06OCT

News on Acta Limnologica Brasiliensia to our fellow Limnologists

Fellow Limnologist! Click here to access the latest report from the editorial board of Acta Limnologica Brasiliensia.

Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X1021
Acta Limnologica Brasiliensia
Original Article

Spatial and temporal variation of the macrophyte assemblage in Santo Tomás, a wetland in the Caribbean Colombian

Variação espacial e temporal da assembleia de macrófitas aquáticas em Santo Tomás, uma área alagável no Caribe Colombiano

María Isabel Pozo-García; José Andrés Posada-García; Aracelly Caselles-Osorio

Downloads: 0
Views: 93

Abstract

Abstract:: Aim: The associated flood events to floodplain of many rivers in the world affect the composition and structure of aquatic biota due the water levels variation can ensure ecological integrity of associated wetlands. This study describes the spatial and temporal variation in the macrophyte assemblage in the Santo Tomás wetland during seasonally flood-pulsed of the Magdalena River (North of Colombia).

Methods: For eight months, between 2017 and 2018 samplings were carried out in three stations for composition and abundance of aquatic macrophytes. Spatio-temporal pattern of richness was estimated with Chao methodology and vegetation cover was calculated using Kruskal-Wallis and U Mann-Whitney tests. A range abundance curve was used for species dominance between samplings and stations. A non-metric multidimensional scaling (nMDS) was used to analyze the Spatio-temporal distribution, Canonical Correspondence Analysis (ACC) was performed to relate the physicochemical variables to the species composition.

Results: A total of 24 species of aquatic plants distributed in 23 genera and 15 families were registered in the transects. The most abundant species (% of vegetation cover) were Ipomoea aquatica (19%), followed by Ludwigia helminthorrhiza (14%) and Eichhornia azurea (13%). The most frequent life form was free-floating, followed by the emergent one. The Spatio-temporal changes and the highest values of richness and vegetation cover in the Santo Tomás wetlands occurred during the filling and high waters period. L. helminthorrhiza, E. azurea, Pistia stratiotes, Neptunia oleracea, I. aquatica, Salvinia auriculata, and Hymenachne amplexicaulis were the most dominant species. The quality water of Santo Tomás Wetlands showed spatial and temporal variations during flooding pulse and some physicochemical variables such as organic matter (COD, BOD5), pH, depth, ammonia, and fecal coliforms were related to macrophyte community composition

Conclusions: Spatial and temporal changes of aquatic plants in Santo Tomás wetlands were related to the flooding pulse of Magdalena River.

Keywords

physicochemical conditions, diversity, seasonal pulsing

Resumo

Resumo:: Objetivo: Os eventos de inundação associados às planícies de inundação de muitos rios do mundo afetam a composição e estrutura da biota aquática, pois a variação do nível de água pode garantir a integridade ecológica das áreas úmidas associadas. O objetivo do presente é descrever a variação espacial e temporal na composição da assembleia de macrófitas aquáticas em uma área alagável em Santo Tomás durante um período de inundação no rio Magdalena (norte da Colômbia).

Métodos: Nós avaliamos a composição e abundância da comunidade de macrófitas aquáticas em três estações de coleta no rio Magdalena mensalmente durante 8 meses entre 2017 e 2018. Nós estimamos a variação espaço-temporal da comunidade usando o método Chao e a cobertura vegetal usando os testes de Kruskal-Wallis e U Mann-Whitney. Uma curva de abundância de classificação foi usada para a dominância das espécies entre os meses de amostragem e as estações. Uma escala não métrica multidimensional (nMDS) foi utilizada para analisar a distribuição espacial e temporal e a análise de correspondência canônica (CCA) foi realizada para estudar a relação entre a composição das espécies de macrófitas e as variáveis físico-químicas da água.

Resultados: Nos transectos foi registrado um total de 24 espécies de plantas aquáticas distribuídas em 23 gêneros e 15 famílias. A espécie mais abundante (% de cobertura vegetal) foi Ipomoea aquatica (19%), seguida por Ludwigia helminthorrhiza (14%) e Eichhornia azurea (13%). Espécies flutuantes e emergentes foram observadas com mais frequência. As mudanças espaço-temporais e os maiores valores de riqueza e cobertura de macrófitas aquáticas nas zonas úmidas de Santo Tomás ocorreram durante a estação das chuvas. As espécies mais dominantes foram L. helminthorrhiza, E. azurea, Pistia stratiotes, Neptunia oleracea, I. aquatica, Salvinia auriculata e Hymenachne amplexicaulis. A qualidade da água apresentou variações espaciais e temporais durante o pulso de inundação, e algumas variáveis como matéria orgânica (DOQ, DBO5), pH, profundidade, amônia e coliformes fecais foram relacionados à composição da comunidade de macrófitas.

Conclusões: Em suma nós concluímos que o pulso de inundação do rio Magdalena influenciou a composição das plantas aquáticas nas zonas úmidas de Santo Tomás.
 

Palavras-chave

condições físico-químicas, diversidade, pulsação sazonal

References

Agostinho, A.A., Gomez, L., Thomaz, S.M., & Hahn, N.S., 2004. The upper Paraná river and its floodplain: Main characteristics and perspectives for management and conservation. In: Thomaz, S.M., Agostinho, A.A., & Hahn, N.S., eds. The Upper Paraná River and its Floodplain. Leiden: Backhuys Publishers, 381-393.

Almeida, F.F., & Melo, S., 2009. Considerações limnológicas sobre um lago da planície de inundação amazônica (lago Catalão – Estado do Amazonas, Brasil). Scientiarum. Biol. Sci. 31(4), 387-395. https://doi.org/10.4025/actascibiolsci.v31i4.4641.

Alvarado, M., 2016. Sur del Atlántico, una nueva oportunidad (Online). Barranquilla: Funadación Promigas. Retrieved in 2021, November 25, from http://hdl.handle.net/20.500.11762/20493

Álvarez-León, R., Carbonó-De la Hoz, E., Troncoso-Olivo, W.A., Casas-Monroy, O., & Reyes Forero, P., 2004. La vegetación terrestre, eurihalina y dulceacuícola de la ecorregión Ciénaga Grande de Santa Marta. In: Garay Tinoco, J., ed. Los manglares de la ecorregión Ciénaga Grande de Santa Marta: pasado, presente y futuro. Bogotá: INVEMAR, 77-96.

American Public Health Association – APHA. American Water Works Association – AWWA. Water Environment Federation – WEF, 2012. Standard methods for the examination of water and wastewater (22nd ed.). Washington D.C.: APHA-AWWA-WEF.

Arellano, L., León-Cortés, J.L., Halffter, G., & Montero, J., 2013. Acacia woodlots, cattle and dung beetles (Coleoptera: Scarabaeinae) in a Mexican silvopastoral landscape. Rev. Mex. Biodivers. 84(2), 650-660. http://dx.doi.org/10.7550/rmb.32911.

Arias, P., 1985. Las ciénagas en Colombia. INDERENA. 22, 39-70.

ASOCAR & Universidad del Magdalena, 2011. Ajuste del plan de ordenación y manejo del complejo de humedales de la vertiente occidental del Río Magdalena en el departamento del Atlántico y determinación de la ronda hídrica de los humedales de Sabanagrande, Santo Tomas y Palmar de Várela. Convenio de Asociación 01 de 2011 (Online). Santa Marta, Colombia. Retrieved in 2021, November 18, from https://www.corpamag.gov.co/archivos/PMA/PlanManejoRBRamsar.pdf

Cataño-Vergara, Y., Quirós-Rodríguez, J., Ríos, J.A., Pastrana, J.N., & López, F.G., 2008. Estudio de la vegetación acuática en un área de inundación de la Ciénaga Grande del Bajo Sinú, sector Purísima, Departamento de Córdoba, Colombia. Rev. Asoc. Col. Cienc. Biol. (Online), 20, 34-47. Retrieved in 2021, November 25, from https://revistaaccb.org/r/index.php/accb/article/view/58

Catian, G., Muniz, D., Súarez, Y.R., & Scremin-Dias, E., 2018. Effects of flood pulse dynamics on functional diversity of macrophyte communities in the Pantanal Wetland. Wetlands 38(5), 975-991. http://dx.doi.org/10.1007/s13157-018-1050-5.

Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K., & Ellison, A.M., 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84(1), 45-67. http://dx.doi.org/10.1890/13-0133.1.

Cirujano, B., Meco, A., & García, P., 2014. Flora acuática Española: hidrofitos vasculares (Online). Madrid: Real Jardín Botánico. Retrieved in 2021, October 20, from https://bibdigital.rjb.csic.es/idurl/1/16128

Colwell, R., 2009. StimateS 8.2: Statistical estimation of species richness and shared species from samples. (Online). Retrieved in 2021, November 25, from http://viceroy.eeb.uconn.edu/EstimateS/

Cortés-Castillo, D., & Rangel-Ch, J.O., 2013. Vegetación acuática y de pantano de las ciénagas del departamento del Cesar (Colombia). In: Rangel-Ch., J.O., ed. Colombia diversidad biótica XIII: complejo cenagoso Zapatosa y ciénagas del sur del Cesar. Bogotá D.C.: Instituto de Ciencias Naturales, Universidad Nacional de Colombia, 301-329.

Cortés-Castillo, D.V., 2017. Vegetación estuarina y vegetación acuática en complejos cenagosos del Caribe colombiano [PhD Thesis]. Bogotá: Universidad Nacional de Colombia. Retrieved in 2021, October 15, from https://repositorio.unal.edu.co/bitstream/handle/unal/59487/DenisseV.Cort%c3%a9s-Castillo.2017.pdf?sequence=1&isAllowed=y

Cultid-Medina, C., Medina, C., Martinez, B., Escobar, A., Constantino, L., & Betancur, N. 2012. Escarabajos coprófagos (Scarabaeinae) del eje cafetero: guia para el estudio ecológico (Field Guide) (1. ed.). Villa Maria, Caldas: Cenicafé, Federación Nacional de Cafeteros de Colombia and Wild life Conservation Society. https://doi.org/10.13140/RG.2.1.1013.9049.

Delatorre, M., Leme, N., & Rodrigues, R.B., 2019. Trait-environment relationship of aquatic vegetation in a tropical pond complex system. Wetlands 40, 299-310. https://doi.org/10.1007/s13157-019-01189-0.

Echevarría, G., & Machado-Allison, A., 2014. Comunidades de peces en planicies de inundación de ríos tropicales: factores que intervienen en su estructura. Bol. Acad. C. Fís. Mater. Nat 74(1), 35-67.

Eckert, C.G., Dorken, M.E., & Barrett, S.C.H., 2016. Ecological and evolutionary consequences of sexual and clonal reproduction in aquatic plants. Aquat. Bot. 135, 46-61. http://dx.doi.org/10.1016/j.aquabot.2016.03.006.

Endut, A., Lananan, F., Hajar, S., Jusoh, A., & Wan, N., 2016. Balancing of nutrient uptake by water spinach (Ipomoea aquatica) and mustard green (Brassica juncea) with nutrient production by African catfish (Clarias gariepinus) in scaling aquaponic recirculation system. Desalination Water Treat. 57(60), 29531-29540. http://dx.doi.org/10.1080/19443994.2016.1184593.

Escolar, A., 2007. Ecosistemas acuáticos del departamento del Atlántico (Online). Corporación Autónoma Regional del Atlántico. Retrieved in 2020, June 24, from https://es.scribd.com/document/240606004/Ecosistemas-Acuaticos-Del-Dpto-Del-Atlantico

Ferreira de Deus, F., Schuchmann, K., Arieira, J., Silvia, A., Tissiani, D.O., & Marques, M.I., 2020. Avian Beta Diversity in a Neotropical Wetland: the effects of flooding and vegetation structure. Wetlands 40(5), 1513-1527. http://dx.doi.org/10.1007/s13157-019-01240-0.

Gezie, A., Worie, W., Belachew, A., Wassie, G., Eshete, D., & Seis, M., 2018. Potential impacts of water hyacinth invasion and management on water quality and human health in Lake Tana watershed, northwest Ethiopia. Biol. Invasions 20(9), 2517-2534. http://dx.doi.org/10.1007/s10530-018-1717-0.

Gómez-Ródriguez, A.M., Valderrama Valderrama, L.T., & Rivera-Rondón, C.A., 2017. Comunidades de macrófitas en ríos andinos: composición y relación con factores ambientales. Acta Biol. Colomb. 22(1), 45-58. http://dx.doi.org/10.15446/abc.v22n1.58478.

Gordon, E., 1998. Seed characteristics of plant species from riverine wetlands in Venezuela. Aquat. Bot. 60(4), 417-431. http://dx.doi.org/10.1016/S0304-3770(97)00057-0.

Gordon, E., 2000. Dinánima de la vegetación y del banco de semillas en un humelda herbáceo lacustrino (Venezuela). Rev. Biol. Trop. 48(1), 25-42.

Gyosheva, B., Kalchev, R., Beshkova, M., & Valchev, V., 2020. Relationships between macrophyte species, their life forms and environmental factors in floodplain water bodies from the Bulgarian Danube River Basin. Ecohydrol. Hydrobiol. 20(1), 123-133. http://dx.doi.org/10.1016/j.ecohyd.2019.06.003.

Hammer, Ø., Harper, D.A.T., & Ryan, P.D., 2001. Past: paleontological statistics software package for education and data analysis. Palaeontol. Electronica (Online), 4(1), 4-9. Retrieved in 2021, June 24, from http://palaeo-electronica.org/2001_1/past/issue1_01.htm

Instituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM (Online), 2022. Bogotá D.C. Retrieved in 2022, August 18, from www.ideam.gov.co

Jiménez-Segura, L.F., Palacio, J., & Leite, R., 2010. River flooding and reproduction of migratory fish species in the Magdalena River basin, Colombia. Ecol. Freshwat. Fish 19(2), 178-186. http://dx.doi.org/10.1111/j.1600-0633.2009.00402.x.

Kettenring, K., Gardner, G., & Galatowitsch, S., 2006. Effect of light on seed germination of eight wetland Carex species. Ann. Bot. 98(4), 869-874. PMid:16905568. http://dx.doi.org/10.1093/aob/mcl170.

Madriñán, S., Rial, A., Bedoya, A.M., & Fernandez, L., 2017. Plantas acuáticas de la Orinoquía colombiana. Bogota: Universidad de los Andes.

Martelo, J., & Borrero, J.A.L., 2012. Macrófitas flotantes en el tratamiento de aguas residuales; una revisión del estado. Ing. Cienc. 8(15), 221-243. http://dx.doi.org/10.17230/ingciencia.8.15.11.

Meerhoff, M., & Mazzeo, N., 2004. Importancia de las plantas flotantes libres de gran porte en la conservación y rehabilitación de lagos someros de Sudamérica. Ecosistemas. Rev. Cient. Tec. Ecol. Medio Ambiente 13(2), 13-22. https://doi.org/10.7818/re.2014.13-2.00.

Mereles, H.M.F., Martín, C.L., De Egea, J., & Céspedes, G., 2004. Aportes al conocimiento de la vegetación del norte del Chaco boreal, Paraguay. Rojasiana 6(1), 126-128.

Mormul, R.P., Thomaz, S.M., & Soares Vieira, L.J., 2013. Richness and composition of macrophyte assemblages in four Amazonian lakes. Acta Scientiarum 35(3), 343-350. https://doi.org/10.4025/actascibiolsci.v35i3.11602.

Murray-Hudson, M., Wolski, P., Murray-Hudson, F., Brown, M.T., & Kashe, K., 2014. Disaggregating hydroperiod: components of the seasonal flood pulse as drivers of plant species distribution in floodplains of a tropical wetland. Wetlands 34(5), 927-942. http://dx.doi.org/10.1007/s13157-014-0554-x.

Ondiba, R., Omondi, R., Nyakeya, K., Abwao, J., & Oyoo-okoth, E., 2018. Environmental constraints on macrophyte distribution and diversity in a tropical endorheic freshwater lake (Lake Baringo, Kenya). Int. J. Fish. Aquat. Stud. 6(3), 251-259.

Pérez-Vásquez, N. S., Arias-Ríos, J., & Quirós-Rodríguez, J.A., 2015. Variación Espacio-Temporal de plantas vasculares acuáticas en el complejo cenagoso del Bajo Sinú, Córdoba, Colombia. Acta Biol. Colomb. 20(3), 155-165. http://dx.doi.org/10.15446/abc.v20n3.45380.

Posada, J.A., & López, M.T., 2011. Plantas Acuáticas del Altiplano del oriente antioqueño. Rionegro: Grupo de Limnología y Recursos Hídricos, Universidad Católica de Oriente, 121 p.

Rameshkumar, S., Radhakrishnan, K., Rajaram, S., & Aanand, R., 2019. Influence of physicochemical water quality on aquatic macrophyte diversity in seasonal wetlands. Appl. Water Sci. 9(12), 1-8. http://dx.doi.org/10.1007/s13201-018-0888-2.

Ramos-Montaño, C., Cárdenas-Avella, N.M., & Herrera Martínez, Y., 2013. Caracterización de la comunidad de macrófitas acuáticas en lagunas del Páramo de La Rusia (Boyacá-Colombia). Cienc. Desarro. (Online), 4(2), 73-82. Retrieved in 2022, August 18, from http://www.scielo.org.co/scielo. php?script=sci_arttext&pid=S0121-74882013000200009&lng=en&tlng=es

Rangel-Ch, J.O., 2010. Colombia diversidad biótica IX. Ciénagas de Córdoba: biodiversidad-ecología y manejo ambiental. Bogotá D.C.: Universidad Nacional de Colombia, Corporación Autónoma Regional de los valles del Sinú y del San Jorge (CVS).

Regmi, T., Shah, D.N., Doody, T.M., Cuddy, S., & Tachamo, R.D., 2021. Hydrological alteration induced changes on macrophyte community composition in sub-tropical floodplain wetlands of Nepal. Aquat. Bot. 173, 103413. http://dx.doi.org/10.1016/j.aquabot.2021.103413.

Reid, M.A., & Quinn, G.P., 2004. Hydrologic regime and macrophyte assemblages in temporary floodplain wetlands: implications for detecting responses to environmental water allocations. Wetlands 24(3), 586-599. http://dx.doi.org/10.1672/0277-5212(2004)024[0586:HRAMAI]2.0.CO;2.

Rial, B.A., 2006. Variabilidad espacio-temporal en un humedal de los Llanos de Venezuela. Rev. Biol. Trop. 54(2), 403-413. PMid:18494311. http://dx.doi.org/10.15517/rbt.v54i2.13882.

Rivera-Díaz, O., Rangel-Ch, J.O., Avella, A., García, J.D., & Castro-R, S.Y., 2013. Las plantas con flores del complejo cenagoso Zapatosa: incluye localidades de Mata de Palma y La Pachita. In: Rangel-Ch., J.O., ed. Colombia diversidad biótica XIII: complejo cenagoso Zapatosa y ciénagas del sur del Cesar. Bogotá D.C.: Instituto de Ciencias Naturales, Universidad Nacional de Colombia, 203-242.

Roldán, G., & Ramírez, J.J., 2008. Fundamentos de Limnología Neotropical (2ª ed.). Medellín: Universidad de Antioquia, 421 p.

Santos, A., & Thomaz, S.M., 2007. Aquatic macrophytes diversity in lagoons of a tropical floodplain: the role of connectivity and water level. Austral Ecol. 32(2), 177-190. http://dx.doi.org/10.1111/j.1442-9993.2007.01665.x.

Schneider, B., Cunha, E.R., Marchese, M., & Thomaz, S.M., 2018. Associations between macrophyte life forms and environmental and morphometric factors in a large sub-tropical floodplain. Front. Plant Sci. 9, 195. PMid:29515608. http://dx.doi.org/10.3389/fpls.2018.00195.

Sculthorpe, C.D., 1967. The biology of aquatic vascular plants. London: Edward Arnold, 610 p.

Sokal, R.R., & Rohlf, F.J., 1995. Biometry: the principles and practice of Statistics in Biological Research (3rd ed.). New York: W.H. Freeman and Co.

Staples, G.W., 1996. The identity of Ipomea staphylina (Convolvulaceae) in Asia. Taiwania 41(3), 185-196.

Thomaz, S.M. & Bini, L.M. 2003. Ecologia e manejo de macrófitas aquáticas. Maringá: Universidade Estadual de Maringá.

United States Agency for International Development – USAID, 2016. El Niño southern oscillation (ENSO) 2015-16 Latin American and Caribbean Region (Vol. 4). Florida, USA.

van der Valk, A.G., 1981. Succession in wetlands: a gleasonian approach succession. Ecology 62(3), 688-696. http://dx.doi.org/10.2307/1937737.

Velásquez, J., 1994. Plantas acuáticas vasculares de Venezuela. Caracas, Venezuela: Universidad Central de Venezuela, Consejo de Desarrollo Científico y Humanistico.

Vieira, E.N., Moreira, B.M., & Mayer, P.F., 2019. Distribution of aquatic macrophytes along depth gradients in Lajeado Reservoir, Tocantins river, Brazil. Acta Limnol. Bras. 31, e6. http://dx.doi.org/10.1590/s2179-975x9317.

Wallsten, M., & Forsgren, P.O., 1989. The effects of increased water level on aquatic macrophytes. J. Aquat. Plant Manage. 27, 32-37.
 


Submitted date:
02/23/2021

Accepted date:
08/18/2022

Publication date:
10/04/2022

633c73c1a9539510055f4664 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections