Acta Limnologica Brasiliensia
https://actalb.org/journal/alb/article/doi/10.1590/S2179-975X0420
Acta Limnologica Brasiliensia
Original Article

Growth dynamic on a co-cultivation of two Chlorophyta microalgae exposed to copper

Dinâmica de crescimento no co-cultivo de duas microalgas Chlorophyta expostas ao cobre.

Rafael Barty Dextro

Downloads: 1
Views: 1091

Abstract

Abstract:: Aim: Copper is an essential nutrient for the phytoplankton, but it can also act as a toxic agent, depending on its concentration. Considering the continuous increase of this metal in the natural aquatic ecosystems, understanding its actions in co-cultivation scenarios is of great relevance. Experiments with the combination of different species resemble more accurately the natural conditions, in contrast of results obtained in single-species tests, which cannot be directly used to describe observed effects on the environment.

Methods: Therefore, growth parameters were investigated and compared on the co-cultivation of Chlorella sorokiniana and Kirchneriella obesa and their separate cultures exposed to three different free copper concentrations (control 6x10-9, intermediate 2x10-7 and high 1.5x10-6 mol.L-1 Cu2+).

Results: C. sorokiniana registered more cells in the control of the unialgal culture while K. obesa had higher cell density in the control of the co-cultivation. Growth rates decreased with the increment of copper in the unialgal conditions. However, both species maintained a high growth rate in the co-cultivation intermediate copper concentrations. Biovolume varied despite the cultivation method, being strongly related to the metal’s concentration. The maximum photosynthetic efficiency decreased in higher copper.

Conclusions: According to the results observed, no competitive exclusion occurred and both species were affected by copper in unialgal and co-cultivation conditions, with K. obesa being favored by the co-cultivation, which seems to have an attenuation effect on copper toxicity until intermediate concentrations. Ecologically, the results suggest that communities deal better with the toxic effects caused by intermediate copper concentrations than single-species cultures.

Keywords

Chlorophyta, community, metal, microalgae

Resumo

Resumo:: Objetivo: Cobre é um nutriente essencial para o fitoplâncton, mas ele também pode agir como um agente tóxico, dependendo de sua concentração. Considerando o crescente incremento deste metal em ecossistemas aquáticos naturais, compreender sua ação em cenários de co-cultura é de grande relevância. Experimentos com a combinação de diferentes espécies assemelham-se com maior precisão as condições encontradas na natureza, contrastando com os resultados obtidos em testes unialgais, que não podem ser diretamente usados para descrever efeitos observáveis no ambiente.

Métodos: Deste modo, parâmetros de crescimento foram investigados e comparados na co-cultura de Chlorella sorokiniana e Kirchneriella obesa e seus cultivos individuais expostos a três diferentes concentrações de cobre livre (controle 6x10-9, intermediário 2x10-7 e elevado 1.5x10-6 mol.L-1 Cu2+).

Resultados: C. sorokiniana apresentou mais células em seu controle unialgal enquanto K. obesa teve maior densidade celular no controle da co-cultura. As taxas de crescimento decairam com o incremento de cobre nas condições unialgais. No entanto, ambas as espécies mantiveram elevada taxa de crescimento na co-cultura em concentrações intermediárias do metal. O biovolume variou independentemente do método de cultivo, sendo diretamente relacionado à concentração de cobre. A eficiência fotossintética máxima decaiu sob elevado cobre.

Conclusões: De acordo com os resultados observados, não houve exclusão competitiva e ambas as espécies foram afetadas pelo cobre em condições unialgais ou de co-cultura, sendo que K. obesa foi favorecida no cultivo em conjunto, que parece apresentar uma atenuação da toxicidade do cobre em concentrações intermediárias. Ecologicamente, os resultados sugerem que comunidades lidam melhor com efeitos tóxicos causados por concentrações intermediárias de cobre do que culturas isoladas.
 

Palavras-chave

Chlorophyta, comunidade, metal, microalga

References

AFKAR, E., ABABNA, H. and FATHI, A.A. Toxicological response of the green alga Chlorella vulgaris, to some heavy metals. American Journal of Environmental Sciences, 2010, 6(3), 230-237. http://dx.doi.org/10.3844/ajessp.2010.230.237.

ANGEL, B.M., SIMPSON, S.L., GRANGER, E., GOODWYN, K. and JOLLEY, D.F. Time-averaged concentrations are effective for predicting chronic toxicity of varying copper pulse exposures for two freshwater green algae species. Environmental Pollution, 2017, 230, 787-797. http://dx.doi.org/10.1016/j.envpol.2017.07.013. PMid:28734260.

ANTUNES, J.T., LEÃO, P.N. and VASCONCELOS, V.M. Influence of biotic and abiotic factors on the allelopathic activity of the cyanobacterium Cylindrospermopsis raciborskii strain LEGE 99043. Microbial Ecology, 2012, 64(3), 584-592. http://dx.doi.org/10.1007/s00248-012-0061-7. PMid:22562107.

ARUMUGAM, A., SANDHYA, M. and PONNUSAMI, V. Biohydrogen and polyhydroxyalkanoate co-production by Enterobacter aerogenes and Rhodobacter sphaeroides from Calophyllum inophyllum oil cake. Bioresource Technology, 2014, 164, 170-176. http://dx.doi.org/10.1016/j.biortech.2014.04.104. PMid:24859207.

BARREIRO, A. and HAIRSTON, N.G. Jr. The influence of resource limitation on the allelopathic effect of Chlamydomonas reinhardtii on other unicellular freshwater planktonic organisms. Journal of Plankton Research, 2013, 35(6), 1339-1344. http://dx.doi.org/10.1093/plankt/fbt080.

BRASIL. Ministério do Meio Ambiente. Conselho Nacional do Meio Ambiente – CONAMA. Resolução n 357, 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Diário Oficial da União [da] República Federativa do Brasil, Poder Executivo, Brasília, DF, 18 mar. 2005, pp. 7-8.

CHIANG, I.Z., HUANG, W.Y. and WU, J.T. Allelochemicals of Botryococcus braunii (hlorophyceae). Journal of Phycology, 2004, 40(3), 474-480. http://dx.doi.org/10.1111/j.1529-8817.2004.03096.x.

DELLAGRECA, M., ZARRELLI, A., FERGOLA, P., CERASUOLO, M., POLLIO, A. and PINTO, G. Fatty acids released by Chlorella vulgaris and their role in interference with Pseudokirchneriella subcapitata: experiments and modelling. Journal of Chemical Ecology, 2010, 36(3), 339-349. http://dx.doi.org/10.1007/s10886-010-9753-y. PMid:20186470.

DUNKER, S., JAKOB, T. and WILHELM, C. Contrasting effects of the cyanobacterium Microcystis aeruginosa on the growth and physiology of two green algae, Oocystis marsonii and Scenedesmus obliquus, revealed by flow cytometry. Freshwater Biology, 2013, 58(8), 1573-1587. http://dx.doi.org/10.1111/fwb.12143.

ECHEVESTE, P., SILVA, J.C. and LOMBARDI, A.T. Cu and Cd affect distinctly the physiology of a cosmopolitan tropical freshwater phytoplankton. Ecotoxicology and Environmental Safety, 2017, 143, 228-235. http://dx.doi.org/10.1016/j.ecoenv.2017.05.030. PMid:28551580.

FERGOLA, P., CERASUOLO, M., POLLIO, A., PINTO, G. and DELLAGRECA, M. Allelopathy and competition between Chlorella vulgaris and Pseudokirchneriella subcapitata: experiments and mathematical model. Ecological Modelling, 2007, 208(2-4), 205-214. http://dx.doi.org/10.1016/j.ecolmodel.2007.05.024.

FRANKLIN, N.M., STAUBER, J.L., MARKICH, S.J. and LIM, R.P. pH-dependent toxicity of copper and uranium to a tropical freshwater alga (Chlorella sp.). Aquatic Toxicology (Amsterdam, Netherlands), 2000, 48(2-3), 275-289. http://dx.doi.org/10.1016/S0166-445X(99)00042-9. PMid:10686332.

GARDNER, M., DIXON, E. and COMBER, S. Copper complexation in English rivers. Chemical Speciation and Bioavailability, 2000, 12(1), 1-8. http://dx.doi.org/10.3184/095422900782775571.

GRANÉLI, E. and JOHANSSON, N. Increase in the production of allelopathic substances by Prymnesium parvum cells grown under N-or P-deficient conditions. Harmful Algae, 2003, 2(2), 135-145. http://dx.doi.org/10.1016/S1568-9883(03)00006-4.

GRASSI, M.T., SHI, B. and ALLEN, H.E. Partition of copper between dissolved and particulate phases using aluminum oxide as an aquatic model phase: effects of pH, solids and organic matter. Journal of the Brazilian Chemical Society, 2000, 11(5), 516-524. http://dx.doi.org/10.1590/S0103-50532000000500014.

HILLEBRAND, H., DÜRSELEN, C.D., KIRSCHTEL, D., POLLINGHER, U. and ZOHARY, T. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 1999, 35(2), 403-424. http://dx.doi.org/10.1046/j.1529-8817.1999.3520403.x.

JEFFREY, S.W. and HUMPHREY, G.F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemistry and Physiology of Plants, 1975, 167(2), 191-194. http://dx.doi.org/10.1016/S0015-3796(17)30778-3.

JIANG, W., LIU, D. and LIU, X. Effects of copper on root growth, cell division, and nucleolus of Zea mays. Biologia Plantarum, 2001, 44(1), 105-109. http://dx.doi.org/10.1023/A:1017982607493.

JUNEAU, P. and HARRISON, P.J. Comparison by PAM Fluorometry of Photosynthetic Activity of Nine Marine Phytoplankton Grown Under Identical Conditions. Photochemistry and Photobiology, 2005, 81(3), 649-653. http://dx.doi.org/10.1562/2005-01-13-RA-414.1. PMid:15686444.

JUNEAU, P., EL BERDEY, A. and POPOVIC, R. PAM Fluorometry in the determination of the sensitivity of Chlorella vulgaris, Selenastrum capricornutum and Chlamydomonas reinhardtii to copper. Archives of Environmental Contamination and Toxicology, 2002, 42(2), 155-164. http://dx.doi.org/10.1007/s00244-001-0027-0. PMid:11815806.

KEAN, M.A., DELGADO, E.B., MENSINK, B.P. and BUGTER, M.H.J. Iron chelating agents and their effects on the growth of Pseudokirchneriella subcapitata, Chlorella vulgaris, Phaeodactylum tricornutum and Spirulina platensis in comparison to Fe-EDTA. Journal of Algal Biomass Utilization, 2015, 6, 56-73.

KESHTACHER-LIEBSO, E., HADAR, Y. and CHEN, Y. Oligotrophic bacteria enhance algal growth under iron-deficient conditions. Applied and Environmental Microbiology, 1995, 61(6), 2439-2441. http://dx.doi.org/10.1128/AEM.61.6.2439-2441.1995. PMid:16535058.

KLAUSNER, R.D., KLEINFELD, A.M., HOOVER, R.L. and KARNOVSKY, M.J. Lipid domains in membranes. Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. The Journal of Biological Chemistry, 1980, 255(4), 1286-1295. http://dx.doi.org/10.1016/S0021-9258(19)86027-1. PMid:7354027.

KNAUERT, S. and KNAUER, K. The role of reactive oxygen species in copper toxicity to two freshwater green algae. Journal of Phycology, 2008, 44(2), 311-319. http://dx.doi.org/10.1111/j.1529-8817.2008.00471.x. PMid:27041187.

LIU, J., WU, J., FENG, W. and LI, X. Ecological Risk Assessment of Heavy Metals in Water Bodies around Typical Copper Mines in China. International Journal of Environmental Research and Public Health, 2020, 17(12), 4315. http://dx.doi.org/10.3390/ijerph17124315. PMid:32560327.

LIU, L., CHEN, J., LIM, P.E. and WEI, D. Dual-species cultivation of microalgae and yeast for enhanced biomass and microbial lipid production. Journal of Applied Phycology, 2018, 30(6), 1-11. http://dx.doi.org/10.1007/s10811-018-1526-y.

LOMBARDI, A.T. and MALDONADO, M.T. The effects of copper on the photosynthetic response of Phaeocystis cordata. Photosynthesis Research, 2011, 108(1), 77-87. http://dx.doi.org/10.1007/s11120-011-9655-z. PMid:21519899.

LOMBARDI, A.T., VIEIRA, A.A. and SARTORI, L.A. Mucilaginous capsule adsorption and intracellular uptake of copper by Kirchneriella aperta (Chlorococcales). Journal of Phycology, 2002, 38(2), 332-337. http://dx.doi.org/10.1046/j.1529-8817.2002.00126.x.

MACHADO, M.D. and SOARES, E.V. Modification of cell volume and proliferative capacity of Pseudokirchneriella subcapitata cells exposed to metal stress. Aquatic Toxicology (Amsterdam, Netherlands), 2014, 147, 1-6. http://dx.doi.org/10.1016/j.aquatox.2013.11.017. PMid:24342441.

MAGDOULI, S., BRAR, S.K. and BLAIS, J.F. Co-culture for lipid production: advances and challenges. Biomass and Bioenergy, 2016, 92, 20-30. http://dx.doi.org/10.1016/j.biombioe.2016.06.003.

MALLICK, N. and MOHN, F.H. Use of chlorophyll fluorescence in metal-stress research: a case study with the green microalga Scenedesmus. Ecotoxicology and Environmental Safety, 2003, 55(1), 64-69. http://dx.doi.org/10.1016/S0147-6513(02)00122-7. PMid:12706394.

MOHANTY, N., VASS, I. and DEMETER, S. Copper toxicity affects photosystem II electron transport at the secondary quinone acceptor, QB. Plant Physiology, 1989, 90(1), 175-179. http://dx.doi.org/10.1104/pp.90.1.175. PMid:16666731.

NAN, C., ZHANG, H. and ZHAO, G. Allelopathic interactions between the macroalga Ulva pertusa and eight microalgal species. Journal of Sea Research, 2004, 52(4), 259-268. http://dx.doi.org/10.1016/j.seares.2004.04.001.

ONCEL, S.S., IMAMOGLU, E., GUNERKEN, E. and SUKAN, F.V. Comparison of different cultivation modes and light intensities using mono‐cultures and co‐cultures of Haematococcus pluvialis and Chlorella zofingiensis. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2011, 86(3), 414-420. http://dx.doi.org/10.1002/jctb.2532.

PERALES-VELA, H.V., GONZÁLEZ-MORENO, S., MONTES-HORCASITAS, C. and CAÑIZARES-VILLANUEVA, R.O. Growth, photosynthetic and respiratory responses to sub-lethal copper concentrations in Scenedesmus incrassatulus (Chlorophyceae). Chemosphere, 2007, 11(11), 2274-2281. http://dx.doi.org/10.1016/j.chemosphere.2006.11.036. PMid:17267014.

PINTO, E., SIGAUD‐KUTNER, T.C., LEITAO, M.A., OKAMOTO, O.K., MORSE, D. and COLEPICOLO, P. Heavy metal-induced oxidative stress in algae. Journal of Phycology, 2003, 39(6), 1008-1018. http://dx.doi.org/10.1111/j.0022-3646.2003.02-193.x.

PISTOCCHI, R., GUERRINI, F., BALBONI, V. and BONI, L. Copper toxicity and carbohydrate production in the microalgae Cylindrotheca fusiformis and Gymnodinium sp. Eur. Journal of Phycology, 1997, 32(2), 125-132. http://dx.doi.org/10.1080/09670269710001737049.

PRATT, R. and FONG, J. Studies on Chlorella vulgaris II. Further evidence that Chlorella cells form a growth‐inhibiting substance. American Journal of Botany, 1940, 27(6), 431-436. http://dx.doi.org/10.1002/j.1537-2197.1940.tb14704.x.

PRATT, R., DANIELS, T.C., EILER, J.J., GUNNISON, J.B., KUMLER, W.D., ONETO, J.F., STRAIT, L.A., SPOEHR, H.A., HARDIN, G.J., MILNER, H.W., SMITH, J.H.C. and STRAIN, H.H. Chlorellin, an antibacterial substance from Chlorella. Science, 1944, 99(2574), 351-352. http://dx.doi.org/10.1126/science.99.2574.351. PMid:17750208.

RAJAPITAMAHUNI, S., BACHANI, P., SARDAR, R.K. and MISHRA, S. Co-cultivation of siderophore-producing bacteria Idiomarina loihiensis RS14 with Chlorella variabilis ATCC 12198, evaluation of micro-algal growth, lipid, and protein content under iron starvation. Journal of Applied Phycology, 2018, 31(1), 1-11.

RIPPKA, R., DERUELLES, J. and WATERBURY, J.B. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology, 1979, 111(1), 1-61. http://dx.doi.org/10.1099/00221287-111-1-1.

SABATINI, S.E., JUÁREZ, A.B., EPPIS, M.R., BIANCHI, L., LUQUET, C.M. and RÍOS DE MOLINA, M.C. Oxidative stress and antioxidant defenses in two green microalgae exposed to copper. Ecotoxicology and Environmental Safety, 2009, 72(4), 1200-1206. http://dx.doi.org/10.1016/j.ecoenv.2009.01.003. PMid:19223073.

SANDERS, J.G. and CIBIK, S.J. Response of Chesapeake Bay phytoplankton communities to low levels of toxic substances. Marine Pollution Bulletin, 1988, 19(9), 439-444. http://dx.doi.org/10.1016/0025-326X(88)90399-2.

SHRIVASTAVA, A.K. A review on copper pollution and its removal from water bodies by pollution control technologies. Indian Journal of Environmental Protection, 2009, 29(6), 552-560.

SILVA, J.C., ECHEVESTE, P. and LOMBARDI, A.T. Higher biomolecules yield in phytoplankton under copper exposure. Ecotoxicology and Environmental Safety, 2018, 161, 57-63. http://dx.doi.org/10.1016/j.ecoenv.2018.05.059. PMid:29859408.

SPOEHR, H.A. and MILNER, H.W. The chemical composition of Chlorella; effect of environmental conditions. Plant Physiology, 1949, 24(1), 120-149. http://dx.doi.org/10.1104/pp.24.1.120. PMid:16654197.

TRIPATHI, B.N., MEHTA, S.K., AMAR, A. and GAUR, J.P. Oxidative stress in Scenedesmus sp. During short-and long-term exposure to Cu2+ and Zn2+. Chemosphere, 2006, 62(4), 538-544. http://dx.doi.org/10.1016/j.chemosphere.2005.06.031. PMid:16084572.

WILDE, K.L., STAUBER, J.L., MARKICH, S.J., FRANKLIN, N.M. and BROWN, P.L. The effect of pH on the uptake and toxicity of copper and zinc in a tropical freshwater alga (Chlorella sp.). Archives of Environmental Contamination and Toxicology, 2006, 51(2), 174-185. http://dx.doi.org/10.1007/s00244-004-0256-0. PMid:16583260.

WINDOM, H.L., BYRD, J.T., SMITH, R.G. Jr. and HUAN, F. Inadequacy of NASQAN data for assessing metal trends in the nation’s rivers. Environmental Science & Technology, 1991, 25(6), 1137-1142. http://dx.doi.org/10.1021/es00018a019.

YAN, H. and PAN, G. Toxicity and bioaccumulation of copper in three green microalgal species. Chemosphere, 2002, 5(5), 471-476. http://dx.doi.org/10.1016/S0045-6535(02)00285-0. PMid:12363319.

YEN, H.W., CHEN, P.W. and CHEN, L.J. The synergistic effects for the co-cultivation of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus on the biomass and total lipids accumulation. Bioresource Technology, 2015, 184, 148-152. http://dx.doi.org/10.1016/j.biortech.2014.09.113. PMid:25311189.

ZHAO, P., YU, X., LI, J., TANG, X. and HUANG, Z. Enhancing lipid productivity by co-cultivation of Chlorella sp. U4341 and Monoraphidium sp. FXY-10. Journal of Bioscience and Bioengineering, 2014, 118(1), 72-77. http://dx.doi.org/10.1016/j.jbiosc.2013.12.014. PMid:24491914.
 


Submitted date:
01/15/2020

Accepted date:
05/25/2021

Publication date:
06/18/2021

60ccd9f2a953950d31445c13 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections