Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X7422
Acta Limnologica Brasiliensia
Original Article

Intensive fish farming: changes in water quality and relationship with zooplankton community

Piscicultura intensiva: alterações na qualidade da água e a relação com a comunidade zooplanctônica

Tamiris Rosso Storck; Leticia Raquel Sippert; Débora Seben; Dinei Vitor Lazarotto; Júlia Helfenstein; Jheniffer dos Santos da Luz; Felipe Osmari Cerezer; Silvana Isabel Schneider; Arci Dirceu Wastowski; Barbara Clasen; Jaqueline Ineu Golombieski

Downloads: 0
Views: 273

Abstract

Aim: This study aimed to evaluate the interference of intensive fish farming in the physicochemical variables of water and in the zooplankton community from a tilapia (Oreochromis niloticus Linnaeus, 1758) pond in southern Brazil. In addition, it was verified whether the analyzed zooplankton groups could be bioindicators of changes in the quality of pond water.

Methods: The water and zooplankton sample collections were carried out monthly in different places of the pond: at the water supply site (affluent), in the middle of the pond and at the water outlet site (effluent). Analyzes related to nitrogen series (total nitrogen, total ammonia, nitrite + nitrate), dissolved oxygen, total hardness, total alkalinity, total phosphorus, pH, turbidity and water temperature were performed at all sampling sites. In addition, the density of the zooplankton groups Copepoda (adults and nauplii), Rotifera and Cladocera was determined.

Results: Regarding the changes between the quality variables of the affluent and effluent water of the pond, the outlet water showed a significant increase only in the variable total alkalinity. Rotifers were the most abundant organisms, and nauplii Copepoda showed a significant increase in the density of organisms in the middle of the pond compared to the inlet water. Both the redundancy analysis (RDA) and the Spearman correlation matrix revealed that zooplanktonic groups are associated with certain physicochemical variables of the water. According to the Analysis of Indicator Species (IndVal), the evaluated organisms are not related to bioindicator species in this environment.

Conclusions: Therefore, intensive production of O. niloticus caused changes only in the total alkalinity of the pond water. The zooplanktonic organisms correlated with the physicochemical variables of the water and between the groups, and did not show potential for bioindicators of water quality in the different locations of the pond.
 

Keywords

effluent, environmental management, monitoring, Oreochromis niloticus, pollution

Resumo


Objetivo: Este estudo teve como objetivo avaliar a interferência da piscicultura intensiva nas variáveis físico-químicas da água e na comunidade zooplanctônica de um viveiro de tilápias (Oreochromis niloticus Linnaeus, 1758) no sul do Brasil. Além disso, verificou-se se os grupos de zooplâncton analisados poderiam ser bioindicadores de alterações na qualidade da água do viveiro.

Métodos: As coletas de amostras de água e zooplâncton foram realizadas mensalmente em diferentes locais do viveiro: no local de abastecimento de água (afluente), no meio do viveiro e no local de saída de água (efluente). Foram realizadas análises relacionadas a série nitrogenada (nitrogênio total, amônia total, nitrito + nitrato), oxigênio dissolvido, dureza total, alcalinidade total, fósforo total, pH, turbidez e temperatura da água em todos os locais de amostragem. Além disso, foi determinada a densidade dos grupos de zooplânctons Copepoda (adultos e náuplios), Rotifera e Cladocera.

Resultados: Em relação às variações entre as variáveis de qualidade da água afluente e efluente do viveiro, a água de saída apresentou aumento significativo apenas na variável alcalinidade total. Os rotíferos foram os organismos mais abundantes, e os Copepoda náuplios apresentaram um aumento significativo na densidade de organismos no meio do viveiro em comparação com a água de entrada. Tanto a análise de redundância (RDA) quanto a matriz de correlação de Spearman revelaram que grupos zooplanctônicos estão associados a determinadas variáveis físico-químicas da água. De acordo com a Análise de Espécies Indicadoras (IndVal), os organismos avaliados não apresentam relação como espécies bioindicadoras deste ambiente.

Conclusões: A produção intensiva de O. niloticus causou alterações apenas na alcalinidade total da água do viveiro. Os organismos zooplanctônicos apresentaram correlação com as variáveis físico-químicas da água e entre os grupos, e não apresentaram potencial para bioindicadores da qualidade da água nos diferentes locais do viveiro.
 

Palavras-chave

efluente, gestão ambiental, monitoramento, Oreochromis niloticus, poluição

References

Abdel-Wahed, R.K., Shaker, I.M., Elnady, M.A., & Soliman, M.A.M., 2018. Impact of fish- farming management on water quality, plankton abundance and growth performance of fish in earthen ponds. Egypt J Aquat Biol Fish 22(1), 49-63. http://dx.doi.org/10.21608/ejabf.2018.7705.

Ahmad, A., Kurniawan, S.B., Abdullah, S.R.S., Othman, A.R., & Hasan, H.A., 2022. Contaminants of emerging concern (CECs) in aquaculture effluent: insight into breeding and rearing activities, alarming impacts, regulations, performance of wastewater treatment unit and future approaches. Chemosphere 290, 133319. PMid:34922971. http://dx.doi.org/10.1016/j.chemosphere.2021.133319.

Amaral, A.M.B., Gomes, J.L.C., Weimer, G.H., Marins, A.T., Loro, V.L., & Zanella, R., 2018. Seasonal implications on toxicity biomarkers of Loricariichthys anus (Valenciennes, 1835) from a subtropical reservoir. Chemosphere 191, 876-885. PMid:29107229. http://dx.doi.org/10.1016/j.chemosphere.2017.10.114.

American Public Health Association – APHA. American Water Works Association – AWWA. Water Environmental Federation – WEF, 2012. Standard methods for the examination of water and wastewater. Washington, 22 ed.

Araujo, A.V., Dias, C.O., & Bonecker, S.L.C., 2017. Effects of environmental and water quality parameters on the functioning of copepod assemblages in tropical estuaries. Estuar. Coast. Shelf Sci. 194, 150-161. http://dx.doi.org/10.1016/j.ecss.2017.06.014.

Boyd, C.E., & Tucker, C.S., 1998. Pond aquaculture water quality management. Boston: Kluwer Academic. http://dx.doi.org/10.1007/978-1-4615-5407-3.

Branco, C.W.C., Rocha, M.-I.A., Pinto, G.F.S., Gomara, G.A., & Filippo, R.D., 2002. Limnological features of Funil Reservoir (R.J., Brazil) and indicator properties of rotifers and cladocerans of the zooplankton community. Lakes Reservoirs: Res. Manage. 7(2), 87-92. http://dx.doi.org/10.1046/j.1440-169X.2002.00177.x.

Brasil, 16 Maio 2011. Resolução n. 430, de 13 de maio de 2011. Dispõe sobre as condições e padrões de lançamento de efluentes, complementa e altera a Resolução nº 357, de 17 de março de 2005. Diário Oficial da União [da] República Federativa do Brasil, Poder Executivo, Brasília, DF. Retrieved in 2021, March 26, from http://www.mma.gov.br/port/conama/res/res11/res43011.pdf

Cáceres, M., & Legendre, P., 2009. Associations between species and groups of sites: indices and statistical inference. Ecology 90(12), 3566-3574. PMid:20120823. http://dx.doi.org/10.1890/08-1823.1.

Cáceres, M., 2013. How to use the indicspecies package (ver. 1.7.1). R Proj 29. State College, PA: Pennsylvania State University.

Cao, L., Wang, W., Yang, Y., Yang, C., Yuan, Z., Xiong, S., & Diana, J., 2007. Environmental impact of aquaculture and countermeasures to aquaculture pollution in China. Environ. Sci. Pollut. Res. Int. 14(7), 452-462. PMid:18062476. http://dx.doi.org/10.1065/espr2007.05.426.

Carvalho, M.A., Lana, C.C., Bengtson, P., & Sá, N.P., 2017. Late Aptian (Cretaceous) climate changes in northeastern Brazil: a reconstruction based on indicator species analysis (IndVal). Palaeogeogr. Palaeoclimatol. Palaeoecol. 485, 543-560. http://dx.doi.org/10.1016/j.palaeo.2017.07.011.

Cerezer, C., Marins, A.T., Cerezer, F.O., Severo, E.S., Leitemperger, J.W., Grubel Bandeira, N.M., Zanella, R., Loro, V.L., & Santos, S., 2020. Influence of pesticides and abiotic conditions on biochemical biomarkers in Aegla aff. longirostri (crustacea, anomura): implications for conservation. Ecotoxicol. Environ. Saf. 203, 110982. PMid:32888624. http://dx.doi.org/10.1016/j.ecoenv.2020.110982.

Coldebella, A., Gentelini, A., Piana, P., Coldebella, P., Boscolo, W., & Feiden, A., 2018. Effluents from fish farming ponds: a view from the perspective of its main components. Sustainability 10(1), 3.

Companhia Ambiental do Estado de São Paulo – CETESB, 2011. Guia nacional de coleta e preservação de amostras: água, sedimento, comunidades aquáticas e efluentes líquidos. São Paulo: CETESB, 326 p.

David, L.H., Pinho, S.M., Romera, D.M., Campos, D.W.J., Franchini, A.C., & Garcia, F., 2022. Tilapia farming based on periphyton as a natural food source. Aquaculture 547, 737544. http://dx.doi.org/10.1016/j.aquaculture.2021.737544.

De-Carli, B.P., Albuquerque, F.P., Moschini-Carlos, V., & Pompêo, M., 2018. Comunidade zooplanctônica e sua relação com a qualidade da água em reservatórios do Estado de São Paulo. Iheringia Ser. Zool. 108, e2018013. http://dx.doi.org/10.1590/1678-4766e2018013.

Degefu, F., Mengistu, S., & Schagerl, M., 2011. Influence of fish cage farming on water quality and plankton in fish ponds: a case study in the Rift Valley and North Shoa reservoirs, Ethiopia. Aquaculture 316(1-4), 129-135. http://dx.doi.org/10.1016/j.aquaculture.2011.03.010.

Dorche, E.E., Shahraki, M.Z., Farhadian, O., & Keivany, Y., 2018. Seasonal variations of plankton structure as bioindicators in Zayandehrud Dam Lake, Iran. Limnol. Review 18(4), 157-165. http://dx.doi.org/10.2478/limre-2018-0017.

Dufrêne, M., & Legendre, P., 1997. Species assemblages and indicator species: the need for flexible asymmetrical approach. Ecol. Monogr. 67(3), 345-366. http://dx.doi.org/10.2307/2963459.

El-Hack, M.E.A., El-Saadony, M.T., Nader, M.M., Salem, H.M., El-Tahan, A.M., Soliman, S.M., & Khafaga, A.F., 2022. Effect of environmental factors on growth performance of Nile tilapia (Oreochromis niloticus). Int. J. Biometeorol. 66(11), 2183-2194. PMid:36044083. http://dx.doi.org/10.1007/s00484-022-02347-6.

Empresa Brasileira de Pesquisa Agropecuária – Embrapa, 2020. O mercado de peixes da piscicultura no Brasil: estudo do segmento de supermercados. Palmas: Embrapa Pesca e Aquicultura, 38 p., Boletim de Pesquisa e Desenvolvimento, no. 25.

Enwereuzoh, U.O., Harding, K.G., & Low, M., 2021. Fish farm effluent as a nutrient source for algae biomass cultivation. S. Afr. J. Sci. 117(7-8), 1-9. http://dx.doi.org/10.17159/sajs.2021/8694.

Eskinazi-Sant’Anna, E., Menezes, R., Costa, I., Araújo, M., Panosso, R., & Attayde, J., 2013. Zooplankton assemblages in eutrophic reservoirs of the Brazilian semi-arid. Braz. J. Biol. 73(1), 37-52. PMid:23644787. http://dx.doi.org/10.1590/S1519-69842013000100006.

Food and Agriculture Organization of the United Nations – FAO, 2022. The state of world fisheries and aquaculture [online]. Rome. Retrieved in 2023, March 20, from https://www.fao.org/3/cc0461en/online/cc0461en.html

Food and Agriculture Organization of the United Nations – FAO, 2023. Oreochromis niloticus [online]. Rome: Fisheries and Aquaculture. Retrieved in 2023, March 20, from https://www.fao.org/fishery/en/introsp/3399/en

Føre, M., Frank, K., Norton, T., Svendsen, E., Alfredsen, J.A., Dempster, T., Eguiraun, H., Watson, W., Stahl, A., Sunde, L.M., Schellewald, C., Skoien, K.R., Alver, M.O., & Berckmans, D., 2018. Precision fish farming: a new framework to improve production in aquaculture. Biosyst. Eng. 173, 176-193. http://dx.doi.org/10.1016/j.biosystemseng.2017.10.014.

García-Chicote, J., Armengol, X., & Rojo, C., 2018. Zooplankton abundance: a neglected key element in the evaluation of reservoir water quality. Limnologica 69, 46-54. http://dx.doi.org/10.1016/j.limno.2017.11.004.

Golombieski, J.I., Marchesan, E., Baumart, J.S., Reimche, G.B., Resgalla Júnior, C., Storck, L., & Santos, S., 2008. Cladocers, Copepods and Rotifers in rice-fish culture handled with metsulfuron-methyl and azimsulfuron herbicides and carbofuran insecticide. Cienc. Rural 38(8), 2097-2102. http://dx.doi.org/10.1590/S0103-84782008000800001.

Golterman, H.L., Climo, F.S., & Ohnstad, M.A.M., 1978. Methods for physical and chemical analysis of fresh waters. Oxford: IBP, 2 ed.

Hargreaves, J.A., & Tucker, C.S., 2004. Managing ammonia in fish ponds. S. Reg. Aquac. Cent. 4603, 1-7. Retrieved in 2021, March 20, from https://www.researchgate.net/profile/Arvind-Singh-21/post/How_to_reduce_Ammonia_and_Phosphorus_from_pond/attachment/59d63a1d79197b80779974da/AS%3A404699938344961%401473499392317/download/1.pdf

Hinrichsen, E., Walakira, J.K., Langi, S., Ibrahim, N.A., Tarus, V., Badmus, O., & Baumüller, H., 2022. Prospects for aquaculture development in Africa: a review of past performance to assess future potential. Bonn: Center for Development Research (ZEF). Working Paper, no. 211.

Instituto Brasileiro de Geografia e Estatística – IBGE, 2002. Mapas temáticos: solos. Retrieved in 2021, March 20, from https://mapas.ibge.gov.br/tematicos/solos.html

Instituto Brasileiro de Geografia e Estatística – IBGE, 2019. Pecuária. Retrieved in 2021, March 20, from https://cidades.ibge.gov.br/brasil/pesquisa/18/16459?ano=2019

Jeppesen, E., Nõges, P., Davidson, T.A., Haberman, J., Nõges, T., Blank, K., Lauridsen, T.L., Sondergaard, M., Sayer, C., Laugaste, R., Johansson, L.S., Bjerring, R., & Amsinck, S.L., 2011. Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 676(1), 279-297. http://dx.doi.org/10.1007/s10750-011-0831-0.

Josué, I.I.P., Sodré, E.O., Setubal, R.B., Cardoso, S.J., Roland, F., Figueiredo-Barros, M.P., & Bozelli, R.L., 2021. Zooplankton functional diversity as an indicator of a long-term aquatic restoration in an Amazonian lake. Restor. Ecol. 29(5), e13365. http://dx.doi.org/10.1111/rec.13365.

Kajimura, M., Croke, S.J., Glover, C.N., & Wood, C.M., 2004. Dogmas and controversies in the handling of nitrogenous wastes: the effect of feeding and fasting on the excretion of ammonia, urea and other nitrogenous waste products in rainbow trout. J. Exp. Biol. 207(12), 1993-2002. PMid:15143133. http://dx.doi.org/10.1242/jeb.00901.

Kolozsvári, I., Kun, Á., Jancsó, M., Palágyi, A., Bozán, C., & Gyuricza, C., 2022. Agronomic performance of grain sorghum (Sorghum bicolor (L.) Moench) cultivars under intensive fish farm effluent irrigation. Agronomy 12(5), 1185. http://dx.doi.org/10.3390/agronomy12051185.

Kuhn, D.D., Lawrence, A.L., Boardman, G.D., Patnaik, S., Marsh, L., & Flick Junior, G.J., 2010. Evaluation of two types of bioflocs derived from biological treatment of fish effluent as feed ingredients for Pacific white shrimp, Litopenaeus vannamei. Aquaculture 303(1-4), 28-33. http://dx.doi.org/10.1016/j.aquaculture.2010.03.001.

Leppänen, J.J., 2018. An overview of Cladoceran studies conducted in mine water impacted lakes. Int. Aquatic Research 10(3), 207-221. http://dx.doi.org/10.1007/s40071-018-0204-7.

Lepš, J., & Šmilauer, P., 2003. Multivariate analysis of ecological data using CANOCO. Cambridge: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511615146.

Leung, H.M., Leung, S.K.S., Au, C.K., Cheung, K.C., Wong, Y.K., Leung, A.O.W., & Yung, K.K.L., 2015. Comparative assessment of water quality parameters of mariculture for fish production in Hong Kong Waters. Mar. Pollut. Bull. 94(1-2), 318-322. PMid:25697818. http://dx.doi.org/10.1016/j.marpolbul.2015.01.028.

Michałowski, T., & Asuero, A.G., 2012. New approaches in modeling carbonate alkalinity and total alkalinity. Crit. Rev. Anal. Chem. 42(3), 220-244. http://dx.doi.org/10.1080/10408347.2012.660067.

Mo, W.Y., Cheng, Z., Choi, W.M., Man, Y.B., Liu, Y., & Wong, M.H., 2014. Application of food waste-based diets in polyculture of low trophic level fish: effects on fish growth, water quality and plankton density. Mar. Pollut. Bull. 85(2), 803-809. PMid:24492151. http://dx.doi.org/10.1016/j.marpolbul.2014.01.020.

Neves, I.F., Rocha, O., Roche, K.F., & Pinto, A.A., 2003. Zooplankton community structure of two marginal lakes of the River Cuiabá (Mato Grosso, Brazil) with analysis of Rotifera and Cladocera diversity. Braz. J. Biol. 63(2), 329-343. PMid:14509855. http://dx.doi.org/10.1590/S1519-69842003000200018.

Nguyen, T.T.N., Némery, J., Gratiot, N., Strady, E., Tran, V.Q., Nguyen, A.T., Aimé, J., & Peyne, A., 2019. Nutrient dynamics and eutrophication assessment in the tropical river system of Saigon – DONGNAI (southern Vietnam). Sci. Total Environ. 653, 370-383. PMid:30412882. http://dx.doi.org/10.1016/j.scitotenv.2018.10.319.

Ntengwe, F.W., & Edema, M.O., 2008. Physico-chemical and microbiological characteristics of water for fish production using small ponds. Phys. Chem. Earth Parts ABC 33(8-13), 701-707. http://dx.doi.org/10.1016/j.pce.2008.06.032.

O’Brien, R.M., 2007. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41(5), 673-690. http://dx.doi.org/10.1007/s11135-006-9018-6.

Omeir, M.K., Jafari, A., Shirmardi, M., & Roosta, H., 2020. Effects of irrigation with fish farm effluent on nutrient content of Basil and Purslane. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 90(4), 825-831. http://dx.doi.org/10.1007/s40011-019-01155-0.

Ottinger, M., Clauss, K., & Kuenzer, C., 2016. Aquaculture: relevance, distribution, impacts and spatial assessments: a review. Ocean Coast. Manage. 119, 244-266. http://dx.doi.org/10.1016/j.ocecoaman.2015.10.015.

Parra, G., Matias, N.G., Guerrero, F., & Boavida, M.J., 2009. Short term fluctuations of zooplankton abundance during autumn circulation in two reservoirs with contrasting trophic state. Limnetica 28(1), 175-184. http://dx.doi.org/10.23818/limn.28.13.

Perbiche-Neves, G., Saito, V.S., Previattelli, D., Rocha, C.E.F., & Nogueira, M.G., 2016. Cyclopoid copepods as bioindicators of eutrophication in reservoirs: do patterns hold for large spatial extents? Ecol. Indic. 70, 340-347. http://dx.doi.org/10.1016/j.ecolind.2016.06.028.

Picapedra, P.H.S., Fernandes, C., Baumgartner, G., & Sanches, P.V., 2021. Zooplankton communities and their relationship with water quality in eight reservoirs from the midwestern and southeastern regions of Brazil. Braz. J. Biol. 81(3), 701-713. PMid:32876161. http://dx.doi.org/10.1590/1519-6984.230064.

Pomeroy, R., & Kirschman, H.D., 1945. Determination of dissolved oxygen. proposed modification of the Winkler Method. Ind. Eng. Chem. Anal. Ed. 17(11), 715-716. http://dx.doi.org/10.1021/i560147a013.

Portinho, J.L., Silva, M.S.G.M., Queiroz, J.F., de Barros, I., Gomes, A.C.C., Losekann, M.E., Koga-Vicente, A., Spinelli-Araújo, L., Vicente, L.E., & Rodrigues, G.S., 2021. Integrated indicators for assessment of best management practices in tilapia cage farming. Aquaculture 545, 737136. http://dx.doi.org/10.1016/j.aquaculture.2021.737136.

R Core Team, 2021. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved in 2021, March 20, from https://www.R-project.org/

Rahman, M.L., Shahjahan, M., & Ahmed, N., 2021. Tilapia Farming in Bangladesh: adaptation to climate change. Sustainability 13(14), 7657. http://dx.doi.org/10.3390/su13147657.

Rio Grande do Sul. Secretaria da Coordenação e Planejamento, 2002. Atlas socioeconômico: Estado do Rio Grande do Sul. Porto Alegre: SCP.

Rio Grande do Sul. Conselho Estadual do Meio Ambiente – CONSEMA, 24 nov. 2006. Resolução nº 128, de 24 de novembro de 2006. Dispõe sobre a fixação de Padrões de Emissão de Efluentes Líquidos para fontes de emissão que lancem seus efluentes em águas superficiais no Estado do Rio Grande do Sul. Diário Oficial do Estado do Rio Grande do Sul, Porto Alegre, RS. Retrieved in 2021, March 20, from https://www.sema.rs.gov.br/upload/arquivos/201611/30155644-resolucao-128-06-efluentes.pdf

Sampaio, E.V., & López, C.M., 2000. Zooplankton community composition and some limnological aspects of an oxbow lake of the Paraopeba River, São Francisco River Basin, Minas Gerais, Brazil. Braz. Arch. Biol. Technol. 43(3), 285-293. http://dx.doi.org/10.1590/S1516-89132000000300007.

Schenone, N.F., Vackova, L., & Cirelli, A.F., 2011. Fish-farming water quality and environmental concerns in Argentina: a regional approach. Aquacult. Int. 19(5), 855-863. http://dx.doi.org/10.1007/s10499-010-9404-x.

Schumann, M., & Brinker, A., 2020. Understanding and managing suspended solids in intensive salmonid aquaculture: a review. Rev. Aquacult. 12(4), 2109-2139. http://dx.doi.org/10.1111/raq.12425.

Simangunsong, N.F., & Hidayat, A., 2017. Carrying capacity and institutional analysis of floating net cages in Jatiluhur Reservoir. Sustinere J. Environ. Sustain. 1(1), 37-47. http://dx.doi.org/10.22515/sustinere.jes.v1i1.6.

Sindilariu, P.D., 2007. Reduction in effluent nutrient loads from flow-through facilities for trout production: a review. Aquacult. Res. 38(10), 1005-1036. http://dx.doi.org/10.1111/j.1365-2109.2007.01751.x.

Sipaúba-Tavares, L.H., Donadon, A.R.V., & Milan, R.N., 2011. Water quality and plankton populations in an earthen polyculture pond. Braz. J. Biol. 71(4), 845-855. http://dx.doi.org/10.1590/S1519-69842011000500005.

Snell, T.W., & Janssen, C.R., 1995. Rotifers in ecotoxicology: a review. Hydrobiologia 313-314(1), 231-247. http://dx.doi.org/10.1007/BF00025956.

Sohel, M.S.I., & Ullah, M.H., 2012. Ecohydrology: A framework for overcoming the environmental impacts of shrimp aquaculture on the coastal zone of Bangladesh. Ocean Coast. Manage. 63, 67-78. http://dx.doi.org/10.1016/j.ocecoaman.2012.03.014.

Soil Survey Staff, 2014. Keys to soil taxonomy. Washington: Government Printing Office.

Straus, D.L., 2003. The acute toxicity of copper to blue tilapia in dilutions of settled pond water. Aquaculture 219(1-4), 233-240. http://dx.doi.org/10.1016/S0044-8486(02)00350-2.

Sugiura, S.H., Marchant, D.D., Kelsey, K., Wiggins, T., & Ferraris, R.P., 2006. Effluent profile of commercially used low-phosphorus fish feeds. Environ. Pollut. 140(1), 95-101. PMid:16153761. http://dx.doi.org/10.1016/j.envpol.2005.06.020.

Tedesco, M.J., Gianello, C., Bissani, C.A., & Bohnen, H., 1995. Análise de solo, plantas e outros materiais. Porto Alegre: Universidade Federal do Rio Grande do Sul, 147 p., 2 ed., Boletim Técnico, no. 5.

Teodorowicz, M., 2013. Surface water quality and intensive fish culture. Arch. Pol. Fisheries 21(2), 2. http://dx.doi.org/10.2478/aopf-2013-0007.

Trindade, V.S.F., & Carvalho, M.A., 2018. Paleoenvironment reconstruction of Parnaíba Basin (north, Brazil) using indicator species analysis (IndVal) of Devonian microphytoplankton. Mar. Micropaleontol. 140, 69-80. http://dx.doi.org/10.1016/j.marmicro.2018.02.003.

Tundisi, J.G., & Matsumura-Tundisi, T., 2008. Limnologia. São Paulo: Oficina de Textos.

Wang, Z., Zhang, Z., Zhang, J., Zhang, Y., Liu, H., & Yan, S., 2012. Large-scale utilization of water hyacinth for nutrient removal in Lake Dianchi in China: the effects on the water quality, macrozoobenthos and zooplankton. Chemosphere 89(10), 1255-1261. PMid:22939513. http://dx.doi.org/10.1016/j.chemosphere.2012.08.001.

Yermolaeva, N.I., 2015. Zooplankton and water quality of the Ishim River in Northern Kazakhstan. Arid Ecosyst. 5(3), 176-187. http://dx.doi.org/10.1134/S207909611503004X.

Zhang, S.Y., Li, G., Wu, H.B., Liu, X.G., Yao, Y.H., Tao, L., & Liu, H., 2011. An integrated recirculating aquaculture system (RAS) for land-based fish farming: the effects on water quality and fish production. Aquacult. Eng. 45(3), 93-102. http://dx.doi.org/10.1016/j.aquaeng.2011.08.001.

Zhou, Q., Zhang, J., Fu, J., Shi, J., & Jiang, G., 2008. Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal. Chim. Acta 606(2), 135-150. PMid:18082645. http://dx.doi.org/10.1016/j.aca.2007.11.018.
 


Submitted date:
11/13/2022

Accepted date:
10/05/2023

Publication date:
11/10/2023

654e4b71a9539518b33297e8 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections