esteve diretamente associada aos tipos de ambiente no Pantanal e à homogeneização ou isolamento dos sistemas promovidos pelo pulso de inundação que atuaram como direcionadores de biomassa, distribuição e grupos funcionais do fitoplâncton.

Palavras-chave

variabilidade ambiental; microalgas; zonas úmidas; capacidade preditiva

References

Abonyi, A., Leitão, M., Lançon, A.M. & Padisák, J., 2012. Phytoplankton functional groups as indicators of human impacts along the River Loire (France). Hydrobiologia 69(8), 233-249. http://doi.org/10.1007/s10750-012-1130-0.

Abonyi, A., Leitão, M., Stanković, I., Borics, G., Várbíró, G. & Padisák, J., 2014. A large river (River Loire, France) survey to compare phytoplankton functional approaches: do they display river zones in similar ways? Ecol. Indic., 46, 11-22. http://doi.org/10.1016/j.ecolind.2014.05.038.

Abonyi, A., Kiss, K.T., Hidas, A., Borics, G., Várbíró, G., & Ács, E., 2020. Cell size decrease and altered size structure of phytoplankton constrain ecosystem functioning in the middle Danube River over multiple decades. Ecosystems (N. Y.) 23(6), 1254-1264. http://doi.org/10.1007/s10021-019-00467-6.

Alho, C.J.R. & Silva, J.S.V., 2012. Effects of severe floods and droughts on wildlife of the Pantanal wetland (Brazil). Animals 2(4), 591-610. PMid:26487165. http://doi.org/10.3390/ani2040591.

American Public Health Association – APHA, 2005. Standard methods for the examination of water and wastewater. Washington: APHA, 21th ed.

Beck, M.W., 2017. ggord: Ordination Plots with ggplot2. R package version 1.0.0 [software]. Retrieved in 2024, July 30, from https://zenodo.org/badge/latestdoi/35334615.

Bolgovics, Á., Várbíró, G., Ács, É., Trábert, Z., Kiss, K.T., Pozderka, V., Görgényi, J., Boda, P., Lukács, B.A., Nagy‑László, Z., Abonyi, A., & Borics, G., 2017. Phytoplankton of rhithral rivers: its origin, diversity and possible use for quality‑assessment. Ecol. Indic. 81, 587-596. http://doi.org/10.1016/j.ecolind.2017.04.052.

Borcard, D., Gillet, F. & Legendre, P., 2011. Numerical ecology with R. New York: Springer. http://doi.org/10.1007/978-1-4419-7976-6.

Borges, P.A.F., Train, S. & Rodrigues, L.C., 2008. Spatial and temporal variation of phytoplankton in two subtropical Brazilian reservoirs. Hydrobiologia 607(1), 63-74. http://doi.org/10.1007/s10750-008-9367-3.

Borics, G., Tóthmérész, B., Lukács, B. & Várbíró, G., 2012. Functional groups of phytoplankton shaping diversity of shallow lake ecosystems. Hydrobiologia 698(1), 251-262. http://doi.org/10.1007/s10750-012-1129-6.

Bortolini, J.C., Bovo-Scomparin, V.M., Paula, A.C.M., Moresco, G.A., Reis, L.M., Jati, S. & Rodrigues, L.C., 2014a. Composition and species richness phytoplankton in a subtropical floodplain lake: a long-term study. Acta Limnol. Bras., 26(3), 296-305. http://doi.org/10.1590/S2179-975X2014000300009.

Bortolini, J.C., Rodrigues, L.C., Jati, S. & Train, S., 2014b. Phytoplankton functional and morphological groups as indicators of environmental variability in a lateral channel of the Upper Paraná River floodplain. Acta Limnol. Bras., 26(1), 98-108. http://doi.org/10.1590/S2179-975X2014000100011.

Bovo-Scomparin, V.M. & Train, S., 2008. Long-term variability of the phytoplankton community in an isolated floodplain lake of the Ivinhema River State Park, Brazil. Hydrobiologia 610(1), 331-344. http://doi.org/10.1007/s10750-008-9448-3.

Brasil. Agência Nacional de Águas - ANA, 2005. Strategic action program for the integrated management of the Pantanal and the upper Paraguay river basin. Brasília, DF: ANA/GEF/PNUMA/OEA.

Casco, M.A. & Toja, J., 1994. The distribution and interaction of algal communities in reservoirs. Arch. Hydrobiol. Beih. Ergenbn. Limnol., 40, 85-96.

Cronberg, G. & Komárek, J., 2004. Some nostocalean cyanoprokaryotes from lentic habitats of Eastern and Southern Africa. Nova Hedwigia 78(1-2, Suppl. 78), 71-106. http://doi.org/10.1127/0029-5035/2004/0078-0071.

Devercelli, M. & O’Farrell, I., 2013. Factors affecting the structure and maintenance of phytoplankton functional groups in a nutrient rich lowland river. Limnologica 43(2), 67-78. http://doi.org/10.1016/j.limno.2012.05.001.

Devercelli, M., 2006. Phytoplankton of the Middle Paraná River during an anomalous hydrological period: a morphological and functional approach. Hydrobiologia 563(1), 465-478. http://doi.org/10.1007/s10750-006-0036-0.

Devercelli, M., 2010. Changes in phytoplankton morpho-functional groups induced by extreme hydroclimatic events in the Middle Paraná river (Argentina). Hydrobiologia 639(1), 5-19. http://doi.org/10.1007/s10750-009-0020-6.

Devercelli, M., Scarabotti, P., Mayora, G., Schneider, B. & Giri, F., 2016. Unravelling the role of determinism and stochasticity in structuring the phytoplanktonic metacommunity of the Paraná River floodplain. Hydrobiologia 764(1), 139-156. http://doi.org/10.1007/s10750-015-2363-5.

Domitrovic, Y.Z., 2003. Effect of fluctuations in water level on phytoplankton development in three lakes of the Paraná river floodplain (Argentina). Hydrobiologia 510(1-3), 175-193. http://doi.org/10.1023/B:HYDR.0000008643.50105.4b.

Domitrovic, Y.Z., Devercelli, M. & Forastier, M.E., 2014. Phytoplankton of the paraguay and Bermejo rivers. Adv. Limnol., 65, 67-80. http://doi.org/10.1127/1612-166X/2014/0065-0034.

Dunn, R.R., Colwell, R.K. & Nilsson, C., 2006. The River Domain: why are there so many species half way up the river? Ecography 29(2), 251-259. http://doi.org/10.1111/j.2006.0906-7590.04259.x.

Fantin-Cruz, I., Pedrollo, O., Girard, P., Zeilhofer, P. & Hamilton, S.K., 2016. Changes in river water quality caused by a diversion hydropower dam bordering the Pantanal floodplain. Hydrobiologia 768(1), 223-238. http://doi.org/10.1007/s10750-015-2550-4.

Fraisse, S., Bormans, M. & Lagadeuc, Y., 2013. Morphofunctional traits reflect differences in phytoplankton community between rivers of contrasting flow regime. Aquat. Ecol., 47(3), 315-327. http://doi.org/10.1007/s10452-013-9446-z.

Hamilton, S.K., Sippel, S.J. & Melack, J.M., 1996. Inundation patterns in the Pantanal wetland of South America determined from passive microwave remote sensing. Arch. Hydrobiol., 137(1), 1-23. http://doi.org/10.1127/archiv-hydrobiol/137/1996/1.

Hillebrand, H., Dürselen, C.D., Kirschtel, D., Pollingher, U. & Zohary, T., 1999. Biomass calculation for pelagic and benthic microalgae. J. Phycol., 35(2), 403-424. http://doi.org/10.1046/j.1529-8817.1999.3520403.x.

Iglesias‐Rodríguez, M.D., Brown, C.W., Doney, S.C., Kleypas, J., Kolber, D., Kolber, Z., Hayes, P.K. & Falkowski, P.G., 2002. Representing key phytoplankton functional groups in ocean carbon cycle models: coccolithophorids. Global Biogeochem. Cycles 16(4), 47-1-47-20. http://doi.org/10.1029/2001GB001454.

Jackson, D.A., 1993. Stopping rules in principal components analysis: a comparison of Heuristical and Statistical approaches. Ecology 74(8), 2204-2214. http://doi.org/10.2307/1939574.

Jones, I.D. & Elliott, J.Á., 2007. Modelling the effects of changing retention time on abundance and composition of phytoplankton species in a small lake. Freshw. Biol., 52(6), 988-997. http://doi.org/10.1111/j.1365-2427.2007.01746.x.

Junk, W. & Cunha, C.N., 2005. Pantanal: a large South American wetland at a crossroads. Ecol. Eng., 24(4), 391-401. http://doi.org/10.1016/j.ecoleng.2004.11.012.

Junk, W.J., Bayley, P.B. & Sparks, R.E., 1989. The flood pulse concept in river-floodplain systems. Can. Spec. Publ. Fish. Aquat. Sci., 106, 110-127.

Junk, W.J., Cunha, C.N., Wantzen, K.M., Petermann, P., Strussmann, C., Marques, M.I. & Adis, J., 2006. Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aquat. Sci., 68(3), 278-309. http://doi.org/10.1007/s00027-006-0851-4.

Junk, W.J., Piedade, M.T.F., Schöngart, J., Cohn-Haft, M., Adeney, J.M. & Wittmann, F., 2011. A Classification of major naturally-occurring amazonian lowland wetlands. Wetlands 31(4), 623-640. http://doi.org/10.1007/s13157-011-0190-7.

Komárek, J. & Anagnostidis, K., 2000. Cyanoprokaryota. 1. Teil: Chroococcales. Berlin: Spektrum.

Komárek, J. & Anagnostidis, K., 2005. Cyanoprokaryota. pt.2 Oscillatoriales. In: Büdel, B., Krienitz, L., Gärtner, G. & Schagerl, M., eds. Süsswasserflora von Mitteleuropa. München: Elsevier, 759 p., vol. 19/1. https://doi.org/10.4236/apm.2015.52012.

Komárek, J. & Cronberg, G., 2001. Some chroococcalean and oscillatorialean Cyanoprokaryotes from southern African lakes, ponds and pools. Nova Hedwigia. Z. Kryptogamenkunde 73(1-2), 129-160. https://doi.org/10.1127/nova.hedwigia/73/2001/129.

Kruk, C. & Segura, A.M., 2012. The habitat template of phytoplankton morphology-based functional groups. Hydrobiologia 698(1), 191-202. http://doi.org/10.1007/s10750-012-1072-6.

Kruk, C., Devercelli, M., Huszar, V.L.M., Hernández, E., Beamud, G., Diaz, M., Silva, L.H.S. & Segura, A.M., 2017. Classification of Reynolds phytoplankton functional groups using individual traits and machine learning techniques. Freshw. Biol., 62(10), 1681-1692. http://doi.org/10.1111/fwb.12968.

Kruk, C., Huszar, V.L.M., Peeters, E.T.H.M., Bonilla, S., Costa, L., Lürling, M., Reynolds, C. & Scheffer, M., 2010. A morphological classification capturing functional variation in phytoplankton. Freshw. Biol., 55(3), 614-627. http://doi.org/10.1111/j.1365-2427.2009.02298.x.

Legendre, P. & Gallagher, E.D., 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129(2), 271-280. PMid:28547606. http://doi.org/10.1007/s004420100716.

Legendre, P. & Legendre, L.F.J., 1998. Numerical ecology. Oxford: Elsevier.

Litchman, E. & Klausmeier, C.A., 2008. Trait-based community ecology of Phytoplankton. Annu. Rev. Ecol. Evol. Syst., 39(1), 615-639. http://doi.org/10.1146/annurev.ecolsys.39.110707.173549.

Litchman, E., Edwards, K.F., Klausmeier, C.A., & Thomas, M.K., 2012. Phytoplankton niches, traits and eco-evolutionary responses to global environmental change. Mar. Ecol. Prog. Ser. 470, 235-248. http://doi.org/10.3354/meps09912.

Lobo, M.T.M.P.S., Nogueira, I.S., Sgarbi, F.L., Kraus, C.N., Bombim, E.O., Garnier, J., Marques, D.M. & Bonnet, M.P., 2018. Morphology-based functional groups as the best tool to characterize shallow lake-dwelling phytoplankton on an Amazonian floodplain. Ecol. Indic., 95, 579-588. http://doi.org/10.1016/j.ecolind.2018.07.038.

Loverde-Oliveira, S.M. & Huszar, V.L.M., 2007. Phytoplankton ecological responses to the flood pulse in a Pantanal lake, Central Brazil. Acta Limnol. Bras., 19, 117-130. Retrieved in 2024, July 30, from https://actalb.org/article/627b11ef782aad05cf549235/pdf/alb-19-2-117.pdf.

Loverde-Oliveira, S.M. & Huszar, V.L.M., 2019. Phytoplankton functional groups driven by alternative states in a tropical floodplain lake (Pantanal, Brazil). Ecol. Austral 23(04), 926-939. https://doi.org/10.4257/oeco.2019.2304.16.

Loverde-Oliveira, S.M., Adler, M. & Pinto-Silva, V., 2011. Phytoplankton, periphyton and metaphyton. In: Junk, W.J., Da Silva, C.J., Cunha, C.N. & Wantzen, K.M., eds. The Pantanal: ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Sofia-Moscow: Pensoft.

Loverde-Oliveira, S.M., Huszar, V.L.M., Mazzeo, N. & Scheffer, M., 2009. Hydrology-driven regime shifts in a shallow tropical lake. Ecosystems 12(5), 807-819. http://doi.org/10.1007/s10021-009-9258-0.

Loverde-Oliveira, S.M., Pietro-Souza, W., Cardoso, S.J., Fantin-Cruz, I. & Mateus, L., 2012. Fatores associados à distribuição espacial do fitoplâncton em lagos de inundação (Pantanal Norte, Brasil). Ecol. Austral 16(4), 770-781. https://doi.org/10.4257/oeco.2012.1604.04.

Lund, J.W.G., Kipling, C. & Le Cren, E.D.E., 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11(2), 143-170. http://doi.org/10.1007/BF00007865.

Margalef, R., 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1, 493-509. Retrieved in 2024, July 30, from https://archimer.ifremer.fr/doc/00123/23403/.

Mieleitner, J., Borsuk, M., Bürgi, H.R. & Reichert, P., 2008. Identifying functional groups of phytoplankton using data from three lakes of different trophic state. Aquat. Sci., 70(1), 30-46. http://doi.org/10.1007/s00027-007-0940-z.

Mihaljević, M., Stević, F., Horvatić, J., & Hackenberger Kutuzović, B., 2009. Dual impact of the flood pulses on the phytoplankton assemblages in a Danubian floodplain lake (Kopački Rit Nature Park, Croatia). Hydrobiologia 618(1), 77-88. http://doi.org/10.1007/s10750-008-9550-6.

Moresco, G.A., Bortolini, J.C., Dias, J.D., Pineda, A., Jati, S. & Rodrigues, L.C., 2017. Drivers of phytoplankton richness and diversity components in Neotropical floodplain lakes, from small to large spatial scales. Hydrobiologia 799(1), 203-215. http://doi.org/10.1007/s10750-017-3214-3.

Moresco, G.A., Bortolini, J.C., Rodrigues, L.C., Jati, S. & Velho, L.F.M., 2020. A functional deconstructive approach to mixotrophic phytoplankton responds better to local, regional and biogeographic predictors than species. Austral Ecol. 45(2), 249-263. http://doi.org/10.1111/aec.12852.

Mutshinda, C.M., Finkel, Z.V., Widdicombe, C.E. & Irwin, A.J., 2016. Ecological equivalence of species within phytoplankton functional groups. Funct. Ecol., 30(10), 1714-1722. http://doi.org/10.1111/1365-2435.12641.

Nabout, J.C., Nogueira, I.S. & Oliveira, L.G., 2006. Phytoplankton community of floodplain lakes of the Araguaia River, Brazil, in the rainy and dry seasons. J. Plankton Res., 28(2), 181-193. http://doi.org/10.1093/plankt/fbi111.

Nabout, J.C., Siqueira, T., Bini, L.M. & Nogueira, I.D.S., 2009. No evidence for environmental and spatial processes in structuring phytoplankton communities. Acta Oecol., 35(5), 720-726. http://doi.org/10.1016/j.actao.2009.07.002.

Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E. & Wagner, H., 2018. Vegan: Community Ecology Package [software]. Retrieved in 2024, July 30, from http://CRAN.R-project.org/package=vegan.

Padisák, J., Crossetti, L.O. & Naselli-Flores, L., 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621(1), 1-19. http://doi.org/10.1007/s10750-008-9645-0.

Paerl, H.W., Hall, N.S. & Calandrino, E.S., 2011. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Total Environ., 409(10), 1739-1745. PMid:21345482. http://doi.org/10.1016/j.scitotenv.2011.02.001.

Pearson, K., 1901. On lines and planes of closest fit to systems of points in space. Philos. Mag., 2(11), 559-572. http://doi.org/10.1080/14786440109462720.

Peel, M.C., Finlayson, B.L. & McMahon, T., 2007. Updated world map of the K ̈oppen-Geiger climate classification. Hydrol. Earth Syst. Sci., 11(5), 1633-1644. http://doi.org/10.5194/hess-11-1633-2007.

Petchey, O.L. & Gaston, K.J., 2006. Functional diversity: back to basics and looking forward. Ecol. Lett., 9(6), 741-758. PMid:16706917. http://doi.org/10.1111/j.1461-0248.2006.00924.x.

Pickett, S.T.A., Belt, K.T., Galvin, M.F., Groffman, P.M., Grove, J.M., Outen, D.C., Pouyat, R.V., Stack, W.P. & Cadenasso, M.L., 2007. Watersheds in Baltimore, Maryland: understanding and application of integrated ecological and social processes. J. Contemp. Watershed Res. Appl., 136(1), 44-55. http://doi.org/10.1111/j.1936-704X.2007.mp136001006.x.

Quéré, C.L., Harrison, S.P., Colin Prentice, I., Buitenhuis, E.T., Aumont, O., Bopp, L., Claustre, H., Cotrim Da Cunha, L., Geider, R., Giraud, X., Klaas, C., Kohfeld, K.E., Legendre, L., Manizza, M., Platt, T., Rivkin, R.B., Sathyendranath, S., Uitz, J., Watson, A.J., & Wolf-Gladrow, D., 2005. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Glob. Change Biol., 11(11), 2016-2040. http://doi.org/10.1111/j.1365-2486.2005.1004.x.

Quinn, G.P. & Keough, M.J., 2002. Experimental design and data analysis for biologists. Cambridge: Cambridge University Press. http://doi.org/10.1017/CBO9780511806384.

R Development Core Team, 2020. R: a language and environment for statistical computing [software]. Vienna: R Foundation for Statistical Computing. Retrieved in 2024, July 30, from http://www.r-project.org/.

Reynolds, C.S. 1984. The ecology of freshwater phytoplankton. Cambridge: Cambridge University Press.

Reynolds, C.S., 1997. Vegetation processes in the pelagic: a model for ecosystem theory. Oldendorf-Luhe: Ecology Institute.

Reynolds, C.S., 1998. The state of freshwater ecology. Freshw. Biol., 39(4), 741-753. http://doi.org/10.1046/j.1365-2427.1998.00315.x.

Reynolds, C.S., 2002. Ecological pattern and ecosystem theory. Ecol. Modell., 158(3), 181-200. http://doi.org/10.1016/S0304-3800(02)00230-2.

Reynolds, C.S., 2012. Environmental requirements and habitat preferences of phytoplankton: chance and certainty in species selection. Bot. Mar., 55(1), 1-17. http://doi.org/10.1515/bot.2011.121.

Reynolds, C.S., Descy, J.P. & Padisák, J., 1994. Are phytoplankton dynamics in rivers so different from those in shallow lakes? Hydrobiologia 289, 1-7. http://doi.org/10.1007/BF00007404.

Reynolds, C.S. & Descy, J., 1996. The production, biomass and structure of phytoplankton in large rivers. Large Rivers 10(1-4), 161-187.

Reynolds, C.S., Huszar, V., Kruk, C., Naselli-Flores, L. & Melo, S., 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res., 24(5), 417-428. http://doi.org/10.1093/plankt/24.5.417.

Roberts, D.W., 2016. labdsv: ordination and multivariate analysis for ecology [software]. Vienna: R Foundation for Statistical Computing. Retrieved in 2024, July 30, from https://cran.r-project.org/web/packages/labdsv/labdsv.pdf

Rodrigues, L.C., Pivato, B.M., Vieira, L.C.G., Bovo-Scomparin, V.M., Bortolini, J.C., Pineda, A. & Train, S., 2018. Use of phytoplankton functional groups as a model of spatial and temporal patterns in reservoirs: a case study in a reservoir of central Brazil. Hydrobiologia 805(1), 147-161. http://doi.org/10.1007/s10750-017-3289-x.

Ryo, M., Aguilar-Trigueros, C.A., Pinek, L., Muller, L.A.H. & Rillig, M.C., 2019. Basic principles of temporal dynamics. Trends Ecol. Evol., 34(8), 723-733. PMid:31010706. http://doi.org/10.1016/j.tree.2019.03.007.

Salmaso, N. & Padisák, J., 2007. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578(1), 97-112. http://doi.org/10.1007/s10750-006-0437-0.

Scheffer, M. & Van Nes, E.H., 2006. Self-organized similarity, the evolutionary emergence of groups of similar species. Proc. Natl. Acad. Sci. USA 103(16), 6230-6235. PMid:16585519. http://doi.org/10.1073/pnas.0508024103.

Schleuter, D., Daufresne, M., Massol, F. & Argillier, C., 2010. A user’s guide to functional diversity indices. Ecol. Monogr., 80(3), 469-484. http://doi.org/10.1890/08-2225.1.

Silva, C.J. & Girard, P., 2004. New challenges in the management of the Brazilian Pantanal and catchment area. J. Ecol. Manage., 12(6), 553-561. http://doi.org/10.1007/s11273-005-1755-0.

Soares, M.C.S., Marinho, M.M., Azevedo, S.M.O.F., Branco, C.W.C. & Huszar, V.L.M., 2012. Eutrophication and retention time affecting spatial heterogeneity in a tropical reservoir. Limnologica 42(3), 197-203. http://doi.org/10.1016/j.limno.2011.11.002.

Soininen, J., Korhonen, J.J. & Luoto, M., 2013. Stochastic species distributions are driven by organism size. Ecology 94(3), 660-670. PMid:23687892. http://doi.org/10.1890/12-0777.1.

Stanković, I., Vlahović, T., Udovič, G.M., Várbíró, G. & Borics, G., 2012. Phytoplankton functional and morpho-functional approach in large floodplain rivers. Hydrobiologia 698(1), 217-231. http://doi.org/10.1007/s10750-012-1148-3.

Stević, F., Mihaljević, M. & Špoljarić, D., 2013. Changes of phytoplankton functional groups in a floodplain lake associated with hydrological perturbations. Hydrobiologia 709(1), 143-158. http://doi.org/10.1007/s10750-013-1444-6.

Sun, J. & Liu, D., 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res., 25(11), 1331-1346. http://doi.org/10.1093/plankt/fbg096.

Thomaz, S.M., Bini, L.M. & Bozelli, R.L., 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579(1), 1-13. http://doi.org/10.1007/s10750-006-0285-y.

Török, P., T-Krasznai, E., B-Béres, V., Bácsi, I., Borics, G. & Tóthmérész, B., 2016. Functional diversity supports the biomass-diversity humped-back relationship in phytoplankton assemblages. Funct. Ecol., 30(9), 1593-1602. http://doi.org/10.1111/1365-2435.12631.

Uhelinger, V., 1964. Étude statistique des méthodes de dénombrement planctonique. Arch. Sci. 17, 121-123.

Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen. Der. Int. Vereinigung. Für. Theor. Und. Angew. Limnol., 9(1), 1-38. https://doi.org/10.1080/05384680.1958.11904091.

van den Hoeck, C., Mann, D.G. & Jahns, H.M., 1997. Algae: an introduction to Phycology. Cambridge: Cambridge University Press.

Wantzen, K.M., Drago, E. & Da Silva, C.J., 2005. Aquatic habitats of the Upper Paraguay river-floodplainsystem and parts of the Pantanal (Brazil). Ecohydrol. Hydrobiol., 5, 107-126.

Zanco, B.F., Pineda, A., Bortolini, J.C., Jati, S. & Rodrigues, L.C., 2017. Phytoplankton functional groups indicators of environmental conditions in floodplain rivers and lakes of the Paraná Basin. Acta Limnol. Bras., 65(0), 119e. http://doi.org/10.1590/s2179-975x8117.
 


Submitted date:
07/30/2024

Accepted date:
06/10/2025

Publication date:
08/07/2025

68950151a953954dff50f956 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections