Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X8920
Acta Limnologica Brasiliensia
Original Article

Evaluating the periphyton as a bioreactor for removal of nutrients in a shallow hypereutrophic reservoir

Avaliando o perifíton como biorreator para remoção de nutrientes em um reservatório raso hipereutrófico

Suele Aparecida Mendes-Santos; Carla Ferragut

Downloads: 0
Views: 792

Abstract

Abstract: : Aim: We evaluated the periphyton on artificial substrate in the treated sewage effluent, effluent patch, inside and after the macrophyte stand in a shallow hypereutrophic reservoir. Specifically, we investigated the relationship between N and P contents and algal biomass in the periphyton with N and P availability, focusing on nutrient retention.

Methods: Periphyton sampling was performed at the effluent inlet, effluent path, inside, and two sites after macrophyte stand. Periphyton sampling was performed after 30 days of colonization. Abiotic variables were determined in the sewage effluent and in the reservoir water.

Results: Biomass and N and P contents in the periphyton were significantly different among sampling sites. The highest nutrient concentrations were found in the sampling sites with effluent. The highest periphyton chlorophyll-a were found inside and after the macrophyte stand, while N and P contents were the highest in the effluent inlet and effluent.

Conclusions: In conclusion, N and P contents in the periphyton were associated with N and P availability, evidencing the ability of nutrient retention of the community. Our findings suggest that periphyton on artificial substrate can as a potential tool for removing N and P from the effluent from the sewage treatment system, contributing to minimizing the nutrient load discharged in a shallow reservoir.

Keywords

Keywords: biomass, biofilm, nutrient removal, nutrient content, secondary sewage treatment

Resumo

Resumo: : Objetivos: Avaliamos o perifíton em substrato artificial no efluente de esgoto tratado, no percurso do efluente, dentro e após o banco de macrófitas em um reservatório raso hipereutrófico. Especificamente, investigamos a relação entre os conteúdos de N e P e a biomassa de algas no perifíton com a disponibilidade de N e P do ambiente, com foco na retenção de nutrientes.

Métodos: A amostragem do perifíton foi realizada no efluente e ao longo do percurso do efluente, dentro e em dois locais após o banco de macrófitas. A amostragem do perifíton foi realizada após 30 dias da colonização. As variáveis abióticas foram determinadas no efluente do esgoto e na água do reservatório.

Resultados: Os valores de biomassa e conteúdo N e P no perifíton foram significativamente diferentes entre os locais de amostragem. As maiores concentrações de nutrientes foram encontradas nos locais com efluente. As maiores concentrações de clorofila-a no perifíton foram encontradas dentro e após o banco de macrófitas, enquanto os maiores teores de N e P foram encontrados no efluente e no percurso do efluente.

Conclusões: Em conclusão, os conteúdos de N e P no perifíton foram associados à disponibilidade de N e P, evidenciando a capacidade de retenção de nutrientes da comunidade. Nossos resultados sugerem que o perifíton em substrato artificial pode ser uma ferramenta para a remoção de N e P do efluente do sistema de tratamento de esgoto, contribuindo para minimizar a carga de nutrientes descarregada em um reservatório raso.
 

Palavras-chave

biomassa, biofilme, conteúdo de nutrientes, esgoto com tratamento secundário remoção de nutrientes

References

ANDERSEN, J.M. An ignition method for determination of total phosphorus in lake sediments. Water Research, 1976, 10, 329-331.

AMERICAN PUBLIC HEALTH ASSOCIATION – APHA. American Water Works Association. Water Environment Federation. Standard Methods for the Examination of Water and Wastewater. 21st ed. Washington, DC: APHA, 2005.

AMARAL, L.M., CASTILHO, M.C.A., HENRY, R. and FERRAGUT, C. Epipelon, phytoplankton and zooplankton responses to the experimental oligotrophication in a eutrophic shallow reservoir. Environmental Pollution, 2020, 263(Pt A), 114603. http://dx.doi.org/10.1016/j.envpol.2020.114603. PMid:33618459.

BICUDO, C.E.M., CARMO, C.F., BICUDO, D.C., HENRY, R., PIÃO, A.C.S., SANTOS, C.M. and LOPES, M.R.M. Morfologia e morfometria de três reservatórios no PEFI. In D.C. BICUDO, M.C. FORTI and C.E.M. BICUDO, eds. Parque Estadual das Fontes do Ipiranga (PEFI): unidade de conservação que resiste à urbanização de São Paulo. São Paulo: Secretaria do Meio Ambiente do Estado de São Paulo, 2002, pp. 143-160.

BICUDO, D.C., ZANON, J.E., FERRAGUT, C., CROSSETTI, L.O., FAUSTINO, S. and BICUDO, C.E.M. Garças Reservoir trophic state dynamics: a 20-year synthesis. Hoehnea, 2020, 47, e722019. http://dx.doi.org/10.1590/2236-8906-72/2019.

BICUDO, D.C., FONSECA, B.M., BINI, L.M., CROSSETTI, L.O., BICUDO, C.E.M. and ARAÚJO-JESUS, T. Undesirable side-effects of water hyacinth control in a shallow tropical reservoir. Freshwater Biology, 2007, 51(6), 1120-1133. http://dx.doi.org/10.1111/j.1365-2427.2007.01738.x.

INSTITUTO DE ASTRONOMIA, GEOFÍSICA E CIÊNCIAS ATMOSFÉRICAS ­– IAG/USP. Boletim climatológico anual da estação meteorológica [online]. São Paulo: IAG/USP, 2016. [viewed 01 Feb. 2019] Available from: http://www.estacao.iag.usp.br/boletim.php.

BORDUQUI, M., FERRAGUT, C. and BICUDO, C.E.M. Factors determining periphytic algae succession in a tropical hypereutrophic reservoir. Hydrobiologia, 2012, 683(1), 109-122. http://dx.doi.org/10.1007/s10750-011-0943-6.

CAO, J., HONG, X. and PEI, G. Removal and retention of phosphorus by periphyton from wastewater with high organic load. Water Science and Technology, 2014, 70(1), 62-69. http://dx.doi.org/10.2166/wst.2014.195. PMid:25026580.

CHEN, N., LIU, L., QIAO, D., LI, Y. and LV, Y. Seasonal succession patterns of plankton in eutrophic rivers on plains. Annales de Limnologie-International Journal of Limnology, 2016, 52, 217-233. http://dx.doi.org/10.1051/limn/2016007.

CROSSETTI, L.O., BICUDO, D.C., BINI, L.M., DALA-CORTE, R.B., FERRAGUT, C. and BICUDO, C.E.M. Phytoplankton species interactions and invasion by Ceratium furcoides are influenced by extreme drought and water-hyacinth removal in a shallow tropical reservoir. Hydrobiologia, 2019, 831(1), 71-85. http://dx.doi.org/10.1007/s10750-018-3607-y.

DELLAROSSA, V., CÉSPEDES, J. and ZAROR, C. Eichhornia crassipes-based tertiary treatment of Kraft pulp mill effluents in Chilean Central Region. Hydrobiologia, 2001, 443(1-3), 187-191. http://dx.doi.org/10.1023/A:1017507932543.

DODDS, W.K. The role of periphyton in phosphorus retention in shallow freshwater aquatic systems. Journal of Phycology, 2003, 39(5), 840-849. http://dx.doi.org/10.1046/j.1529-8817.2003.02081.x.

GAISER, E.E., SCINTO, L.J., RICHARDS, J.H., JAYACHANDRAN, K., CHILDERS, D.L., TREXLER, J.C. and JONES, R.D. Phosphorus in periphyton mats provides the best metric for detecting low-level P enrichment in an oligotrophic wetland. Water Research, 2004, 38(3), 507-516. http://dx.doi.org/10.1016/j.watres.2003.10.020. PMid:14723918.

GAO, F., YANG, Z.H., LI, C., ZENG, G.M., MA, D.H. and ZHOU, L. A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent. Bioresource Technology, 2015, 179, 8-12. http://dx.doi.org/10.1016/j.biortech.2014.11.108. PMid:25514396.

GU, B. and DRESCHEL, T. Effects of plant community and phosphorus loading rate on constructed wetland performance in Florida, USA. Wetlands, 2008, 28(1), 81-91. http://dx.doi.org/10.1672/07-24.1.

HAMMER, Ø., HARPER, D.A.T. and RYAN, P.D. PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica, 2001, 4(1), 1-9.

HANSSON, T.H., GROSSART, H.P., DEL GIORGIO, P.A., ST‐GELAIS, N.F. and BEISNER, B.E. Environmental drivers of mixotrophs in boreal lakes. Limnology and Oceanography, 2019, 64(4), 1688-1705. http://dx.doi.org/10.1002/lno.11144.

LAUTENSCHLAGER, S.R. Modelagem do desempenho de wetlands construídas [Dissertação de Mestrado]. São Paulo: Escola Politécnica da Universidade de São Paulo, 2001. 106 p. http://dx.doi.org/10.11606/D.3.2001.tde-11072002-091741.

LE MOAL, M., GASCUEL-ODOUX, C., MÉNESGUEN, A., SOUCHON, Y., ÉTRILLARD, C., LEVAIN, A., MOATAR, F., PANNARD, A., SOUCHU, P., LEFEBVRE, A. and PINAY, G. Eutrophication: a new wine in an old bottle? The Science of the Total Environment, 2019, 651(Pt 1), 1-11. http://dx.doi.org/10.1016/j.scitotenv.2018.09.139. PMid:30223216.

LU, H., YANG, L., SHABBIR, S. and WU, Y. The adsorption process during inorganic phosphorus removal by cultured periphyton. Environmental Science and Pollution Research International, 2014, 21(14), 8782-8791. http://dx.doi.org/10.1007/s11356-014-2813-z. PMid:24728572.

MCCUNE, B. and MEFFORD, M.J. PC-ORD. Multivariate analysis of ecological data. Oregon: MjM Software Design, 2011.

MISHRA, S. and MAITI, A. The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: a review. Environmental Science and Pollution Research International, 2017, 24(9), 7921-7937. http://dx.doi.org/10.1007/s11356-016-8357-7. PMid:28092006.

MORASHASHI, A.C., JESUS, T.A., ROSA, D.S., HARADA, J. and BICUDO, D.C. Avaliação e comparação do acúmulo de fósforo por biofilme formado sobre lâminas de vidro e de filme polimérico biodegradável (Ecovio® modificado). Revista Brasileira de Ciência. Tecnologia e Inovação, 2019, 4(2), 131-145.

PATEL, S. Threats, management and envisaged utilizations of aquatic weed Eichhornia crassipes: an overview. Reviews in Environmental Science and Biotechnology, 2012, 11(3), 249-259. http://dx.doi.org/10.1007/s11157-012-9289-4.

PERES-NETO, P.R., JACKSON, D.A. and SOMERS, K.M. How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Computational Statistics & Data Analysis, 2005, 49(4), 974-997. http://dx.doi.org/10.1016/j.csda.2004.06.015.

POMPÊO, M.L.M. and MOSCHINI-CARLOS, V. Macrófitas aquáticas e perifíton: aspectos ecológicos e metodológicos. São Carlos: Rima/FAPESP, 2003.

ROTHHAUPT, K.O. Utilization of substitutable carbon and phosphorus sources by the mixotrophic chrysophyte Ochromonas sp. Ecology, 1996, 77(3), 706-715. http://dx.doi.org/10.2307/2265495.

SANTOS, S.A.M., SANTOS, T.R., FURTADO, M.S., HENRY, R. and FERRAGUT, C. Periphyton nutrient content, biomass and algal community on artificial substrate: response to experimental nutrient enrichment and the effect of its interruption in a tropical reservoir. Limnology, 2018, 19(2), 209-218. http://dx.doi.org/10.1007/s10201-017-0533-z.

SARTORY, D.P. and GROBBELAAR, J.U. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia, 1984, 114(3), 177-187. http://dx.doi.org/10.1007/BF00031869.

SCHINDLER, D.W. The dilemma of controlling cultural eutrophication of lakes. Proceedings. Biological Sciences, 2012, 279(1746), 4322-4333. http://dx.doi.org/10.1098/rspb.2012.1032. PMid:22915669.

STRICKLAND, J.D.H. and PARSONS, T.R. A manual of seawater analysis. Bulletin - Fisheries Research Board of Canada, 1965, 125, 1-185.

SUTHERLAND, D.L. and CRAGGS, R.J. Utilizing periphytic algae as nutrient removal systems for the treatment of diffuse nutrient pollution in waterways. Algal Research, 2017, 25, 496-506. http://dx.doi.org/10.1016/j.algal.2017.05.023.

TRAVAINI-LIMA, F. and SIPAÚBA-TAVARES, L.H. Efficiency of a constructed wetland for wastewaters treatment. Acta Limnologica Brasiliensia, 2012, 24(3), 255-265. http://dx.doi.org/10.1590/S2179-975X2012005000043.

UMBREIT, W.W., BURRIS, R.H. and STAUFFER, J.F. Manometric methods applicable to the study of tissue metabolism. Minneapolis: Burgess Publishing Company, 1964.

ZHANG, Y., LIU, H., YAN, S., WEN, X., QIN, H., WANG, Z. and ZHANG, Z. Phosphorus removal from the hyper-eutrophic Lake Caohai (China) with large-scale water hyacinth cultivation. Environmental Science and Pollution Research International, 2019, 26(13), 12975-12984. http://dx.doi.org/10.1007/s11356-019-04469-8. PMid:30895539.

WETZEL, R.G. Limnology. New York: Academic Press, 2001, 1006 p.

WU, Y. ZHANG. S., ZHAO H. and YANG, L. Environmentally benign periphyton bioreactors for controlling cyanobacterial growth. Bioresource Technology, 2010, 101, 9681-9687.

WU, Y., LIU, J. and RENE, E.R. Periphytic biofilms: a promising nutrient utilization regulator in wetlands. Bioresource Technology, 2018, 248(Pt B), 44-48. http://dx.doi.org/10.1016/j.biortech.2017.07.081. PMid:28756125.

VYMAZAL, J. Removal of nutrients in various types of constructed wetlands. The Science of the Total Environment, 2007, 380(1-3), 48-65. http://dx.doi.org/10.1016/j.scitotenv.2006.09.014. PMid:17078997.
 


Submitted date:
09/10/2020

Accepted date:
04/28/2021

Publication date:
05/25/2021

60ad0cbda9539537be697742 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections