
Original Articles
Acta Limnologica Brasiliensia, 2025, vol. 37, e13

https://doi.org/10.1590/S2179-975X7024
ISSN 2179-975X on-line version

This is an Open Access article distributed under the terms of the Creative Commons Attribution license (https://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Predictive capacity of phytoplankton functional groups in a 
tropical wetland (Pantanal, Brazil)

Capacidade preditiva dos grupos funcionais fitoplanctônicos em uma área úmida 
tropical (Pantanal, Brasil)

Renata Felicio-Santos1* , Simoni Maria Loverde-Oliveira1 , Wilkinson Lopes Lázaro2 , 

Patricia Fernanda dos Santos de Loureiro Nunes3  and Carolina Joana da Silva2 

1 Laboratório de Análises Hídricas, Instituto de Ciências Exatas e Naturais, Universidade Federal de 
Rondonópolis, Av. dos Estudantes, 5055, Cidade Universitária, CEP 78736-900, Rondonópolis, 
MT, Brasil

2 Centro de Pesquisa em Limnologia, Biodiversidade e Etnobiologia do Pantanal, Universidade do 
Estado de Mato Grosso, Avenida Santos Dumont, s/n, CEP 78200-000, Cáceres, MT, Brasil

3 Laboratório de Ecologia Aquática, Universidade Federal de Juiz de Fora, Rua José Lourenço 
Kelmer, s/n, São Pedro, CEP 36036-900, Juiz de Fora, MG, Brasil
*e-mail: renatafelicio15@gmail.com;

Cite as: Felicio-Santos, R. Predictive capacity of phytoplankton functional groups in a tropical 
wetland (Pantanal, Brazil). Acta Limnologica Brasiliensia, 2025, vol. 37, e13. https://doi.org/10.1590/
S2179-975X7024

Abstract: Aim: Considering the prediction capacity of the phytoplankton community, this 
study analyzed the environmental factors that influenced the Reynolds Functional Groups (RFG) 
in hydrological period (dry, rising, flood and ebb) and the type of environment (river and lake), 
in the Pantanal wetland (Brazil). We expect environmental variability to reflect in the predictive 
ability of phytoplankton to describe habitat types and flood-pulse periods, where the seasonality 
(high and low water) are the main drivers of phytoplankton distribution, biomass and functional 
groups. Methods: We collected environmental variables and phytoplankton quarterly in 2018 
from 18 points in the flood, rising, dry and ebb. Results: recorded 425 taxa distributed into 13 
taxonomic groups and 20 RFGs, of which nine groups (D, F, J, G, K, MP, N, S1, and P), represented 
by green algae, cyanobacteria, and diatoms, had the highest predictive value, characterizing lentic 
environments as rich in nutrients and light, and the Paraguay River as having a lower availability 
of these resources for phytoplankton. The variation in biomass was related to the phases of the 
flood pulse, being higher in low waters in floodplain lakes and smaller in high waters in the river. 
Conclusions: Thus, the predictability of the phytoplankton community structure was directly 
associated with the environment types in the Pantanal wetland and with the homogenization 
or isolation of the systems promoted by the flood pulse that acted as drivers of phytoplankton 
distribution, biomass and functional groups.   
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1. Introduction

The phytoplankton community responds to 
variation in hydrology at various spatial and temporal 
scales (Abonyi et al., 2012, 2014; Bolgovics et al., 
2017; Ryo et al., 2019) with compositional changes 
along the lateral connectivity gradient in river 
floodplains (Nabout et al., 2006; Mihaljević et al., 
2009; Bortolini et al., 2014a). In floodplains, the 
environments of rivers and lakes are subject to 
variations in the water level, which, during the 
process, promote the flow of matter and energy 
(Junk et al., 1989, 2006). These variations in the level 
of the water column, especially in periods of high 
and low water, were identified as possible regulatory 
factors for the phytoplankton community in flood 
lakes (Domitrovic, 2003; Bovo-Scomparin & Train, 
2008; Loverde-Oliveira et al., 2009, 2012; Loverde-
Oliveira & Huszar, 2019). During low water levels, 
the habitats show less connectivity between them 
and the main river, and, at high water levels, there is 
high connectivity and environmental homogeneity, 
with the effects of floods occurring in different spatial 
extensions (Thomaz et al., 2007).

The variation in the water level causes constant 
changes in the composition and abundance 
of phytoplankton species (Reynolds, 1984). 
However, the effect of environmental factors on 
the distribution of phytoplankton species seems to 
depend on the type of environment and duration of 
the local states of dynamic stability (Scheffer & Van 
Nes, 2006; Loverde-Oliveira et al., 2011). In the case 
of rivers, the distribution of planktonic organisms 
is strongly influenced by the stochastic dispersion 
associated with the flow of water, which makes it 
difficult to identify the role of the environment on 
the community structure (Soininen et al., 2013).

Resumo: Objetivo: Considerando a capacidade de predição da comunidade fitoplanctônica, este 
estudo analisou os fatores ambientais que influenciaram os Grupos Funcionais de Reynolds (RFG) no 
período hidrológico (estiagem, enchente, cheia e vazante) e tipo de ambiente (rio e lago), no Pantanal 
(Brasil). Esperamos que a variabilidade ambiental reflita na capacidade preditiva do fitoplâncton 
para descrever tipos de habitat e períodos de pulso de inundação, onde a sazonalidade (águas altas e 
baixas) são os principais direcionadores de biomassa, distribuição de fitoplâncton e grupos funcionais. 
Métodos: Coletamos variáveis ambientais e fitoplâncton trimestralmente em 2018 a partir de 18 pontos 
nos períodos de cheia, enchente, seca e vazante. Resultados: Registramos 425 táxons distribuídos em 
13 grupos taxonômicos e 20 RFGs, dos quais nove grupos (D, F, J, G, K, MP, N, S1 e P), representados 
por algas verdes, cianobactérias e diatomáceas, teve o maior valor preditivo, caracterizando ambientes 
lênticos como ricos em nutrientes e luz, e o rio Paraguai como tendo menor disponibilidade desses 
recursos para o fitoplâncton. A variação da biomassa foi relacionada às fases do pulso de inundação, 
sendo maior em águas baixas nos lagos e menor em águas altas no rio. Conclusões: A previsibilidade 
da estrutura da comunidade fitoplanctônica esteve diretamente associada aos tipos de ambiente no 
Pantanal e à homogeneização ou isolamento dos sistemas promovidos pelo pulso de inundação que 
atuaram como direcionadores de biomassa, distribuição e grupos funcionais do fitoplâncton.   

Palavras-chave: variabilidade ambiental; microalgas; zonas úmidas; capacidade preditiva.

The functional group approach is an alternative 
to understanding how environmental conditions 
influence species distribution (Schleuter et al., 2010). 
Functional groups are collections of species that 
share morphological, physiological, and biochemical 
characteristics or other defining characteristics 
(Iglesias‐Rodríguez et al., 2002; Quéré et al., 
2005). Species within a functional group react to 
the environment and perform ecosystem services 
(for example, carbon sequestration) similarly or 
require similar inorganic and organic processes. The 
success of the functional group concept suggests 
that species within functional groups may behave 
similarly enough to be described by a single set of 
functional characteristics (Mutshinda et al., 2016).

Within the methodologies of approaching 
already used of phytoplankton functional groups 
(e.g., Salmaso & Padisák, 2007; Mieleitner et al., 
2008; Kruk et al., 2010; Kruk & Segura 2012; 
Kruk et al., 2017), Reynolds (2002) approach 
and updates from Padisák et al. (2009) (hereafter, 
RFG) work with the concept of the ecological 
niche of species (Litchman & Klausmeier, 2008; 
Reynolds, 2012) and consider ecological factors 
related to habitat and trophic information, as well 
as functional attributes related to the organisms’ 
tolerances and sensitivities to environmental 
variations. The functional clustering system of 
phytoplankton, RFG, has been widely used to 
explain the selection of dominant populations in 
tropical wetlands (Devercelli, 2006; Nabout et al., 
2006; Loverde-Oliveira & Huszar, 2007, 2019; 
Bovo-Scomparin & Train, 2008; Moresco et al., 
2020) and temperate regions (Borics et al., 2012; 
Stanković et al., 2012; Abonyi et al., 2014).

The RFG approach is important to understand 
the relationship between seasonal environmental 
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changes in rivers and phytoplankton (Abonyi et al., 
2020), which justifies its application in the 
Pantanal, where the seasonality of the flood pulse 
associated with local factors are the main drivers 
of the functional groups of phytoplankton. The 
low water period, with the physical and chemical 
conditions of water mediated by hydrological 
variations, with continuous mixing of the water 
column, high turbidity, and high availability of 
nutrients is favorable to the functional groups of 
the diatom, cyanobacteria, chlorophycean and 
zygnematophycean species (K, P, F, J, H1, H2). The 
establishment of the flood, decrease turbidity, increase 
in the availability of light, in addition increasing the 
contribution of flagellated algae of the groups X3, 
W1, and Y. These groups are favored in high water 
periods the tolerance of these functional groups to 
water flows (Loverde-Oliveira & Huszar, 2019).

In this study, we were interested in analyzing the 
environmental factors that influence the distribution 
patterns of phytoplankton species and Reynolds 
functional groups (RFG) in each type of environment 
(river and lake) and hydrological period (dry, rising, 
flood, and ebb), in the Pantanal wetland (Brazil).

We expect environmental variability to reflect in 
the predictive ability of phytoplankton to describe 
environment types and flood-pulse periods, where 
the seasonality (high and low water) are the main 
drivers of phytoplankton distribution, biomass, and 
functional groups.

2. Material and Methods

2.1. Study area

The study was carried out on the upper course of 
the Paraguay River and its floodplain lakes along the 
fluvial segment between the city of Cáceres and the 
Taiamã Ecological Station (Federal Unit of Integral 
Protection and Ramsar site), in Mato Grosso, 
North Pantanal (Figure 1). The upper Paraguay 
River Basin is an important ecological region since 
it is the largest tributary of the Pantanal wetland 
(Hamilton et al., 1996; Junk & Cunha, 2005; 
Junk et al., 2011), forming an ecological corridor 
that crosses the central part of South America.

The flooding occurs during the wet season on a 
predictive annual time scale by a monomodal flood 
pulse that increases the river flow (Silva & Girard, 
2004) where the connectivity of floodplain lakes 
with the main channel follows a continuum from 
permanently connected lakes to isolated ponds that 
exchange surface water only during the maximum 
flood peaks (Wantzen et al., 2005).

The region’s climate is characterized as Aw - 
sub-humid tropical (Peel et al., 2007) with two 
well-defined seasons (rainy and dry), an annual 
average temperature of 25 °C and precipitation of 
1400 mm, ranging from 800 to 1600 mm (Brasil, 
2005; Alho & Silva, 2012).

Samples were collected at nine points on the 
Paraguay river and nine floodplain lakes. The 
distribution of the sample points was based on the 
functional sectors of the Paraguay River described by 
Wantzen et al. (2005), viz., meanders sector: LAK RV 
- Retiro Velho (-16°17’97.60S -57°76’92.60W), LAK 
TV - Toma Vara (-16°32’53.60S -57°77’67.60W), 
LAK SN - Simão Nunes (-16°32’39.60S 
-57°75’08.60W); straight sector: LAK CG - Canto 
Grande (-16°36’06.60S -57°76’19.60W), LAK 
JV - Jaurú Velho (-16°37’75.60S -57°77’67.60W), 
LAK BN - Boca do Natalino (-16°50’50.60S 
-57°79’86.60W); and transition sector LAK DP - Da 
Pacas (-16°64’36.60S -57°86’39.60W); LAK Mo - 
Morrinhos (-16°66’64.60S -57°84’78.60W), LAK M 
- Morro (-16°71’08.60S -57°77’11.60W) (Figure 1).

2.2. Sampling

The sampling was carried out in 2018 in 
the periods of the flood (April), ebb (July), dry 

Figure 1. Location map of the sampling points in the 
floodplain of the upper Paraguay River.
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(September), and rising (December). For the 
qualitative (N = 65) analysis of phytoplankton, 
we collected using a plankton net (25 µm) and 
fixed with Transeau. For the quantitative (N = 
65) analyses, we collected on the subsurface of the 
limnetic zone in the lakes (N = 35) and the Paraguay 
river (N = 30) using 100 mL vials and fixed with an 
acetic Lugol solution.

The limnological data collected were performed 
with a Horiba multi-parameter probe (U-55) for the 
variables water temperature (Temp - °C), turbidity 
(Turb - NTU), conductivity (Cond - µS cm-1), pH, 
dissolved oxygen (DO - %), redox potential (ORP 
- mV). The variables total nitrogen (TN - µg L-1), 
nitrate (NO3

- - µg L-1), ammo (N-NH4
+ - µg L-1), 

soluble reactive phosphorus (orthop - µg L-1) and total 
phosphorus (TP- µg L-1) were measured followed by 
the methodology described in APHA (2005).

The identification of phytoplankton species 
was carried out using qualitative and quantitative 
samples. The classification of taxonomic groups 
was established according to van den Hoeck et al. 
(1997), with identification based on Komárek 
& Anagnostidis (2000); Komárek & Cronberg 
(2001), Cronberg & Komárek (2004), Komárek & 
Anagnostidis (2005), and some help from specialists 
in the Phytoplankton Ecology Laboratory at the 
State University of Maringá (Paraná, Brazil).

The phytoplankton density was performed 
from the quantitative samples according to the 
sedimentation method (Utermöhl, 1958) using 
an inverted microscope Olympus CK40 (at 400x 
magnification). The populations were listed in 
counts and performed in random fields (Uhelinger, 
1964) until reaching 100 individuals of the most 
frequent species (p < 0.05; Lund et al., 1958). 
The phytoplankton biomass was determined by 
biovolume (mg L-1) and was calculated as the 
product of the density (ind. L-1) by the average 
volume of each species. The average volume of each 
cell was calculated from geometric shapes close 
to the shape of each individual (Hillebrand et al., 
1999; Sun & Liu, 2003). The average size of the 
individuals was based, whenever possible, on the 
measurements of 30 organisms. The taxa that 
contributed more than 4% to the total biomass (mg 
L-1) were grouped into RFGs using the established 
criteria considering their habitats, tolerances, 
and sensitivities in Reynolds et al. (2002) and 
Padisák et al. (2009). In addition to the functional 
groups, phytoplankton was classified into five groups: 
green algae (Chlorophyceae), cyanobacteria, diatoms, 
phytoflagellates (Euglenophyceae, Crysophyceae, 
Cryptophyceae, Dinophyceae), and xanthophytes.

2.3. Data analysis

To summarize the environmental variability in 
each type of environment (river and lake) and the 
hydrological period (dry, rising, flood, and ebb), we 
performed a Principal Component Analysis (PCA) 
(Pearson, 1901). The data were transformed into a 
log (x+1) (except pH) to reduce the discrepancy in 
the values. The axes to be interpreted were selected 
according to the broken-stick model (Jackson, 1993).

A Redundancy Analysis (RDA) (Legendre & 
Legendre, 1998) was performed to analyze the factors 
influencing the distribution of phytoplankton groups 
and species in different environments (lake and river) 
and during the hydrological periods of high water 
(rising and flood) and low water (ebb and dry). As 
response matrices, we used a biomass matrix of the 
functional groups, a biomass matrix of species, and 
the environmental variables as an explanatory matrix. 
The Hellinger transformation was applied to biological 
matrices (Legendre & Gallagher, 2001). We used the 
variance inflation factor (VIF) to verify the explanatory 
variables’ collinearity. Variables with VIF greater than 
10 would be removed from the analysis (Quinn & 
Keough, 2002). For each RDA, the adjusted R2 values 
were used to determine the strength of the relationship 
between the environment and the community, as these 
values exclude the influence of the number of variables 
on the explanatory power, allowing for comparison of 
results (Borcard et al., 2011).

To test differences among types of environments and 
hydrological season, we performed a PERMANOVA 
analysis followed by a betadisper test in R software. We 
used the same matrices applied to the RDAs.

The analyses were performed using R, version 
3.6.1 (R Development Core Team, 2020), through 
the vegan statistical package (Oksanen et al., 2018), 
and labdsv package (Roberts, 2016). RDA Plots were 
produced through the ggord package (Beck, 2017).

3. Results

3.1. Environmental viability

The principal component analysis (PCA) 
explained 50% of the total variability of the 
sampled data (Axis 1 = 31%; Axis 2 = 19%). The 
dispersion of the scores in relation to the types of 
sampled sites showed a clear separation between 
the environmental types (Figure 2). The lakes were 
positively correlated to conductivity, pH, total 
nitrogen, nitrate, ammonium, total phosphorus, 
and orthophosphate. The points on the river were 
positively related to redox potential (ORP), water 
temperature, turbidity, and dissolved oxygen.
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Regarding the hydrological period and the type 
of environment (Figure 2), the lakes presented 
seasonal separation. The periods of rising and ebb 
were associated with the conductivity and nitrate 
(Axis 1), and flood and dry with ammonium, 
pH, total nitrogen, orthophosphate, and total 
phosphorus (Axis 2). In the river, there was no 
separation between the hydrological periods (Axis 1).

The abiotic variables changed spatially and 
temporally throughout the sampling period. The 
abiotic variables in the river showed low values of 
the coefficient of variation (CV - Table 1), except for 
turbidity, nitrate (NO3

-), and TP, while the lakes had 
a higher temporal variation, such as turbidity, which 
increased in high water and decreased in low water 
period. The variables temperature, conductivity, 
and pH had less variation in the river compared to 
the lakes. The coefficient of variation was higher 
in several variables, such as nitrate (NO3

-) and 
ammonium (NH4+). The total nitrogen presented 
the highest mean values throughout the sampled 
sites and period (Table 1).

The environmental variables varied along with 
the temporal and spatial variations. In this sense, 
by the position of the arrows that formed the axes 
1 and 2 of the PCA (Figure 2), it is possible to 
note that the temperature and redox potential are 
positively related, such as turbidity and dissolved 
oxygen. On the other hand, the variables that have 
opposite response were turbidity and conductivity 
and pH dissolved oxygen, nitrate, redox potential.

3.2. Phytoplankton community and Reynolds 
functional groups (RFG)

We recorded 425 taxa distributed into 13 
taxonomic groups. Zygnematophyceae (39%), 
Bacillariophyceae (20%), and Chlorophyceae (15%) 
were the most representative classes in the number 
of taxa in the qualitative and quantitative samples.

Some taxa had a high biomass contribution 
to the phytoplankton community, occurring in 
all hydrological periods throughout the sampling 
period. They were represented by green algae 
(Desmodesmus perforatus (Lemmermann) E. 
Hegewald, Treubaria planctonica (GM Smith) 
Korshikov and Chroococcales sp.) followed 
by cyanobacteria (Aphanocapsa delicatissima 
West & GS West, Dolichospermum solitarium 
(Klebahn) Wacklin, L. Hoffmann & Komárek, and 
Pseudanabaena sp.).

When analyzing the contribution of the type of 
environment and hydrological periods to biomass, 
the minimum values occurred in high water (0.0715 
mg L-1, Figure 3A) and the maximum values 
occurred in the low water period (14.947 mg L-1, 
Figure 3B) and were better represented by green 
algae and cyanobacteria in both environments. It 
should be highlighted that flagellates occurred only 
in the lakes (Lepocinclis acus (OF Müller) B. Marin 
& Melkonian) (Figure 3A, B).

We recorded 20 RFGs (C, D, F, G, H1, J, K, LM, 
LO, MP, N, P, S1,T, TB, TD, W1, W2, X1, and Z). 

Figure 2. PCA carried out for the environmental variables in the two types of locations in Lake and River (A) during 
the phases of the hydrological period (B) sampled in the floodplain of the upper Paraguay River, in 2018. (NH4 
- Ammonium; Cond - Conductivity; TP - Total phosphorus; NO3- Nitrate; TN - Total nitrogen; DO - Dissolved 
oxygen; ORP - Redox potential; PO4 

3 - Orthophosphate; pH; Temp - Temperature; Turb - Turbidity).
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The phytoplankton community was represented 
in the high-water period mainly by S1 and P 
(Figure 4A, B), and in the low water by F, P, K, and 
G (Figure 4C, D).

The largest biomasss in the high-water period 
were recorded in the lakes (Figure 4) in point L8 in 
flood (0.947 mg L-1, Figure 5A) represented by the 
functional group W1 (Lepocinclis acus) and point L9 

Table 1. Mean values (M) and coefficient of variation (CV - in %) of the limnological variables in the sampling 
sites on the Paraguay river and lakes, during the periods of and flood (high water), dry and ebb (low water) in 2018.

Lakes River

Flood Rising Dry Ebb Flood Rising Dry Ebb

M CV M CV M CV M CV M CV M CV M CV M CV
Temperature 

(°C) 27 1 28 3 28 3 26 3 28 1 28 1 28 1 28 1

Turbidity (UNT) 105 1 105 1 52 7 23 3 251 27 270 15 255 24 251 31

Conductivity 
(µS cm-1) 58 0 58 2 54 19 58 0 34 0 34 0 34 0 34 0

pH 7 4 7 5 7 6 7 8 7 6 7 3 7 4 7 7

Dissolved 
oxygen (%) 87 13 57 22 63 10 79 6 96 6 100 2 99 2 96 7

Redox potential 
(mV) 251 3 355 10 340 18 253 11 347 5 344 6 345 6 347 5

Total nitrogen 
(µg L-1) 1098 13 1660 92 1882 118 1377 96 983 1 1077 1 849 7 865 1

N-NO3
- (µg L-1) 113 297 123 296 1 49 112 279 1 23 1 24 4 60 1 26

N-NH4
+ (µg L-1) 29 209 31 208 193 64 28 200 7 8 9 16 5 5 6 9

Total phosphorus 
(µg L-1) 58 24 63 23 68 50 49 23 56 19 65 19 49 8 49 23

Orthophosphate 
(µg L-1) 20 32 21 32 29 67 16 31 17 9 19 16 16 11 15 11

Figure 3. Total biomass of phytoplankton in both types of environments (lake and river) in the periods of (A) high 
water (flood and rising) and (B) low water (dry and ebb) sampled in the floodplain of the upper Paraguay river, in 
2018. The scales of the graphics are different.

in rising (1.401 mg L-1, Figure 4B) represented by 
the functional group S1 (Pseudanabaena sp.). In the 
Paraguay River in points R4 (0.238 mg L-1- Figure 4A) 
in flood and R5 in rising (0.597 mg L-1- Figure 4B) 
by MP (Eunotia sp.) and F (Westella botryoides (West) 
De Wildeman, and Eutetramorus sp.).

In low waters, the highest biomasss in the lakes 
occurred in points L7 in the dry season (9.305 mg L-1, 
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Figure 4. Total biomass of phytoplankton (RFG) in both types of environments (lake and river) in the periods of 
high water: (A) flood, (B) rising and low water: (C) dry, (D) ebb sampled in the floodplain of the upper Paraguay 
River, in 2018. The scales of the graphics are different.

Figure 5. RDA for RFG matrix showing types of 
environments (A) and phases of hydrological periods (B). 
Axis RDA 1 concentrated 30.67% of the total variation, 
and axis RDA 2 captured 19.73%.

Figure 4C) and L3 in the ebb season (9.910 mg L-1 
- Figure 4D), with a predominance of groups F 
(Westella botryoides (West) De Wildeman, Treubaria 
planctonica and Eutetramorus sp.), P (Spirogyra sp., 
Aulacoseira sp., Fragilaria sp., Closterium incurvum 
Brébisson and Staurastrum sp.) and J (Desmodesmus sp. 
and Scenedesmus sp.). On the Paraguay River, the 
points with the highest biomass were R9 in the dry 
season (14.462 mg L-1, Figure 4C) and R4 in the 
ebb season (4.136 mg L-1, Figure 4D), represented 
by the group’s G, N, and P.

A permutation-based ANOVA (vegan package, 
R) with 999 permutations was used to assess the 
significance of environmental variables in a previous 
RDA model considering all the measured variables. For 
the functional group’s response, the ANOVA results 
indicate that the most relevant variables influencing 
the RDA model are Conductivity, Dissolved Oxygen, 
ORP, Nitrate, and Ammonium. Conductivity, 
Dissolved Oxygen, and Ammonium are statistically 
significant (p<0.05), while ORP and Nitrate are 
significant (p<0.1). Orthophosphate, total nitrogen 
and pH presented a p-value over 0.5 and were removed 
from the RDA analysis used to assess the influence of 
environmental variables on RFGs (Table 2).
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The environmental variables influenced the 
RFGs at 30.67% according to the RDA analysis 
(Table 2). The first axis is being interpreted. 
The predictive capacity (adjusted R2) of the 
environmental variables was 0.07 for the functional 
group’s response (Table 2). No collinearity was 
detected within the variables of both tested models.

For RFG groups, RDA shows that groups S1 
and N are more influenced by changes occurring 
in lakes (Figure 5A). The hydrological periods are 
distinct when categorized by functional groups, and 
the environmental variables that influenced low 
water were ammonium, and redox potential (ORP) 
while for high water the more relevant variables was 
conductivity (Figure 5B).

The PERMANOVA analysis showed that there 
is a significant effect of the hydrological period for 
functional groups (Table 3). Betadisper analysis 
is significant and points to high intern variability 
when separating the functional groups into 
hydrological periods.

4. Discussion

Our results showed that the phytoplankton 
community presented temporal variation in both 
environments (lake and river), which demonstrated 
a regulation by the hydrological period driven by 
the flood pulse on the community.

The phytoplankton biomass was mainly related 
to seasonal changes in the water level in the river-
floodplain system, with higher biomass in the lowest 
period and lower in the highest flood period. This 
response pattern of the phytoplankton community 
has been documented in floodplains (Bortolini et al., 
2014a; Lobo et al., 2018; Loverde-Oliveira & Huszar, 

2019), demonstrating that the flood pulse influences 
the phytoplankton community.

The lowest phytoplankton biomass in the 
Paraguay River, when compared to its floodplain 
lake, was probably influenced by factors such 
as higher and continuous water flow, lower 
concentrations of nutrients, and higher values of 
turbidity. The separation between the habitat types 
(river and lake) and the weak seasonal separation 
(high and low waters) confirms that, for the Paraguay 
River, both the local environmental variabilities and 
the hydrodynamics are better controllers of the 
phytoplankton community (Reynolds & Descy, 
1996; Devercelli, 2010; Fraisse et al., 2013). 
Although rivers can have optimal concentrations 
of nutrients for the development of phytoplankton 
(Jones & Elliott, 2007; Fantin-Cruz et al., 2016), 
the physical structure of the river systems hinders the 
establishment and development of phytoplankton 
due to the runoff that increases the biomass loss 
(Stanković et al., 2012; Abonyi et al., 2012; 
Devercelli & O’Farrell, 2013; Fraisse et al., 2013).

In the floodplain lakes of the Paraguay River, the 
longest water retention time, the light supply, and 
the concentrations of nutrients above the limitation 
levels for the phytoplankton population growth (in 
relation to the soluble reactive phosphorus (3-5 µg.L-

1) and dissolved inorganic nitrogen (70-120 µg.L-1; 
Reynolds, 1997) favored the establishment and 
development of phytoplankton, especially during low 
waters, when there is a decrease in the connectivity 
effect or the complete isolation of the main river lakes, 
allowing local environmental variability and, above 
all, the autoecological structuring forces to act more 
strongly on the colonization and succession processes 
within the community.

Table 2. Values generated from the redundancy analysis (RDA) concerning the functional groups (RFG) sampled 
in the floodplain of the upper Paraguay River, in 2018.

R2 R2 adjusted F P Significant environmental variables
RFG 0.19 0.07 1.66 0.001 Cond, DO, ORP, Nitrate, Ammon

R2 = Coefficient of determination; R2 adjusted = Adjusted coefficient of determination; F = Distribution; P = 
Probability of significance; Cond = electrical conductivity; DO = dissolved oxygen; ORP = redox potential; nitrate; 
Ammon = ammoniacal nitrogen. Significance level (P <0.05).

Table 3. Parameters of PERMANOVA and betadisper analysis performed for the categories of type of environment 
(lake and river), and hydrological period (high waters, low waters) concerning the functional groups (RFG) sampled 
in the floodplain of the upper Paraguay River, in 2018.

Predictive variable F P Interaction Betadisper

RFG
Type of environment 0.91 0.52

0.40
0.47

Hydrological period 6.08 0.001 0.001
F = Distribution; P = Probability of significance. Significance level (P <0.05).
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There was a relationship between the phytoplankton 
biomass and the phases of the hydrological cycle. 
Similarly, we can relate the largest number of RFGs 
in the lakes to the typical characteristics of lentic 
environments (Margalef, 1978; Bortolini et al., 2014b; 
Török et al., 2016; Moresco et al., 2017; Zanco et al., 
2017), whereas in the river it is more difficult to 
establish the relationship between the environmental 
conditions and the phytoplankton distribution 
(Rodrigues et al., 2018).

The RDA suggested that for functional groups the 
influence of hydrological period is a relevant driver for 
phytoplanktonic dynamics. The analysis also pointed 
out that nutrients are the main environmental factors 
influencing this community in low water period.

Determining patterns of phytoplankton 
distribution in rivers can be difficult (Nabout et al., 
2009) because the distribution of microorganisms 
is strongly influenced by stochastic dispersion 
(Soininen et al., 2013). By grouping phytoplankton 
species into functional groups, we could see the 
species-environment relationship and understand 
how the environment can structure the phytoplankton 
community. The functional groups were able to 
combine functional traits related to tolerances and 
sensitivities of specialized species under certain 
conditions and revealed a significant correlation with 
the environmental variables.

The period of low water showed greater influence 
on the variation of the phytoplankton community, 
considering that it was not possible to establish 
functional groups that are indicators of predictive 
capacity in the high waters. It is assumed that this result 
is related to the higher environmental heterogeneity 
in periods of dry, to the homogenization caused by 
the increase in the water levels and by the mass effect 
of the dispersion of organisms in the rising phase 
(Thomaz et al., 2007) since phytoplankton have 
temporal patterns when it comes to environmental 
changes (Zanco et al., 2017).

We still have to consider the longitudinal 
heterogeneity of the Paraguay river and the domain 
theory in our comparisons (Pickett et al., 2007). 
The lakes located at the end of the section of the 
Paraguay river presented the largest biomass and 
phytoplankton functional diversity over the periods 
of high and low waters, considering that these places 
occupy a medium section located in an ecotonal 
area between the deepest sectors of the Paraguay 
River and the most lacustrine sector, as described by 
Wantzen et al. (2005). Dunn et al. (2006) argue that 
higher values of functional diversity in areas similar 
to those examined in this study are due to the effect 

of intermediate domain: the contact area between 
different riverine patterns, higher environmental 
heterogeneity, and limits of species tolerance.

In the low water season, the environment of 
the lakes was represented by the RFGs N and G 
composed of green algae, with requirements of 
high-water transparency for their development 
and nutrient-rich conditions in standing water 
columns (Reynolds et al., 2002; Padisák et al., 
2009). The functional groups K and S1 consisted of 
cyanobacteria that have characteristics of opting for 
shallow, nutrient-rich water column environments 
(Padisák et al., 2009), with algae that are widely 
recognized as typical and abundant in hypereutrophic 
environments (Borges et al., 2008; Paerl et al., 2011; 
Soares et al., 2012). The group MP was rather 
diverse, represented by diatoms, green algae, and 
cyanobacteria, which have preferences for periphytic 
and planktonic habitats and can efficiently explore 
light and nutrients in the surface layers of the water 
column (Casco & Toja, 1994; Padisák et al., 2009).

In the Paraguay River, the functional groups 
of the descriptor phytoplankton were the green 
algae that make up the group J, which is tolerant 
to the deep mixing and prefers high water 
transparency (Reynolds, 2002; Padisák et al., 2009; 
Devercelli et al., 2016). The functional group P is 
quite typical of lotic environments and, together with 
D, presented species that were adapted to turbulent 
environments associated with good mixing and 
in conditions enriched with nutrients (Reynolds, 
1998; Domitrovic et al., 2014). These organisms 
have a silica cell wall, present a high sedimentation 
rate (Reynolds et al., 1994; Stević et al., 2013), 
and depend on the water mixture to remain in 
the euphotic zone and maintain their biomass 
(Reynolds et al., 1994; Stević et al., 2013). From 
the applying the concept of Reynolds Functional 
Groups (Reynolds, 2002; Padisák et al., 2009) to find 
dominant species or groups of dominant species that 
respond to different environmental conditions, we 
could infer that the floodplain lakes of the Paraguay 
River are nutrient-rich (nitrogen and phosphate) 
lentic environments and have good light when 
compared to the Paraguay River, which, in addition 
to the continuous flow of water, has physical and 
chemical characteristics with less availability of these 
two resources for phytoplankton.

Since organisms that share similar characteristics 
show a similar response to the organizational factors 
of the communities (Petchey & Gaston, 2006; 
Litchman et al., 2012), this study demonstrated 
that the use of RFGs can be an alternative to obtain 
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ecological and environmental responses in floodplains 
regarding the seasonal and environmental variation 
in the landscape. Moreover, it showed that the 
phytoplanktonic communities in these environments 
could be regulated by local filters and autecological 
factors (predation, migration, reproduction rates, 
and competition) more strongly than the physical 
and chemical variation of the waters of the studied 
environments.

5. Conclusion

The relationship between environment and 
phytoplankton community varied in different types 
of environment and hydrological periods, thus 
demonstrating that the species adjust themselves 
to the changes in the environment in which 
they live, selecting adapted organisms that when 
evaluated as phytoplankton functional groups, 
presented a strong predictive ability describing the 
characteristics of local habitats.

The structuring of the phytoplankton 
community was represented by taxonomic and 
functional groups of phytoplankton of common 
occurrence in tropical floodplains. Biomass and 
RFG had variability driven by hydrological periods 
caused by phases of the flood pulse.

Given the aforementioned aspects, we were able 
to assess the importance of using functional groups 
(RFG) to verify the direct association between the 
phytoplankton community and the floodplain 
habitats, thus reinforcing the need to maintain the 
current environmental conditions that mark the 
peculiarities of the Pantanal wetland, such as the 
flood pulse.
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