Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X7322
Acta Limnologica Brasiliensia
Original Article

Role of zooplanktonic functional groups in a shallow mesotrophic reservoir

Papel dos grupos funcionais zooplanctônicos em um reservatório mesotrófico raso

Maria Carolina de Almeida Castilho; Thiago Rodrigues dos Santos; Carla Ferragut; Raoul Henry

Downloads: 0
Views: 842

Abstract

Abstract:: Aim: Zooplankton functional groups play an important role in lake functioning and can readily respond to environmental changes and may be associated with phytoplankton changes. In warmer regions, zooplankton species have a smaller body size, which decreases their grazing capacity, attenuating top-down control throughout phytoplankton. We evaluated changes in density and biomass of zooplankton functional groups and their relationship with algal groups in horizontal reservoir zonation (pelagic, sublittoral, and eulittoral zones) of the shallow reservoir. We hypothesize that the density and biomass of zooplankton functional groups are associated with fluctuations in the phytoplankton groups in horizontal reservoir zonation.

Methods: Changes in the structure of the zooplankton functional group and the controlling limnological variables were verified at three sampling stations: pelagic, sublittoral, and eulittoral zones in a mesotrophic reservoir.

Results: Zooplankton species were distributed in seven functional groups. The density and biomass of zooplankton functional groups were not clearly associated with biomass variations of phytoplankton groups. However, the zooplankton functional groups were associated with horizontal reservoir zonation, where specific groups were found in the pelagic, sublittoral, and eulittoral zones.

Conclusions: The zooplankton functional groups were related to the horizontal zonation of the reservoir but were not associated with changes in the phytoplankton groups due to the dominance of small organisms.

Keywords

potential grazing pressure, body size, omnivores, functional traits

Resumo

Resumo:: Objetivo: Os grupos funcionais do zooplâncton desempenham um papel importante no funcionamento dos lagos, são capazes de responder prontamente às mudanças ambientais e podem estar associados às mudanças no fitoplâncton. Em regiões mais quentes, as espécies de zooplâncton apresentam pequeno tamanho corporal, o que diminui sua capacidade de pastejo e atenua o controle de cima para baixo sobre o fitoplâncton. Avaliamos as mudanças na densidade e biomassa de grupos funcionais do zooplâncton e sua relação com grupos de algas na zonação horizontal de um reservatório raso (zona pelágica, sublitoral e eulitoral). Nossa hipótese é que a densidade e biomassa dos grupos funcionais do zooplâncton estão associadas a flutuações nos grupos do fitoplâncton no zoneamento horizontal do reservatório.

Métodos: Em um reservatório mesotrófico, as alterações na estrutura do grupo funcional do zooplâncton e nas variáveis limnológicas foram avaliadas em três zonas de amostragem: pelágica, sublitoral e eulitoral.

Resultados: As espécies de zooplâncton foram distribuídas em sete grupos funcionais. Evidenciou-se que a densidade e a biomassa dos grupos funcionais do zooplâncton não foram claramente associadas às variações da biomassa dos grupos do fitoplâncton. No entanto, os grupos funcionais do zooplâncton foram associados à zonação horizontal do reservatório, onde grupos específicos foram encontrados na zona pelágica, sublitoral e eulitoral.

Conclusões: Os grupos funcionais do zooplâncton foram relacionados com a zonação horizontal do reservatório, mas não foram associados às mudanças nos grupos do fitoplâncton devido à dominância de organismos de pequeno porte.
 

Palavras-chave

pressão potencial de pastejo, tamanho do corpo, onívoros, traços funcionais

References

Barnett, A.J., Finlay, K. & Beisner, B.E., 2007. Functional diversity of crustacean zooplankton communities: towards a trait-based classification. Freshw. Biol., 52(5), 796-813. http://dx.doi.org/10.1111/j.1365-2427.2007.01733.x.

Becker, V., Cardoso, L.S. & Huszar, V.L.M., 2009. Diel variation of phytoplankton functional groups in a subtropical reservoir in southern Brazil during an autumnal stratification period. Aquat. Ecol., 43(2), 285-293. http://dx.doi.org/10.1007/s10452-008-9164-0.

Bicudo, C.E.M. & Menezes, M., 2018. Gêneros de algas de águas continentais do Brasil. São Carlos: Editora Rima.

Bicudo, D.C., Fonseca, B.M., Bini, L.M., Crossetti, L.O., Bicudo, C.E.M. & Araújo‐Jesus, T., 2007. Undesirable side‐effects of water hyacinth control in a shallow tropical reservoir. Freshw. Biol., 52(6), 1120-1133. http://dx.doi.org/10.1111/j.1365-2427.2007.01738.x.

Bonsdorff, E. & Pearson, T.H., 1999. Variation in the sublittoral macrozoobenthos of the Baltic Sea along environmental gradients: a functional‐group approach. Aust. J. Ecol., 24(4), 312-326. http://dx.doi.org/10.1046/j.1442-9993.1999.00986.x.

Bottrell, H.H., Ducan, A., Gliwicz, Z., Grygierek, E., Herzig, A., HillbrichtI-Ilkowska, A., Kurasawa, H., Larsson, P. & Weglenska, T., 1976. A review of some problems in zooplankton production studies. Norw. J. Zool., 24, 419-456.

Branco, C.W.C., Kozlowsky-Suzuki, B. & Esteves, F.A., 2007. Environmental changes and zooplankton temporal and spatial variation in a disturbed Brazilian coastal lagoon. Braz. J. Biol., 67(2), 251-262. PMid:17876435. http://dx.doi.org/10.1590/S1519-69842007000200010.

Brooks, J.L. & Dodson, S.I., 1965. Predation, body size, and composition of plankton. Science, 150(3692), 28-35. PMid:17829740. http://dx.doi.org/10.1126/science.150.3692.28.

Castro, R.J., Henry, R., Ferragut, C. & Casartelli, M., 2018. Comparing lacustrine environments: the importance of the kind of habitat on the structure of fishes. Acta Limnol. Bras., 30, e303. http://dx.doi.org/10.1590/s2179-975x13417.

Cole, G.A., 1994. Textbook of limnology. Long Grove: Waveland Press Inc.

Conti, J.B. & Furlan, S.A., 2003. Geoecologia: o clima, os solos e a biota. In: Ross, J.L., ed. Geografia do Brasil. São Paulo: Editora da Universidade de São Paulo, 67-207.

Cummins, K.W., 2016. Combining taxonomy and function in the study of stream macroinvertebrates. J. Limnol., 75(S1), 235-241. http://dx.doi.org/10.4081/jlimnol.2016.1373.

Cupertino, A., Gucker, B., Von Ruckert, G. & Figueredo, C.C., 2019. Phytoplankton assemblage composition as an environmental indicator in routine lentic monitoring: taxonomic versus functional groups. Ecol. Indic., 101, 522-532. http://dx.doi.org/10.1016/j.ecolind.2019.01.054.

De Los Ríos, P., 2005. Survival of pigmented freshwater zooplankton exposed to artificial ultraviolet radiation and two levels of dissolved organic carbon. Pol. J. Ecol., 53, 113-116.

Dunck, B., Bortolini, J.C., Rodrigues, L., Rodrigues, L.C., Jati, S. & Train, S., 2013. Functional diversity and adaptative strategies of planktonic and periphytic algae in isolated tropical floodplain lake. Braz. J. Bot., 36(4), 257-266. http://dx.doi.org/10.1007/s40415-013-0029-y.

Dunck, B., Rodrigues, L. & Bicudo, D.C., 2015. Functional diversity and functional traits of periphytic algae during a short-term successional process in a Neotropical floodplain llake. Braz. J. Biol., 75(3), 587-597. PMid:26465723. http://dx.doi.org/10.1590/1519-6984.17813.

Esteves, F.A. & Caliman, A., 2011. Águas continentais: características do meio, compartimentos e suas comunidades. In: Esteves, F.A., ed. Fundamentos de limnologia. Rio de Janeiro: Interciência, 113-118.

Fernández, C.E. & Rejas, D., 2017. Effects of UVB radiation on grazing of two cladocerans from high-altitude Andean lakes. PLoS One, 12(4), e0174334. PMid:28379975. http://dx.doi.org/10.1371/journal.pone.0174334.

Fonseca, B.M., Ferragut, C., Tucci, A., Crossetti, L.O., Ferrari, F., Bicudo, D.C., Sant’Anna, C.L., & Bicudo, C.E.M., 2014. Biovolume de cianobactérias e algas de reservatórios tropicais do Brasil com diferentes estados tróficos. Hoehnea 41(1), 9-30. http://dx.doi.org/10.1590/S2236-89062014000100002.

Gillooly, J.F., & Dodson, S.I., 2000. Latitudinal patterns in the size distribution and seasonal dynamics of new world, freshwater cladocerans. Limnol. Oceanogr. 45(1), 22-30. http://dx.doi.org/10.4319/lo.2000.45.1.0022.

Golterman, H.L., Clymo, R.S. & Ohmstad, M.A.M., 1978. Methods for physical and chemical analysis of freshwaters. Oxford: Blackwell Scientific Publications.

Gomes, L.F., Pereira, H.R., Gomes, A.C.A.M., Vieira, M.C., Martins, P.R., Roitman, I. & Vieira, L.C.G., 2019. Zooplankton functional-approach studies in continental aquatic environments: a systematic review. Aquat. Ecol., 53(2), 191-203. http://dx.doi.org/10.1007/s10452-019-09682-8.

Goździejewska, A.M., Koszałka,, J., Tandyrak, R., Grochowska, J. & Parszuto, K., 2021. Functional responses of zooplankton communities to depth, trophic, status, and ion content in mine pit lakes. Hydrobiologia, 848(11), 2699-2719. http://dx.doi.org/10.1007/s10750-021-04590-1.

Hamm, C.E., Merkel, R., Springer, O., Jurkojc, P., Maier, C., Prechtel, K. & Smetacek, V., 2003. Architecture and material properties of diatom shells provide effective mechanical protection. Nature, 421(6925), 841-843. PMid:12594512. http://dx.doi.org/10.1038/nature01416.

Hammer, O., Harper, D.A.T. & Ryan, P.D., 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron., 4, 1-9.

Hébert, M.P., Beisner, B.E. & Maranger, R., 2017. Linking zooplankton communities to ecosystem functioning: toward an effect-trait framework. J. Plankton Res., 39(1), 3-12. http://dx.doi.org/10.1093/plankt/fbw068.

Hillebrand, H., Dürselen, C.D., Kirschtel, D., Pollingher, U. & Zohary, T., 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol., 35(2), 403-424. http://dx.doi.org/10.1046/j.1529-8817.1999.3520403.x.

Iglesias, C., Goyenola, G., Mazzeo, N., Meerhoff, M., Rodó, E. & Jeppesen, E., 2007. Horizontal dynamics of zooplankton in subtropical Lake Blanca (Uruguay) hosting multiple zooplankton predators and aquatic plant refuges. Hydrobiologia, 584(1), 179-189. http://dx.doi.org/10.1007/s10750-007-0599-4.

Instituto de Astronomia, Geofísica e Ciências Atmosféricas - IAG/USP, 2014. Boletim climatológico anual da estação meteorológica [online]. São Paulo: IAG/USP. Retrieved in 2014, May 1, from http://www.estacao.iag.usp.br/boletim.php.

Jeppesen, E., Søndergaard, M., Jensen, J.P., Havens, K.E., Anneville, O., Carvalho, L., Coveney, M.F., Deneke, R., Dokulil, M.T., Foy, B., Gerdeaux, D., Hampton, S.E., Hilt, S., Kangur, K., Køhler, J., Lammens, E.H.H.R., Lauridsen, T.L., Manca, M., Miracle, M.R., Moss, B., Nøges, P., Persson, G., Phillips, G., Portielje, R., Romo, S., Schelske, C.L., Straile, D., Tatrai, I., Willén, E. & Winder, M., 2005. Lake response to reduced nutrient loading - an analysis of contemporary long-term data from 35 case studies. Freshw. Biol., 50(10), 1747-1771. http://dx.doi.org/10.1111/j.1365-2427.2005.01415.x.

Jeppesen, E., Søndergaard, M., Kanstrup, E., Petersen, B., Eriksen, R.B., Hammershøj, M., Mortensen, E., Jensen, J.P. & Have, A., 1994. Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ? Hydrobiologia, 275(1), 15-30. http://dx.doi.org/10.1007/BF00026696.

Kiorbe, T., 2011. How zooplankton feed: mechanisms, traits and trade-offs. Biol. Rev. Camb. Philos. Soc. 86(2), 311-339. PMid:20682007. http://dx.doi.org/10.1111/j.1469-185X.2010.00148.x

Li, X.Y., Liu, M.H., Sun, X., Li, S., Zhao, Y.X., Liu, D., Chai, F.Y. & Yu, H.X., 2021. Functional groups of benthic macroinvertebrates in relation to physicochemical factors in Keqin Lake, Zhalong National Nature Reserve, Northeastern China. Appl. Ecol. Environ. Res., 19(1), 279-292. http://dx.doi.org/10.15666/aeer/1901_279292.

Lionard, M., Azémar, F., Bouletreau, S., Muylaert, K., Tackx, M. & Vyverman, W., 2005. Grazing by meso- and microzooplankton on phytoplankton in the upper reaches of the Schelde estuary (Belgium/The Netherlands). Estuar. Coast. Shelf Sci., 64(4), 764-774. http://dx.doi.org/10.1016/j.ecss.2005.04.011.

Litchman, E., Ohman, M.D. & Kiorboe, T., 2013. Trait-based approaches to zooplankton communities. J. Plankton Res., 35(3), 473-484. http://dx.doi.org/10.1093/plankt/fbt019.

Liu, H., Chen, M., Zhu, F. & Harrison, P.J., 2016. Effect of diatom silica content on copepod grazing, growth and reproduction. Front. Mar. Sci., 3, 89. http://dx.doi.org/10.3389/fmars.2016.00089.

Lürling, M., 2021. Grazing resistance in phytoplankton. Hydrobiologia 848(1), 237-249. http://dx.doi.org/10.1007/s10750-020-04370-3.

Mackereth, F.J.H., Heron, J. & Talling, J.F., 1978. Water analysis: some revised methods for limnologists. Kendall: Titus Wilson and Sons Ltd.

Margalef, R., 1998. La imprecisa frontera entre el plâncton y otros tipos de comunidades. In: Anais do 7º Congresso Brasileiro de Ficologia . Caxambu: CBFic, 319-326.

McCune, B. & Mefford, M.J., 2011. PC-ORD. Multivariate analysis of ecological data. Gleneden Beach: MjM Software Design.

Meerhoff, M., Fosalba, C., Bruzzone, C., Mazzeo, N., Noordoven, W. & Jeppesen, E., 2006. An experimental study of habitat choice by Daphnia: plants signal danger more than refuge in subtropical lakes. Freshw. Biol., 51(7), 1320-1330. http://dx.doi.org/10.1111/j.1365-2427.2006.01574.x.

Meerhoff, M., Iglesias, C., Mello, F.T., Clemente, J.M., Jensen, E., Lauridsen, T.L. & Jeppesen, E., 2007. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshw. Biol., 52(6), 1009-1021. http://dx.doi.org/10.1111/j.1365-2427.2007.01748.x.

Meyer, B., Irigoien, X., Graeve, M., Head, R. & Harris, R., 2002. Feeding rates and selectivity among nauplii, copepodites and adult females of Calanus finmarchicus and Calanus helgolandicus. Helgol. Mar. Res., 56(3), 169-176. http://dx.doi.org/10.1007/s10152-002-0105-3.

Mourelatos, S. & Lacroix, G., 1990. In situ filtering rates of Cladocera: effect of body length, temperature, and food concentration. Limnol. Oceanogr., 35(5), 1101-1111. http://dx.doi.org/10.4319/lo.1990.35.5.1101.

Oh, H.-J., Jeong, H.-G., Nam, G.-S., Oda, Y., Dai, W., Lee, E.-H., Kong, D., Hwang, S.-J. & Chang, K.-H., 2017. Comparison of taxon-based and trophic-based response patterns of rotifer community to water quality: applicability of the rotifer functional group as an indicator of water quality. Anim. Cells Syst., 21(2), 133-140. PMid:30460061. http://dx.doi.org/10.1080/19768354.2017.1292952.

Padial, A.A. & Thomaz, S.M., 2008. Prediction of the light attenuation coefficient through the Secchi disk depth: empirical modeling in two large Neotropical ecosystems. Limnology, 9(2), 143-151. http://dx.doi.org/10.1007/s10201-008-0246-4.

Reynolds, C.S., Huszar, V., Kruk, C., Naselli-Flores, L. & Melo, S., 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res., 24(5), 417-428. http://dx.doi.org/10.1093/plankt/24.5.417.

Rousselet, C.F., 1908. Note on the Rotatorian Fauna of Boston with description ofNotholca bostoniensis. J. Quekett Microsc. 10, 335-340. http://dx.doi.org/10.5962/bhl.part.29046.

Rusak, J.A., Yan, N.D., Somers, K.M., Cottingham, K.L., Micheli, F., Carpenter, S.R., Frost, T.M., Paterson, M.J. & McQueen, D.J., 2002. Temporal, spatial, and taxonomic patterns of crustacean zooplankton variability in unmanipulated north‐temperate lakes. Limnol. Oceanogr., 47(3), 613-625. http://dx.doi.org/10.4319/lo.2002.47.3.0613.

Ruttner-Kolisko, A., 1974. Plankton Rotifers. Biology Taxonomy 26(1), 146. English translation of Die Binnengewässer Vol. XXVI Part I Rotatoria

Salmaso, N., Naselli-Flores, L. & Padisak, J., 2015. Functional classifications and their applications in phytoplankton ecology. Freshwat. Ecol., 60(4), 603-619. http://dx.doi.org/10.1111/fwb.12520.

Santos, T.R., Castilho, M.C., Henry, R. & Ferragut, C., 2020. Relationship between epipelon, epiphyton and phytoplankton in two limnological phases in a shallow tropical reservoir with high Nymphaea coverage. Hydrobiologia, 847(4), 1121-1137. http://dx.doi.org/10.1007/s10750-019-04172-2.

Sartory, D.P. & Grobbelaar, J.U., 1984. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia, 114(3), 177-187. http://dx.doi.org/10.1007/BF00031869.

Sodré, E.D.O. & Bozelli, R.L., 2019. How planktonic microcrustaceans respond to environment and affect ecosystem: a functional trait perspective. Int. Aquatic Research, 11(3), 207-223. http://dx.doi.org/10.1007/s40071-019-0233-x.

Sodré, E.O., Figueiredo-Barros, M.P., Roland, F., Esteves, F.A. & Bozelli, R.L., 2017. Complimentary biodiversity measures applied to zooplankton in a recovering floodplain lake. Fundam. Appl. Limnol., 190(4), 279-298. http://dx.doi.org/10.1127/fal/2017/1064.

Thomaz, S.M., Bini, L.M. & Pagioro, T.A., 2004. Métodos em limnologia: macrófitas aquáticas. In: Bicudo C.E.M. & Bicudo D.C., eds. Amostragem em limnologia. São Carlos: Editora Rima, 193-212.

Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M. & Siemann, E., 1997. The influence of functional diversity and composition on ecosystem processes. Science, 277(5330), 1300-1302. http://dx.doi.org/10.1126/science.277.5330.1300.

Utermöhl, H., 1958. Zur vervolkomnung der quantitative phytoplankton: metodik. Verh. Int. Ver. Theor. Angew. Limnol., 9, 1-38.

Valderrama, J.C., 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Mar. Chem., 10(2), 109-122. http://dx.doi.org/10.1016/0304-4203(81)90027-X.

Vignatti, A.M., Cabrera, G.C., Canosa, M. & Echaniz, S.A., 2017. Environmental and zooplankton parameter changes during the drying of a saline shallow temporary lake in central Argentina. Univ. Sci., 22(3), 177-200. http://dx.doi.org/10.11144/Javeriana.SC22-2.eazp.

Wehr, J.D. & Sheath, R.G., 2003. Freshwater algae of North America: ecology and classification. San Diego: Academic Press.
 


Submitted date:
11/03/2022

Accepted date:
05/31/2023

Publication date:
07/19/2023

64b811a0a953955073648703 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections