Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X7120
Acta Limnologica Brasiliensia
Original Article

Water quality and spatial and seasonal dynamics in the largest water supply reservoir in Brazil and implications for diatom assemblages

Qualidade da água e dinâmica espacial e sazonal no maior reservatório de fornecimento de água do Brasil e implicações para comunidades de diatomáceas

Majoi de Novaes Nascimento; Mark Bush; Denise de Campos Bicudo

Downloads: 0
Views: 1041

Abstract

Abstract:: Aim: in this paper we investigated how spatial factors and seasonal dynamics influenced the diatom community in a tropical deep environment of low productivity waters in Brazil.

Methods: we used physical and chemical characteristics of the water and planktonic diatoms from 9 sampling stations during dry (austral winter) and wet (austral summer) seasons (N = 18) as the outline to identify water quality, spatial and seasonal patterns. To evaluate spatially and temporally integrated events from the recent past (approximately the last 5 years before sampling), and the species from diverse habitats of the system, we used diatoms from the surface sediment (top 2 cm, N = 9). Since we used the top 2 cm of surface sediment containing the dead diatoms that were deposited over recent past of the reservoir, seasonal sampling of the sediment was not needed.

Results: during the dry season heavily silicified long colonial planktonic diatom species associated mainly with higher mixing depth, pH, and transparency dominated the plankton, whereas in the wet season the reservoir became stratified, favoring planktonic solitary diatoms with high surface volume ratios. For the sediment, a general pattern emerged where planktonic species dominated in the deep sections of the reservoir, and the abundance of benthic species in shallow areas near the tributaries increased.

Conclusions: the diatom assemblages was mainly influenced by seasonal variations and mixing regime. Surface sediment samples provided longer-term information, and revealed habitat differentiation shaping diatom assemblages. Overall, the small centric planktonic Aulacoseira tenella (Nygaard) Simonsen stood out as the most abundant species in the entire reservoir in both, the plankton and the sediment, indicating that size and shape serve as adaptive strategies for buoyancy and nutrient uptake stand as a competitive advantage in deep low productivity environments.

Keywords

Cantareira System, oligotrophic diatom species, phytoplankton, surface sediment, tropical deep reservoir

Resumo

Resumo:

Objetivos: Neste trabalho investigamos como fatores espaciais e dinâmica sazonal influenciaram a comunidade de diatomáceas em um reservatório tropical, profundo e de baixa produtividade no Brasil.

Métodos: Nós usamos as características físicas e químicas da água e as diatomáceas presentes no plâncton em 9 estações de amostragem durante os períodos seco (inverno austral) e chuvoso (verão austral) (N = 18) como base para avaliação da qualidade da água, e das características espaciais e dos padrões sazonais do reservatório. Para avaliar espacialmente e temporalmente os eventos integrados do passado recente (aproximadamente 5 anos antes da data de amostragem), e as espécies provenientes dos diversos hábitats do ecossistema, foram analisadas diatomáceas presentes nos sedimentos superficiais (primeiros 2 cm, N = 9). A amostragem sazonal do sedimento não foi necessária, já que os 2 cm de sedimento superficial utilizados contêm as carapaças de diatomáceas depositadas no passado recente do reservatório.

Resultados: durante a estação seca, diatomáceas longas, coloniais e altamente silicificadas, associadas com aumento da profundidade de mistura, pH e transparência da água, dominaram o ambiente planctônico, enquanto na estação úmida, o reservatório se tornou estratificado, favorecendo diatomáceas planctônicas solitárias com alta razão superfície volume. No sedimento superficial, um padrão geral foi observado, onde espécies planctônicas foram dominantes nas amostras de regiões mais profundas da represa, enquanto a abundância de espécies bentônicas aumentou nas estações mais rasas, próximas aos tributários.

Conclusões: A assembleia de diatomaceas foi influenciada principalmente pela sazonalidade e regime de mistura. O sedimento superficial forneceu informação de longo prazo, e revelou que a comunidade de diatomáceas é moldada de acordo com a diferenciação de hábitats. No geral, a espécie planctônica, cêntrica e pequena Aulacoseira tenella (Nygaard) Simonsen destacou-se como a mais abundante do reservatório tanto no plâncton como no sedimento, indicando que tamanho e forma provavelmente servem como estratégias adaptativas favorecendo flutuabilidade e absorção de nutrientes, e representam vantagem competitiva em ambientes profundos de baixa produtividade.
 

Palavras-chave

Sistema Cantareira, espécies de diatomáceas oligotróficas, fitoplâncton, sedimento de superfície, reservatório tropical profundo

Referências

AGÊNCIA NACIONAL DE ÁGUAS – ANA. Conjuntura dos recursos hídricos 2014: encarte especial sobre a crise hídrica. Brasília: ANA, 2015, 30 p.

ARMENGOL, J., GARCIA, J.C., COMERMA, M., ROMERO, M., DOLZ, J., ROURA, M., HAN, B.H., VIDAL, A. and SIMEK, K. Longitudinal processes in canyon type reservoir: the case of Sau (N.E. SPAIN). In: J.G. TUNDISI and M. STRAŠKRABA, eds. Theoretical reservoir ecology and its applications. Leiden: Brazilian Academy of Sciences and Backhuys Publishers, 1999, 585 p

BAILEY-WATTS, A.E. The ecology of planktonic diatoms, especially Fragilaria crotonensis, associated with artificial mixing of a small scottish loch in summer. Diatom Research, 1986, 1(2), 153-168. http://dx.doi.org/10.1080/0269249X.1986.9704966.

BATTARBEE, R.W., JONES, V.J., FLOWER, R.J., CAMERON, N.G., BENNION, H., CARVALHO, L. and JUGGINS, S. 2001. Diatoms. Springer.

BECKER, V., HUSZAR, V.L.M. and CROSSETTI, L.O. Responses of phytoplankton functional groups to the mixing regime in a deep subtropical reservoir. Hydrobiologia, 2009, 628(1), 137-151. http://dx.doi.org/10.1007/s10750-009-9751-7.

BELLING, B., COCQUT, C. and O’REILLY, C.M. Benthic diatoms as indicators of eutrophication in tropical streams. Hydrobiologia, 2006, 573, 75-87.

BENNION, H. Surface-sediment diatom assemblages in shallow, artificial, enriched ponds and implications for reconstructing trophic status. Diatom Research, 1995, 10(1), 1-19. http://dx.doi.org/10.1080/0269249X.1995.9705326.

BESSE-LOTOTSKAYA, A., VERDONSCHOT, P.F.M., COSTE, M. and VAN DE VIJVER, B. Evaluation of European diatom trophic indices. Ecological Indicators, 2011, 11(2), 456-467. http://dx.doi.org/10.1016/j.ecolind.2010.06.017.

BEYRUTH, Z. 2000. Periodic disturbances, trophic gradient and phytoplankton characteristics related to cyanobacterial growth in Guarapiranga Reservoir, São Paulo State, Brazil, In: Reynolds C.S., Dokulil M., Padisák J. (eds), The Trophic Spectrum Revisited, Developments in Hydrobiology. Dordrecht: Springer, pp. 51-65. http://dx.doi.org/10.1007/978-94-017-3488-2_5.

BICUDO, D.C., TREMARIN, P.I., ALMEIDA, P.D., ZORZAL-ALMEIDA, S., WENGRAT, S., FAUSTINO, S.B., COSTA, L.F., BARTOZEK, E.C.R., ROCHA, A.C.R., BICUDO, C.E.M. and MORALES, E.A. Taxonomy and ecology of Aulacoseira species (Bacillariophyta) from tropical reservoirs in Brazil. Diatom Research, 2016, 31(3), 199-215. http://dx.doi.org/10.1080/0269249X.2016.1227376.

BIRKS, H., BRAAK, C.T., LINE, J., JUGGINS, S. and STEVENSON, A. Diatoms and pH reconstruction. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1990, 327, 263-278.

BORGES, P.A.F., TRAIN, S. and RODRIGUES, L.C. Spatial and temporal variation of phytoplankton in two subtropical Brazilian reservoirs. Hydrobiologia, 2008, 607(1), 63-74. http://dx.doi.org/10.1007/s10750-008-9367-3.

BORICS, G., TÓTHMÉRÉSZ, B., VÁRBÍRÓ, G., GRIGORSZKY, I., CZÉBELY, A. and GÖRGÉNYI, J. Functional phytoplankton distribution in hypertrophic systems across water body size. Hydrobiologia, 2016, 764(1), 81-90. http://dx.doi.org/10.1007/s10750-015-2268-3.

CAMBURN, K.E. and CHARLES, D.F., 2000. Diatom of low-alkalinity in the northeastern os uninated states. Philadelphia: Academy of natural Sciences of Philadelphia.

CAO, J., HOU, Z., LI, Z., CHU, Z., YANG, P. and ZHENG, B. Succession of phytoplankton functional groups and their driving factors in a subtropical plateau lake. The Science of the Total Environment, 2018, 631, 1127-1137. http://dx.doi.org/10.1016/j.scitotenv.2018.03.026. PMid:29727939.

CARLI, B.P.D., FRASCARELI, D., LEAL, P.R., MOSCHINI-CARLOS, V. and POMPÊO, M. 2020. Os reservatórios Jaguari Jacareí. In: M. POMPÊO and V. MOSCHINI-CARLOS, eds. Reservatórios que abastecem São Paulo: problemas e perspectivas. São Paulo: Instituto de Biociências IB/USP.

COMPANHIA DE TECNOLOGIA DE SANEAMENTO AMBIENTAL – CETESB. Qualidade das águas interiores do estado de São Paulo. In: M.H.R.B. MARTINS, ed. Série Relatorios. São Paulo: Companhia Ambiental do Estado de São Paulo, 2019.

CHILDERS, D.L., DOREN, R.F., JONES, R., NOE, G.B., RUGGE, M. and SCINTO, L.J. Decadal change in vegetation and soil phosphorus pattern across the Everglades landscape. Journal of Environmental Quality, 2003, 32(1), 344-362. http://dx.doi.org/10.2134/jeq2003.3440. PMid:12549575.

COSTA-BÖDDEKER, S., BENNION, H., JESUS, T., ALBUQUERQUE, A., FIGUEIRA, R.L.C. and BICUDO, D. Paleolimnologically inferred eutrophication of a shallow, tropical, urban reservoir in southeast Brazil. Journal of Paleolimnology, 2012, 48, 751-766. http://dx.doi.org/10.1007/s10933-012-9642-1.

COUTINHO, R.M., KRAENKEL, R.A. and PRADO, P.I. Catastrophic regime shift in water reservoirs and São Paulo Water Supply Crisis. PLoS One, 2015, 10(9), e0138278. http://dx.doi.org/10.1371/journal.pone.0138278. PMid:26372224.

COX, E.J. Studies on the diatom genus Navicula Bory. VII. The identity and typification of Navicula gregaria Donkin, N. cryptocephala Kütz. and related taxa. Diatom Research, 1995, 10(1), 91-111. http://dx.doi.org/10.1080/0269249X.1995.9705330.

DADON, L., 1995. Calor y temperatura én cuerpos lénticos. In: E.C. LOPRETTO and G. TELL. Ecosistemas de aguas continentales: metodologías para su estudio. Buenos Aires: Ediciones Sur.

DAWSON, P. Observations on the structure of some forms of Gomphonema parvulum kutz. I. Morphology based on light microscopy, and Transmission and scanning electron microscopy. British Phycological Journal, 1972, 7(2), 255-271. http://dx.doi.org/10.1080/00071617200650261.

DIXIT, S.S., SMOL, J.P., KINGSTON, J.C. and CHARLES, D.F. Diatoms: powerful indicators of environmental change. Environmental Science & Technology, 1992, 26(1), 22-33. http://dx.doi.org/10.1021/es00025a002.

DUDGEON, D., ARTHINGTON, A.H., GESSNER, M.O., KAWABATA, Z.-I., KNOWLER, D.J., LÉVÊQUE, C., NAIMAN, R.J., PRIEUR-RICHARD, A.-H., SOTO, D., STIASSNY, M.L. and SULLIVAN, C.A. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews of the Cambridge Philosophical Society, 2006, 81(2), 163-182. http://dx.doi.org/10.1017/S1464793105006950. PMid:16336747.

FAUSTINO, S.B., FONTANA, L., BARTOZEK, E.C.R., BICUDO, C.E.M. and BICUDO, D.C. Composition and distribution of diatom assemblages from core and surface sediments of a water supply reservoir in Southeastern Brazil. Biota Neotropica, 2016, 16(2). http://dx.doi.org/10.1590/1676-0611-BN-2015-0129.

FONTANA, L., ALBUQUERQUE, A.L.S., BRENNER, M., BONOTTO, D.M., SABARIS, T.P., PIRES, M.A., COTRIM, M.E. and BICUDO, D.C. The eutrophication history of a tropical water supply reservoir in Brazil. Journal of Paleolimnology, 2014, 51(1), 29-43. http://dx.doi.org/10.1007/s10933-013-9753-3.

FONTANA, L. and BICUDO, D. Biodiversidade e distribuição das diatomáceas (Bacillariophyceae) de sedimentos superficiais nos reservatórios em cascata do rio Paranapanema (SP/PR, Brasil). Hoehnea, 2012, 39(4), 587-612. http://dx.doi.org/10.1590/S2236-89062012000400007.

FONTANA, L. and BICUDO, D.C. Diatomáceas (Bacillariophyceae) de sedimentos superficiais dos reservatórios em cascata do Rio Paranapanema (SP/PR, Brasil): Coscinodiscophyceae e Fragilariophyceae. Hoehnea, 2009, 36(3), 357-386. http://dx.doi.org/10.1590/S2236-89062009000300001.

FRITZ, S.C., KINGSTON, J.C. and ENGSTROM, D.R. Quantitative trophic reconstruction from sedimentary diatom assemblages: a cautionary tale. Freshwater Biology, 1993, 30(1), 30. http://dx.doi.org/10.1111/j.1365-2427.1993.tb00784.x.

GOLTERMAN, H., 1978. Methods for physical and chemical analysis of fresh water. Oxford: IBP Handbook.

GREEN, P.A., VÖRÖSMARTY, C.J., HARRISON, I., FARRELL, T., SÁENZ, L. and FEKETE, B.M. Freshwater ecosystem services supporting humans: Pivoting from water crisis to water solutions. Global Environmental Change, 2015, 34, 108-118. http://dx.doi.org/10.1016/j.gloenvcha.2015.06.007.

HACKBART, V.C.S., MARQUES, A.R.P., KIDA, B.M.S., TOLUSSI, C.E., NEGRI, D.D.B., MARTINS, I.A., FONTANA, I., COLLUCCI, M.P., BRANDIMARTI, A.L., MOSCHINI-CARLOS, V., SILVA, S.C.d., MEIRINHO, P.A., FREIRE, R.H.F. and POMPÊO, M.. Avaliação expedita da heterogeneidade espacial horizontal intra e inter reservatórios do Sistema Cantereira (Represas Jaguari e Jacareí, São Paulo). In: M. POMPÊO, V. MOSCHINI-CARLOS, P.Y. NISHIMURA, S.C.D. SILVA and J.C.L. DOVAL, eds. Ecologia de reservatórios e interfaces. São Paulo: Universidade de São Paulo, 2015, 460 p.

HOFMANN, A.M., GEIST, J., NOWOTNY, L. and RAEDER, U. Depth-distribution of lake benthic diatom assemblages in relation to light availability and substrate: implications for paleolimnological studies. Journal of Paleolimnology, 2020, 64, 1-20.

HUISMAN, J., SHARPLES, J., STROOM, J.M., VISSER, P.M., KARDINAAL, W.E.A., VERSPAGEN, J.M. and SOMMEIJER, B. Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology, 2004, 85(11), 2960-2970. http://dx.doi.org/10.1890/03-0763.

HUISMAN, J. and SOMMEIJER, B. Maximal sustainable sinking velocity of phytoplankton. Marine Ecology Progress Series, 2002, 244, 39-48. http://dx.doi.org/10.3354/meps244039.

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE - IPCC 2015. Climate change 2014: mitigation of climate change. Cambridge: Cambridge University Press.

IRWIN, A.J., FINKEL, Z.V., SCHOFIELD, O.M. and FALKOWSKI, P.G. Scaling-up from nutrient physiology to the size-structure of phytoplankton communities. Journal of Plankton Research, 2006, 28(5), 459-471. http://dx.doi.org/10.1093/plankt/fbi148.

JOHANSEN, J., KOCIOLEK, P. and LOWE, R. Spicaticribra kingstonii, gen. nov. et sp. nov.(Thalassiosirales, Bacillariophyta) from Great Smoky Mountains National Park, USA. Diatom Research, 2008, 23(2), 367-375. http://dx.doi.org/10.1080/0269249X.2008.9705763.

KALFF, J. Limnology: inland water ecosystems. Upper Saddle River, NJ: Prentice Hall, 2002, 592 p.

KENNEDY, R.H. and WALKER, W.W. Reservoir nutrient dynamics. In: K.W. THORNTON, B.L. KIMMEL and F.E. PAYNE. Reservoir limnology: ecological perspectives. New York: John Wiley and Sons, 1990, pp. 109-132.

LAMPARELLI, M.C. Grau de trofia em corpos d’água do estado de São Paulo: Avaliação dos métodos de monitoramento. São Paulo: Instituto de Biociências, Universidade de São Paulo, 2004, 238 p.

LANGE-BERTALOT, H. Indicators of oligotrophy. Iconographia diatomologica, 1996, 2, 1-390.

LAVOIE, M. and RAVEN, J.A. How can large-celled diatoms rapidly modulate sinking rates episodically? Journal of Experimental Botany, 2020, 71(12), 3386-3389. http://dx.doi.org/10.1093/jxb/eraa129. PMid:32161972.

LECOINTE, C., COSTE, M. and PRYGIEL, J. “Omnidia”: Software for taxonomy, calculation of diatom indices and inventories management. Hydrobiologia, 1993, 269(1), 509-513. http://dx.doi.org/10.1007/BF00028048.

LEWIS JUNIOR, W.M. Tropical limnology. Annual Review of Ecology and Systematics, 1987, 18(1), 159-184. http://dx.doi.org/10.1146/annurev.es.18.110187.001111.

LEWIS, W.M. Tropical lakes: how latitude makes a difference In: F. SCHIEMER and K.T. BOLAND, eds. Perspectives in tropical limnology. Amsterdam, The Netherlands: Academic Publishing, 1996, pp. 43-64.

LI, Y., GONG, Z., XIA, W. and SHEN, J. Effects of eutrophication and fish yield on the diatom community in Lake Fuxian, a deep oligotrophic lake in southwest China. Diatom Research, 2011, 26(1), 51-56. http://dx.doi.org/10.1080/0269249X.2011.575110.

LIANG, J., HUANG, C., STEVENSON, M.A., QIAO, Q., ZENG, L. and CHEN, X. Changes in summer diatom composition and water quality in urban lakes within a metropolitan area in central China. International Review of Hydrobiology, 2020, 105(3-4), 94-105. http://dx.doi.org/10.1002/iroh.201801953.

LITCHMAN, E., KLAUSMEIER, C.A., SCHOFIELD, O.M. and FALKOWSKI, P.G. The role of functional traits and trade‐offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecology Letters, 2007, 10(12), 1170-1181. http://dx.doi.org/10.1111/j.1461-0248.2007.01117.x. PMid:17927770.

LOWE, R.L., KOCIOLEK, P., JOHANSEN, J.R., VIJVER, B.V.D., LANGE-BERTALOT, H. and KOPALOVÁ, K. Humidophila gen. nov., a new genus for a group of diatoms (Bacillariophyta) formerly within the genus Diadesmis: species from Hawai’i, including one new species. Diatom Research, 2014, 29(4), 351-360. http://dx.doi.org/10.1080/0269249X.2014.889039.

LUDWIG, T.A.V., TREMARIN, P.I., BECKER, V. and TORGA, L.C. Thalassiosira rudis sp. nov. (Coscinodiscophyceae): a new freshwater species. Diatom Research, 2008, 23(2), 389-399. http://dx.doi.org/10.1080/0269249X.2008.9705765.

MALIK, H.I. and SAROS, J.E. Effects of temperature, light and nutrients on five Cyclotella sensu lato taxa assessed with in situ experiments in arctic lakes. Journal of Plankton Research, 2016, 38(3), 431-442. http://dx.doi.org/10.1093/plankt/fbw002.

MANOYLOV, K.M., OGNJANOVA-RUMENOVA, N. and STEVENSON, R.J.. Morphotype variations in subfossil diatom species of Aulacoseira in 24 Michigan Lakes, USA. Acta Botanica Croatica, 2009, 68(2), 401-419.

MARQUARDT, G.C., COSTA, L.F., BICUDO, D.C., BICUDO, C.E.M., BLANCO, S., WETZEL, C.E. and ECTOR, L. Type analysis of Achnanthidium minutissimum and A. catenatum and description of A. tropicocatenatum sp. nov.(Bacillariophyta), a common species in Brazilian reservoirs. Plant Ecology and Evolution, 2017, 150(3), 313-330. http://dx.doi.org/10.5091/plecevo.2017.1325.

MCCUNE, B. and MEFFORD, M.J. PC_ORD. Multivariate analysis of ecological data. 4. ed. Gleneden Beach, Oregon: MJM Software Design, 1999.

MCCUNE, B.M.J. and MEFFORD, M.J. PC-ORD Multivariate analysis of ecological data. Version 3.0. MJM. Corvallis, Oregon: Wild Blueberry Media, 1997.

MICHELUTTI, N., WOLFE, A.P., COOKE, C.A., HOBBS, W.O., VUILLE, M. and SMOL, J.P. Climate change forces new ecological states in tropical Andean lakes. PLoS One, 2015, 10(2), e0115338. http://dx.doi.org/10.1371/journal.pone.0115338. PMid:25647018.

MIRANDA, M.D., PINTO, H., JUNIOR, J., FAGUNDES, R., FONSECHI, D., CALVE, L., PELLEGRINO, G. A classificação climática de Koeppen para o estado de São Paulo. Bragantia, 2009, 66(4): 711-720.

MORO, R.S. and FÜRSTENBEGER, C.B., 1997. Catálogo dos principais parâmetros ecológicos de diatomáceas não-marinhas. Ponta Grossa: Editora da Universidade Estadual de Ponta Grossa.

NDIRITU, G.G., GICHUKI, N.N., KAUR, P. and TRIEST, L. Characterization of environmental gradients using physico- chemical measurements and diatom densities in Nairobi River, Kenya. Aquatic Ecosystem Health & Management, 2003, 6(3), 343-354. http://dx.doi.org/10.1080/14634980301484.

NOBRE, C.A., MARENGO, J.A., SELUCHI, M.E., CUARTAS, L.A. and ALVES, L.M. Some characteristics and impacts of the drought and water crisis in Southeastern Brazil during 2014 and 2015. Journal of Water Resource and Protection, 2016, 8(02), 252-262. http://dx.doi.org/10.4236/jwarp.2016.82022.

PADISÁK, J., CROSSETTI, L.O. and NASELLI-FLORES, L. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia, 2009, 621(1), 1-19. http://dx.doi.org/10.1007/s10750-008-9645-0.

PAJUNEN, V., LUOTO, M. and SOININEN, J. Climate is an important driver for stream diatom distributions. Global Ecology and Biogeography, 2016, 25(2), 198-206. http://dx.doi.org/10.1111/geb.12399.

PANDEY, L.K., LAVOIE, I., MORIN, S., PARK, J., LYU, J., CHOI, S., LEE, H. and HAN, T. River water quality assessment based on a multi-descriptor approach including chemistry, diatom assemblage structure, and non-taxonomical diatom metrics. Ecological Indicators, 2018, 84, 140-151. http://dx.doi.org/10.1016/j.ecolind.2017.07.043.

PAPPAS, J.L. and STOERMER, E.F. Quantitative methosd for determining a representative algal sample count. Journal of Phycology, 1996, 32(4), 693-696. http://dx.doi.org/10.1111/j.0022-3646.1996.00693.x.

PLA, S., PATERSON, A.M., SMOL, J.P., CLARK, B.J. and INGRAM, R. Spatial variability in water quality and surface sediment diatom assemblages in a complex lake basin: Lake of the Woods, Ontario, Canada. Journal of Great Lakes Research, 2005, 31(3), 253-266. http://dx.doi.org/10.1016/S0380-1330(05)70257-4.

POMPÊO, M., MOSCHINI-CARLOS, V., LÓPEZ-DOVAL, J.C., ABDALLA-MARTINS, N., CARDOSO-SILVA, S., FREIRE, R.H.F., DE SOUZA BEGHELLI, F.G., BRANDIMARTE, A.L., ROSA, A.H. and LÓPEZ, P. Nitrogen and phosphorus in cascade multi-system tropical reservoirs: water and sediment. Limnological Review, 2017, 17(3), 133-150. http://dx.doi.org/10.1515/limre-2017-0013.

PORTALIER, S.M., CHERIF, M., ZHANG, L., FUSSMANN, G.F. and LOREAU, M. Size-related effects of physical factors on phytoplankton communities. Ecological Modelling, 2016, 323, 41-50. http://dx.doi.org/10.1016/j.ecolmodel.2015.12.003.

POTAPOVA, M. and CHARLES, D.F. Distribution of benthic diatoms in US rivers in relation to conductivity and ionic composition. Freshwater Biology, 2003, 48(8), 1311-1328. http://dx.doi.org/10.1046/j.1365-2427.2003.01080.x.

POULICKOVÁ, A., DUCHOSLAV, M. and DOKULIL, M. Littoral diatom assemblages as bioindicators of lake trophic status: a case study from perialpine lakes in Austria. European Journal of Phycology, 2004, 39(2), 143-152. http://dx.doi.org/10.1080/0967026042000201876.

RAUPP, S.V., TORGAN, L.C. and BAPTISTA, L.R.M. Composição e variação temporal de diatomáceas (Bacillariophyta) no plâncton da represa de Canastra, sul do Brasil. Iheringia. Série Botânica, 2006, 61, 105-134.

RAZUMOVSKII, L. and RAZUMOVSKII, V. Assessing Long-Term Variations of pH in Caucasian Lakes by Bioindication Method (Diatom Analysis). Water Resources, 2019, 46(1), 59-64. http://dx.doi.org/10.1134/S0097807819010123.

REYNOLDS, C.S. Vegetation processes in the pelagic: a model for ecosystem theory. Germany: Ecology Institute, 1997.

REYNOLDS, C.S. Ecology of Phytoplankton. Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo: Cambridge University Press, 2006. http://dx.doi.org/10.1017/CBO9780511542145.

ROUND, F.E., CRAWFORD, R.M. and MANN, D.G. The diatoms: biology & morphology of the genera. Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo: Cambridge University Press, 1990.

RÜHLAND, K.M., PATERSON, A.M. and SMOL, J.P. Lake diatom responses to warming: reviewing the evidence. Journal of Paleolimnology, 2015, 54(1), 1-35. http://dx.doi.org/10.1007/s10933-015-9837-3.

SALMASO, N., DECET, F. and CORDELLA, P. Spring mixing depth affects the interannual variations in phytoplankton abundance and composition in deep lakes. A case study from Lake Garda (Northern Italy). Internationale Vereinigung fur Theoretische und Angewandte Limnologie Verhandlungen, 2003, 28, 1486-1489.

SAROS, J. and ANDERSON, N. The ecology of the planktonic diatom Cyclotella and its implications for global environmental change studies. Biological Reviews of the Cambridge Philosophical Society, 2015, 90(2), 522-541. http://dx.doi.org/10.1111/brv.12120. PMid:24917134.

SAROS, J.E., STONE, J.R., PEDERSON, G.T., SLEMMONS, K.E., SPANBAUER, T., SCHLIEP, A., CAHL, D., WILLIAMSON, C.E. and ENGSTROM, D.R. Climate‐induced changes in lake ecosystem structure inferred from coupled neo‐and paleoecological approaches. Ecology, 2012, 93(10), 2155-2164. http://dx.doi.org/10.1890/11-2218.1. PMid:23185877.

SARTORY, D.P. and GROBBELAAR, J.U. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia, 1984, 114(3), 177-187. http://dx.doi.org/10.1007/BF00031869.

SAYER, C.D. and ROBERTS, N. Establishing realistic restoration targets for nutrient-enriched shallow lakes: linking diatom ecology and palaeoecology at the Attenborough Ponds, U.K. Hydrobiologia, 2001, 448(1/3), 117-142. http://dx.doi.org/10.1023/A:1017597221052.

SIENKIEWICZ, E. and GĄSIOROWSKI, M. The diatom-inferred pH reconstructions for a naturally neutralized pit lake in south-west Poland using the Mining and the Combined pH training sets. The Science of the Total Environment, 2017, 605, 75-87. http://dx.doi.org/10.1016/j.scitotenv.2017.06.171. PMid:28662429.

SIENKIEWICZ, E. and GĄSIOROWSKI, M. Natural evolution of artificial lakes formed in lignite excavations based on diatom, geochemical and isotopic data. Journal of Paleolimnology, 2019, 62(1), 1-13. http://dx.doi.org/10.1007/s10933-019-00069-1.

SIVER, P.A. and KLING, H. Morphological observations of Aulacoseira using scanning electron microscopy. Canadian Journal of Botany, 1997, 75(11), 1807-1835. http://dx.doi.org/10.1139/b97-894.

SOININEN, J., JAMONEAU, A., ROSEBERY, J. and PASSY, S.I. Global patterns and drivers of species and trait composition in diatoms. Global Ecology and Biogeography, 2016, 25(8), 940-950. http://dx.doi.org/10.1111/geb.12452.

SPERLING, E. Morfologia de lagos e represas. Belo Horizonte: DESA/UFMG, 1999.

STOERMER, E.F. and SMOL, J.P. The diatoms: applications for the environmental and Earth Sciences. New York: Cambridge University Press, 2010

TALLING, J. The seasonality of phytoplankton in African lakes. Hydrobiologia, 1986, 138(1), 139-160. http://dx.doi.org/10.1007/BF00027237.

TELFORD, R.J., VANDVIK, V. and BIRKS, H.J.B. Dispersal Limitations Matter for Microbial Morphospecies. Science, 2006, 312(5776), 1015. http://dx.doi.org/10.1126/science.1125669. PMid:16709777.

THOMAZ, S.M., BINI, L.M. and ALBERTI, S.M. 1997. Limnologia do reservatório de Segredo: padrões de variação espacial e temporal. In: A.A. AGOSTINHO and L.C. GOMES, eds. Reservatório de Segredo: bases ecológicas para o manejo. Maringá: Universidade Estadual de Maringá.

TILMAN, D., KNOPS, J., WEDIN, D., REICH, P., RITCHIE, M. and SIEMANN, E. The influence of functional diversity and compo- sition on ecosystem processes. Science, 1997, 277(5330), 1300-1302. http://dx.doi.org/10.1126/science.277.5330.1300.

TOLOTTI, M., CORRADINI, F., BOSCAINI, A. and CALLIARI, D. Weather-driven ecology of planktonic diatoms in Lake Tovel (Trentino, Italy). Hydrobiologia, 2007, 578(1), 147-156. http://dx.doi.org/10.1007/s10750-006-0441-4.

TREMARIN, P.I., LUDWIG, T.A.V., BERTOLLI, L.M., FARIA, D.M. and COSTIN, J.C. Gomphonema Ehrenberg e Gomphosphenia Lange-Bertalot (Bacillariophyceae) do Rio Maurício, Paraná, Brasil. Biota Neotropica, 2009, 9(4), 9. http://dx.doi.org/10.1590/S1676-06032009000400013.

TUJI, A., LEELAHAKRIENGKRAI, P. and PEERAPORNPISAL, Y. Distribution and phylogeny of Spicaticribra kingstonii-rudis species complex. Memoirs of the National Museum of Nature and Science, Tokyo, 2012, 48, 139-148.

VALDERRAMA, G.C. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Marine Chemistry, 1981, 10(2), 109-122. http://dx.doi.org/10.1016/0304-4203(81)90027-X.

VAN DAM, H., MERTENS, A. and SINKELDAM, J. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology, 1994, 28(1), 117-133. http://dx.doi.org/10.1007/BF02334251.

VARGAS, M.C. A “crise hídrica” na grande São Paulo (2014-2015): vulnerabilidade climática e déficit de governança. Antropología Americana, 2019, 4, 87-116.

VINCENT, W.F. Phytoplankton production and winter mixing: contrasting effects in two oligotrophic lakes. Journal of Ecology, 1983, 71(1), 1-20. http://dx.doi.org/10.2307/2259960.

WETZEL, R.G. Limnology: lake and river ecosystems. Gulf Professional Publishing, 2001.

WHATELY, M. and CUNHA, P. Cantareira 2006: Um olhar sobre o maior manancial de água da Região Metropolitana de São Paulo. Resultados do Diagnóstico Socioambiental Participativo do Sistema Cantareira. São Paulo: Instituto Socioambiental, 2007, 68 p.

WINDER, M., REUTER, J.E. and SCHLADOW, S.G. Lake warming favours small-sized planktonic diatom species. Proceedings. Biological Sciences, 2009, 276(1656), 427-435. http://dx.doi.org/10.1098/rspb.2008.1200. PMid:18812287.

WOJTAL, A. Diatoms of the genus Comphonema Ehr. (Bacillariophyceae) from a karstic stream in the Krakowsko-czêsrochowska upland. Acta Societatis Botanicorum Ploniae, 2003, 72, 213-220.

WORLD WATER ASSESSMENT PROGRAMME – WWAP. The United Nations World Water Development Report 3: Water in a Changing World. Paris: UNESCO, 2009, 109 p., vol. 7.

ZALAT, A. and VILDARY, S. Environmental change in Northern Egyptian Delta lakes during the late Holocene, based on diatom analysis. Journal of Paleolimnology, 2007, 37(2), 273-299. http://dx.doi.org/10.1007/s10933-006-9029-2.

ZALAT, A. and VILDARY, S.S. Distribution of diatom assemblages and their relationship to environmental variables in the surface sediments of three northern Egyptian lakes. Journal of Paleolimnology, 2005, 34(2), 159-174. http://dx.doi.org/10.1007/s10933-005-1187-0.

ZANATA, L.H. and ESPÍNDOLA, E.L.G. Longitudinal processes in salto grande reservoir (americana, sp, brazil) and its influence in the formation of compartment system. Brazilian Journal of Biology = Revista Brasileira de Biologia, 2002, 62(2), 347-361. http://dx.doi.org/10.1590/S1519-69842002000200019. PMid:12489407.

ZNACHOR, P., RYCHTECKÝ, P., NEDOMA, J. and VISOCKÁ, V. Factors affecting growth and viability of natural diatom populations in the meso-eutrophic Římov Reservoir (Czech Republic). Hydrobiologia, 2015, 762(1), 253-265. http://dx.doi.org/10.1007/s10750-015-2417-8.

ZORZAL-ALMEIDA, S., BINI, L.M. and BICUDO, D.C. Beta diversity of diatoms is driven by environmental heterogeneity, spatial extent and productivity. Hydrobiologia, 2018, 800, 1-10.
 


Submetido em:
09/07/2020

Aceito em:
10/03/2021

Publicado em:
23/04/2021

608324f7a95395220227d824 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections