Acta Limnologica Brasiliensia
Acta Limnologica Brasiliensia
Original Article

A global review on invasive traits of macrophytes and their link to invasion success

Uma revisão global sobre traços funcionais de macrófitas invasoras e sua relação com o sucesso no processo de invasão

Leticia Siman Bora; Andre Andrian Padial

Downloads: 0
Views: 291


Aim: Biological invasions by exotic macrophytes represent one of the main reasons for biodiversity and ecosystem changes in aquatic ecosystems. The reasons for their ability to succeed in new environments have been of ecological interest in the last years. We made a global review, aiming to describe functional traits related with invasiveness of macrophytes.

Methods: Our search was performed using keywords regarding invasive macrophytes and functional traits. We related the group traits of invasive species with their probability of species invasion success in new localities (invasiveness). We also performed a nestedness analysis that helped us to see which species possessed the higher number of traits related to invasiveness, as well as which traits were more common among the invasive species.

Results: Traits most often related to invasiveness were those indicating growth (94.5%) and reproduction (90.1%). Nearly 70.4% of invasive macrophytes traits were related with the probability of invasion success. Invasive species had a higher number of morphological and biotic interaction traits related with invasiveness than native species. Our nestedness analysis indicated a low degree of nestedness, but showed us that Egeria densa, Elodea canadensis and Elodea nutalli were the species with a wider range of environmental tolerances, explaining their invasibility across ecosystems.

Conclusions: We summarized and complement existing reviews on the functional traits related to invasion success of macrophytes. We believe this review contributed to the identification of the most common set of traits related with invasiveness, helping to speculate on successful invaders in the future.


biological invasion, aquatic plants, functional attributes, functional biodiversity, invasiveness


Objetivo: A invasão biológica por macrófitas exóticas é uma das maiores causas de perda de diversidade em ambientes aquáticos. Assim, o motivo para o seu sucesso em invadir novas localidades têm sido de interesse na ecologia. Fizemos uma revisão global, com o intuito de descrever os traços funcionais relacionados com o potencial invasor de macrófitas.

Métodos: Realizamos a busca com palavras-chave relacionadas a macrófitas invasoras e traços funcionais. Relacionamos os grupos de traços de espécies invasoras com a sua probabilidade de sucesso de invasão em novas localidades. Também fizemos uma análise de aninhamento, que nos ajudou a constatar quais espécies possuem um maior número de traços relacionados com o potencial invasor, assim como quais traços funcionais são mais comuns entre as espécies invasoras.

Resultados: Os traços mais frequentemente relacionados com o potencial invasor foram aqueles indicando crescimento (94,5%) e reprodução (90,1%). Aproximadamente 70,4% de todos os traços de espécies invasoras foram relacionados a com a probabilidade de sucesso de invasão. Espécies invasoras possuíram um maior número de traços morfológicos e reprodutivos relacionados com o potencial invasor do que espécies nativas. Nossa análise mostrou um baixo grau de aninhamento, mas nos mostrou que as espécies Egeria densa, Elodea canadensis e Elodea nutalli são as espécies com uma maior extensão de tolerâncias ambientais, explicando seu potencial invasor entre ecossistemas.

Conclusões: Resumimos e complementamos revisões existentes sobre os traços funcionais relacionados com o potencial invasor de macrófitas. Acreditamos que esta revisão contribuiu para a identificação dos conjuntos de traços mais comumente relacionados com o potencial invasor, ajudando a especular sobre possíveis futuras invasoras.


invasão biólogica, plantas aquáticas, atributos funcionais, diversidade funcional, invasividade


Alpert, P., Bone, E., & Holzapfel, C., 2000. Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspect. Plant Ecol. Evol. Syst. 3(1), 52-66.

Azzurro, E., Tuset, V.M., Lombarte, A., Maynou, F., Simberloff, D., Rodríguez-Pérez, A., & Solé, R.V., 2014. External morphology explains the success of biological invasions. Ecol. Lett. 17(11), 1455-1463. PMid:25227153.

Barrat-Segretain, M.H., & Cellot, B., 2007. Response of invasive macrophyte species to drawdown: the case of Elodea sp. Aquat. Bot. 87(4), 255-261.

Beaury, E.M., Finn, J.T., Corbin, J.D., Barr, V., & Bradley, B.A., 2020. Biotic resistance to invasion is ubiquitous across ecosystems of the United States. Ecol. Lett. 23(3), 476-482. PMid:31875651.

Benzecry, A., & Brack-Hanes, S., 2016. Evolutionary trends in hydrocharitaceae seagrasses. Annu. Res. Rev. Biol. 9(6), 1-8.

Bora, L.S., Thomaz, S.M., & Padial, A.A., 2020. Evidence of rapid evolution of an invasive poaceae in response to salinity. Aquat. Sci. Online 82(4), 76e.

Callaway, R.M., & Ridenour, W.M., 2004. Novel weapons: invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2(8), 436-443.[0436:NWISAT]2.0.CO;2.

Calvo, C., Mormul, R.P., Figueiredo, B.R.S., Cunha, E.R., Thomaz, S.M., & Meerhoff, M., 2019. Herbivory can mitigate, but not counteract, the positive effects of warming on the establishment of the invasive macrophyte Hydrilla verticillata. Biol. Invas. 21(1), 59-66.

Capers, R.S., Selsky, R., & Bugbee, G.J., 2010. The relative importance of local conditions and regional process in structuring aquatic plant communities. Freshw. Biol. 55(5), 952-966.

Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., Narwani, A., Mace, G.M., Tilman, D., Wardle, D.A., Kingiz, A.P., Daily, G.C., Loeau, M., Grace, J.B., Larigauderie, A., Srivastava, D.S., & Naeem, S., 2012. Biodiversity loss and the impact on humanity. Nature 486(7401), 59-67. PMid:22678280.

Carniatto, N., Thomaz, S.M., Cunha, E.R., Fugi, R., & Ota, R.R., 2013. Effects of an invasive alien poaceae on aquatic macrophytes and fish communities in a neotropical reservoir. Biotropica 45(6), 747-754.

Centre d’Ecologie Fonctionnelle et Evolutive - CEFE, 2023, UMR 5175 du CNRS. [online]. Retrieved in 2023, July 18, from

Elton, C.S., 1958. The ecology of invasions by animals and plants. The University of Chicago Press, Chicago.

Erhard, D., & Gross, E., 2005. Do environmental factors influence composition of potential allelochemicals in the submersed freshwater macrophyte Elodea nuttallii (Hydrocharitaceae)? Verh. Internationalen Vereinigung Limnol. 29(1), 287-291.

Evangelista, H.B., Michelan, T.S., Gomes, L.C., & Thomaz, S.M., 2017. Shade provided by riparian plants and biotic resistance by macrophytes reduce the establishment of an invasive Poaceae. J. Appl. Ecol. 54(2), 648-656.

Fleming, J.P., & Dibble, E.D., 2015. Ecological mechanisms of invasion success in aquatic macrophytes. Hydrobiologia 746(1), 23-37.

Fridley, J.D., Stachowicz, J.J., Naeem, S., Sax, D.F., Seabloom, E.W., Smith, M.D., Stohlgren, T.J., Tilman, D., & Von Holle, B., 2007. The invasion paradox: reconciling pattern and process in species invasions. Ecology 88(1), 3-17. PMid:17489447.[3:TIPRPA]2.0.CO;2.

Hamilton, M.A., Murray, B.R., Cadotte, M.W., Hose, G.C., Baker, A.C., Harris, C.J., & Licari, D., 2005. Life-history correlates of plant invasiveness at regional and continental scales. Ecol. Lett. 8(10), 1066-1074.

Hussner, A., Heidbüchel, O., Coetzee, J., & Gross, E.M., 2021. From introduction to nuisance growth: a review of traits of alien aquatic plants which contribute to their invasiveness. Hydrobiologia 848(9), 2119-2151.

Jeschke, J.M., Gómez Aparicio, L., Haider, S., Heger, T., Lortie, C.J., Pysek, P., & Strayer, D.L., 2012. Support for major hypotheses in invasion biology is uneven and declining. NeoBiota 14, 1-20.

Lavorel, S., & Garnier, E., 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16(5), 545-556.

Levine, J.M., Adler, P.B., & Yelenik, S.G., 2004. A meta-analysis of biotic resistance to exotic plant invasions. Ecol. Lett. 7(10), 975-989.

Michelan, T.S., Thomaz, S.M., Carvalho, P., Rodrigues, R.B., & Silveira, M.J., 2010. Regeneration and colonization of an invasive macrophyte grass in response to desiccation. Nat. Conserv. 8(02), 133-139.

Mouton, T.L., Matheson, F.E., Stephenson, F., Champion, P.D., Wadhwa, S., Hamer, M.P., Catlin, A., & Riis, T., 2019. Environmental filtering of native and non-native stream macrophyte assemblages by habitat disturbances in an agricultural landscape. Sci. Total Environ. 659, 1370-1381. PMid:31096347.

Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., Chou, R., Glanville, J., Grimshaw, J.M., Hróbjartsson, A., Lalu, M.M., Li, T., Loder, E.W., Mayo-Wilson, E., McDonald, S., McGuinness, L.A., Stewart, L.A., Thomas, J., Tricco, A.C., Welch, V.A., & Whiting, P., Moher, D., 2020. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews [online]. Retrieved in 2023, July 18, from

Pyšek, P., & Richardson, D.M., 2008. Traits Associated with Invasiveness in Alien Plants: Where Do we Stand? In: Nentwig, W. ed. Biological Invasions. Berlin, Heidelberg: Springer, Ecological studies: analysis and synthesis, vol. 193.

Richter, D., & Gross, E.M., 2013. Chara can outcompete Myriophyllum under low phosphorus supply. Aquat. Sci. 75(3), 457-467.

Riis, T., Olesen, B., Clayton, J.S., Lambertini, C., Brix, H., & Sorrell, B.K., 2012. Growth and morphology in relation to temperature and light availability during the establishment of three invasive aquatic plant species. Aquat. Bot. 102, 56-64.

Silveira, M.J., Thomaz, S.M., Mormul, R.P., & Camacho, F.P., 2009. Effects of desiccation and sediment type on early regeneration of plant fragments of three species of aquatic macrophytes. Int. Rev. Hydrobiol. 94(2), 169-178.

Skóra, F., Abilhoa, V., Padial, A.A., & Vitule, J.R.S., 2015. Darwin’s hypotheses to explain colonization trends: evidence from a quasi-natural experiment and a new conceptual model. Divers. Distrib. 21(5), 583-594.

Stephens, K.L., Dantzler-Kyer, M.E., Patten, M.A., & Souza, L., 2019. Differential responses to global change of aquatic and terrestrial invasive species: evidences from a meta-analysis. Ecosphere Online 10(4), e4.

Thiébaut, G., Thouvenot, L., & Rodríguez-Pérez, H., 2018. Allelopathic effect of the invasive Ludwigia hexapetala on Growth of three macrophyte species. Front. Plant Sci. 9, 1835. PMid:30631329.

Thouvenot, L., Puech, C., Martinez, L., Haury, J., & Thiébaut, G., 2013. Strategies of the invasive macrophyte Ludwigia grandiflora in its introduced range: Competition, facilitation or coexistence with native and exotic species? Aquat. Bot. 107, 8-16.

Tilman, D., 2001 Functional diversity. In: Levin, S.A., ed. Encyclopedia of biodiversity. San Diego: Academic Press, 109-120.

Submitted date:

Accepted date:

Publication date:

64de1f3da95395324c44f1b3 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections