Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X9323
Acta Limnologica Brasiliensia
Original Article

First report of harmful Microcystis sp. and microcystin in two tributaries of Paraná River in Misiones, Argentina

Primeiro registro de Microcystis sp. nociva e microcistina em dois afluentes do Rio Paraná em Misiones, Argentina

María de los Angeles Kolman; María Laura Miño; Isaias Emanuel Kunz; Pedro Dario Zapata

Downloads: 0
Views: 269

Abstract

Aim: Characterize cyanobacterial accumulations detected for the first time from November 2020 to February 2022 along the coastal zone of the Paraná River and in the Zaimán and Mártires streams in Posadas (Misiones, Argentina), by identifying the dominant species, determining their potential toxicity, and monitoring their progression using satellite images.

Methods: This work analyzes the presence of cyanobacteria by optical microscopy, the production of microcystin (MCY) by molecular and analytical methods, and the detection of these cyanobacterial accumulations by satellite image analysis.

Results: Optical microscopy analysis revealed the presence of Microcystis spp. colonies in all collected samples and Dolichospermum sp. in the Mártires stream. Using PCR amplification of a conserved region of the mcyE gene we confirmed the presence of MCY-encoding genes in all samples and MCY in the Zaimán stream using UPLC MS/MS analysis. Complementary satellite image analysis showed blooms in the Zaimán and Mártires streams were detectable during all the sampling periods. The presence of Microcystis spp., and MCY could affect the population, as well as the flora and fauna in the streams and the ecosystems along the Paraná River basin.

Conclusions: In this study, we successfully characterized cyanobacterial accumulations along the Paraná River coast and in the Zaimán and Mártires streams, revealing the presence of Microcystis spp. colonies and MCY-encoding genes, with potential implications for local populations and ecosystems.

Keywords

cyanobacterial bloom; Paraná River basin; water quality

Resumo

Objetivo: Caracterizar o acúmulo de cianobactérias detectadas pela primeira vez de novembro de 2020 a fevereiro de 2022 ao longo da zona costeira do rio Paraná e nos riachos Zaimán e Mártires em Posadas (Misiones, Argentina). Espécies dominantes e seu potencial de toxicidade foram identificadas e sua progressão foram monitoradas usando imagens de satélite.

Métodos: Este trabalho analisa a presença de cianobactérias por microscopia óptica, a produção de microcistina (MCY) por métodos moleculares e analíticos e a detecção dessas acumulações de cianobactérias por análise de imagens de satélite.

Resultados: A análise de microscopia óptica revelou a presença de colônias de Microcystis spp. e Dolichospermum sp. em amostras coletadas no riacho Mártires. Utilizando amplificação por PCR de uma região conservada do gene mcyE, confirmamos a presença de genes codificadores de MCY e de MCY no Zaimán usando análise UPLC MS/MS. A análise complementar de imagens de satélite mostrou que as florações nos riachos Zaimán e Mártires foram detectáveis durante todos os períodos de amostragem. A presença de Microcystis spp. e MCY poderia afetar a população, bem como a flora e a fauna dos riachos e ecossistemas ao longo da bacia do rio Paraná.

Conclusões: Neste estudo, foram caracterizadas com sucesso o acúmulo de cianobactérias ao longo da costa do Rio Paraná e nos riachos Zaimán e Mártires, revelando a presença de colônias de Microcystis spp. e genes que codificam MCY com potenciais implicações para as populações locais e os ecossistemas.

Palavras-chave

floração de cianobactérias; bacia do Rio Paraná; qualidade da água

Referencias

Absi, S., & Meichtry de Zaburlin, N.R., 1987. Fitoplancton de los tributarios del río Alto Paraná. I. Primeros datos de los arroyos Yabebiry, Santa Ana y San Juan, provincia de Misiones (Argentina). Bol. Soc. Argent. Bot. 25, 43-57.

Aguilera, A., Haakonsson, S., Martin, M.V., Salerno, G.L., & Echenique, R.O., 2017. Bloom-forming cyanobacteria and cyanotoxins in Argentina: a growing health and environmental concern. Limnologica 69, 103-114. http://doi.org/10.1016/j.limno.2017.10.006.

Burns, B.P., Saker, M.L., Moffitt, M.C., & Neilan, B.A., 2004. Molecular detection of genes responsible for cyanobacterial toxin production in the genera Microcystis, Nodularia, and Cylindrospermopsis. In: Spencer, J.F.T. & Ragout de Spencer, A.L., eds. Public health microbiology: methods and protocols. Totowa: Humana Press, 213-222. http://doi.org/10.1385/1-59259-766-1:213

Fonseca, I.A., & Rodrigues, I., 2007. Periphytic Cyanobacteria in different environments from the upper Paraná River floodplain, Brazil. Acta Limnol. Bras. 19, 53-65.

GitHub, 2023. CyanoLakes. Retrieved in 2022, October 19, from https://github.com/CyanoLakes/

Harke, M.J., Steffen, M.M., Gobler, C.J., Otten, T.G., Wilhelm, S.W., Wood, S.A., & Paerl, H.W., 2016. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54, 4-20. PMid:28073480. http://doi.org/10.1016/j.hal.2015.12.007.

Havens, K.E., 2008. Cyanobacteria blooms: effects on aquatic ecosystems. In: Hudnell H.K. ed. Cyanobacterial harmful algal blooms: state of the science and research needs. New York: Springer, 733-747, Advances in Experimental Medicine and Biology. http://doi.org/10.1007/978-0-387-75865-7_33.

Huisman, J., Codd, G.A., Paerl, H.W., Ibelings, B.W., Verspagen, J.M., & Visser, P.M., 2018. Cyanobacterial blooms. Nat. Rev. Microbiol. 16(8), 471-483. PMid:29946124. http://doi.org/10.1038/s41579-018-0040-1.

Instituto Nacional del Agua – INA, 2022. Bajante del Río Paraná (Online). Buenos Aires: INA. Retrieved in 2022, October 19, from https://contenidosweb.prefecturanaval.gob.ar/alturas/?id=80&page=historico&tiempo=365

Komárek, J., & Komárková, J., 2002. Review of the European Microcystis morphospecies (Cyanoprokaryotes) from nature. Fottea 2, 1-24.

Kravitz, J., & Matthews, M., 2020. Chlorophyll-a for cyanobacteria blooms from Sentinel-2 (Online). CyanoLakes. Retrieved in 2022, October 19, from https://custom-scripts.sentinel-hub.com/sentinel-2/cyanobacteria_chla_ndci_l1c/

Kravitz, J., Matthews, M., Lain, L., Fawcett, S., & Bernard, S., 2021. Potential for high fidelity global mapping of common inland water quality products at high spatial and temporal resolutions based on a synthetic data and machine learning approach. Front. Environ. Sci. 9, 587660. http://doi.org/10.3389/fenvs.2021.587660.

Kruk, C., Martínez, A., Martínez de la Escalera, G., Trinchin, R., Manta, G., Segura, A.M., Piccini, C., Brena, B., Yannicelli, B., Fabiano, G., & Calliari, D., 2021. Rapid freshwater discharge on the coastal ocean as a mean of long distance spreading of an unprecedented toxic cyanobacteria bloom. Sci. Total Environ. 754, 142362. PMid:33254935. http://doi.org/10.1016/j.scitotenv.2020.142362.

Lecertua, E., Sabarots Gerbec, M., Sarubbi, A., Re, M., Menéndez, A., Cardinali, A., Cano, R., & Perayre, M., 2009. Estudio de la influencia del embalse de Yacyretá sobre la hidrología de arroyos urbanos. In: Congreso Argentino del Agua (CONAGUA), Trelew, Chubut, Argentina. IARH.

Makrakis, S., Bertão, A.P., Silva, J.F., Makrakis, M.C., Sanz-Ronda, F.J., & Celestino, L.F., 2019. Hydropower development and fishways: a need for connectivity in rivers of the Upper Paraná Basin. Sustainability 11(13), 3749. http://doi.org/10.3390/su11133749.

Massey, I.Y., Al Osman, M., & Yang, F., 2022. An overview on cyanobacterial blooms and toxins production: their occurrence and influencing factors. Toxin Rev. 4(1), 326-346. http://doi.org/10.1080/15569543.2020.1843060.

Meichtry de Zaburlín, N.R., 1994. Fitoplancton del embalse del arroyo Urugua-í. Misiones, Argentina. Tankay Argent. 1, 60-61.

Motta Bedoya, D.C., 2018. Metaanálisis de la ocurrencia de floraciones de cianobacterias potencialmente tóxicas en aguas continentales de Argentina [Doctoral dissertation in Universidad de Buenos Aires]. Buenos Aires: Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires.

O’Farrell, I., Motta, C., Forastier, M., Polla, W., Otaño, S., Meichtry, N., Devercelli, M., & Lombardo, R., 2019. Ecological meta-analysis of bloom-forming planktonic Cyanobacteria in Argentina. Harmful Algae 83, 1-3. PMid:31097251. http://doi.org/10.1016/j.hal.2019.01.004.

Paerl, H.W., & Barnard, M.A., 2020. Mitigating the global expansion of harmful cyanobacterial blooms: moving targets in a human-and climatically-altered world. Harmful Algae 96, 101845. PMid:32560828. http://doi.org/10.1016/j.hal.2020.101845.

Servicio Meteorológico Nacional Argentino – SMN, 2022a. El clima en Argentina: reporte preliminar 2022 (Online). Ciudad Autónoma de Buenos Aires. Retrieved in 2022, October 19, from https://www.smn.gob.ar/noticias/el-clima-en-argentina-2022-reporte-preliminar

Servicio Meteorológico Nacional Argentino – SMN, 2022b. Informes de Sequía (Online). Ciudad Autónoma de Buenos Aires. Retrieved in 2022, October 19, from http://repositorio.smn.gob.ar/handle/20.500.12160/1588

Thomaz, S.M., Bini, L.M., & Bozelli, R.L., 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579(1), 1-13. http://doi.org/10.1007/s10750-006-0285-y.

Vieira da Silva, M., Bortolini, J.C., & Jati, S., 2022. The phytoplankton community as a descriptor of environmental variability: a case study in five reservoirs of the Paraná River basin. Acta Limnol. Bras. 34, e1. http://doi.org/10.1590/s2179-975x4621.
 


Submitted date:
19/10/2023

Accepted date:
05/06/2024

Publication date:
12/08/2024

66ba38c3a9539513ea7308d4 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections