Coordinating in situ lake sampling with satellite acquisition days provides a mechanism for addressing data scarcity: a case study from Lake Yojoa, Honduras
Coordenar a amostragem in situ de lagos com dias de aquisição de satélite é um bom mecanismo para lidar com a escassez de dados: um estudo de caso do Lago Yojoa, Honduras
Jemma Fadum; Bethel Steele; Matthew Ross; Mia Groff; Ed Hall
Abstract
Keywords
Resumo
Palavras-chave
Referencias
Alikas, K., & Kratzer, S., 2017. Improved retrieval of Secchi depth for optically-complex waters using remote sensing data. Ecol. Indic. 77, 218-227.
Allen, G.H., Yang, X., Gardner, J., Holliman, J., David, C.H., & Ross, M., 2020. Timing of landsat overpasses effectively captures flow conditions of large rivers. Remote Sens. (Basel) 12(9), 9.
Basterrechea, M., 2008. Informe final de la consultoría “Modelo para la estimación de cargas tolerables de contaminantes en el Lago de Yojoa, para las actividades de producción pesquera, hidroeléctrica, agropecuaria y comercial, y recomendaciones para su regulación y control”. Honduras: SERNA-MARENA.
Bender, M.A., Knutson, T.R., Tuleya, R.E., Sirutis, J.J., Vecchi, G.A., Garner, S.T., & Held, I.M., 2010. Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science 327(5964), 454-458. PMid:20093471.
Cairo, C., Barbosa, C., Lobo, F., Novo, E., Carlos, F., Maciel, D., Flores Júnior, R., Silva, E., & Curtarelli, V., 2020. Hybrid chlorophyll-a algorithm for assessing trophic states of a tropical Brazilian reservoir based on MSI/Sentinel-2 data. Remote Sens. (Basel) 12(1), 1.
Carpenter, S.R., & Brock, W.A., 2006. Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9(3), 311-318. PMid:16958897.
Carpenter, S.R., Cole, J.J., Pace, M.L., Batt, R., Brock, W.A., Cline, T., Coloso, J., Hodgson, J.R., Kitchell, J.F., Seekell, D.A., Smith, L., & Weidel, B., 2011. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332(6033), 1079-1082. PMid:21527677.
Chang, N.B., Bai, K., & Chen, C.F., 2017. Integrating multisensor satellite data merging and image reconstruction in support of machine learning for better water quality management. J. Environ. Manage. 201, 227-240. PMid:28667841.
Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., Mitchell, R., Cano, I., Zhou, T., Li, M., Xie, J., Lin, M., Geng, Y., Li, Y., & Yuan, J., 2023. xgboost: Extreme Gradient Boosting. R package version 1.7.3.1. Retrieved in 2024, July 22, from
Fadum, J.M., & Hall, E.K., 2022. The interaction of physical structure and nutrient loading drives ecosystem change in a large tropical lake over 40 years. Sci. Total Environ. 830, 154454. PMid:35278553.
Fadum, J.M., Borton, M.A., Daly, R.A., Wrighton, K.C., & Hall, E.K., 2024. Dominant nitrogen metabolisms of a warm, seasonally anoxic freshwater ecosystem revealed using genome resolved metatranscriptomics. mSystems 9(2), e0105923. PMid:38259093.
Fadum, J.M., Waters, M.N., & Hall, E.K., 2023. Trophic state resilience to hurricane disturbance of Lake Yojoa, Honduras. Sci. Rep. 13(1), 5681. PMid:37029170.
Flores-Anderson, A.I., Griffin, R., Dix, M., Romero-Oliva, C.S., Ochaeta, G., Skinner-Alvarado, J., Ramirez Moran, M.V., Hernandez, B., Cherrington, E., Page, B., & Barreno, F., 2020. Hyperspectral satellite remote sensing of water quality in Lake Atitlán, Guatemala. Front. Environ. Sci. 8, 7.
Gardner, J.R., Yang, X., Topp, S.N., Ross, M.R.V., Altenau, E.H., & Pavelsky, T.M., 2021. The color of rivers. Geophys. Res. Lett. 48(1), e202088946.
Gilarranz, L.J., Narwania, A., Odermattb, R., Odermatt, S., & Dakos, V., 2022. Regime shifts, trends, and variability of lake productivity at a global scale. Proc. Natl. Acad. Sci. USA 119(35), e2116413119. PMid:35994657.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R., 2017. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18-27.
Hansen, C.H., Burian, S.J., Dennison, P.E., & Williams, G.P., 2020. Evaluating historical trends and influences of meteorological and seasonal climate conditions on lake chlorophyll
Jones, J., 2019. Improved automated detection of subpixel-scale inundation-revised dynamic surface water extent (DSWE) Partial surface water tests. Remote Sens. (Basel) 11(4), 374.
Kloiber, S.M., Brezonik, P.L., Olmanson, L.G., & Bauer, M.E., 2002. A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sens. Environ. 82(1), 38-47.
Knutson, T.R., McBride, J.L., Chan, J., Emanuel, K., Holland, G., Landsea, C., Held, I., Kossin, J.P., Srivastava, A.K., & Sugi, M., 2010. Tropical cyclones and climate change. Nat. Geosci. 3(3), 157-163.
Komárek, J., Zapomělová, E., Šmarda, J., Kopecký, J., Rejmánková, E., Woodhouse, J., Neilan, B.A., & Komárková, J., 2013. Polyphasic evaluation of
Lucia Lobo, F., Nagel, G.W., Maciel, D.A., et al, 2021. AlgaeMAp: algae bloom monitoring application for inland waters in Latin America. Remote Sens. (Basel) 13(15), 2874.
Majozi, N.P., Salama, M.S., Bernard, S., Harper, D.M., & Habte, M.G., 2014. Remote sensing of euphotic depth in shallow tropical inland waters of Lake Naivasha using MERIS data. Remote Sens. Environ. 148, 178-189.
Masek, J.G., Vermote, E.F., Saleous, N.E., Wolfe, R., Hall, F.G., Huemmrich, K.F., Gao, F., Kutler, J., & Lim, T.K., 2006. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 3(1), 68-72.
Melack, J.M., Hess, L.L., & Sippel, S., 2009. Remote sensing of lakes and floodplains in the Amazon basin. Remote Sens. Rev. 10(1-3), 127-142.
Morris, S.S., Neidecker-Gonzales, O., Carletto, C., Munguía, M., Medina, J.M., & Wodon, Q., 2002. Hurricane mitch and the livelihoods of the rural poor in Honduras. World Dev. 30(1), 49-60.
Muñoz Sabater, J., 2019. ERA5-Land daily averaged data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Retrieved in 2024, July 22, from
Pahlevan, N., Smith, B., Schalles, J., Binding, C., Cao, Z., Ma, R., Alikas, K., Kangro, K., Gurlin, D., Hà, N., Matsushita, B., Moses, W., Greb, S., Lehmann, M.K., Ondrusek, M., Oppelt, N., & Stumpf, R., 2020. Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach. Remote Sens. Environ. 240, 111604.
Pantoja, D.A., Vega-Álvarez, N.A., & Gasca-Ortiz, T., 2021. Trophic state in a tropical lake based on Chlorophyll-a profiler data and Sentinel-2 images: the onset of an algal bloom event. Water Environ. Res. 93(10), 2185. PMid:34018272.
Pompêo, M., Moschini-Carlos, V., Bitencourt, M.D., Sòria-Perpinyà, X., Vicente, E., & Delegido, J., 2021. Water quality assessment using Sentinel-2 imagery with estimates of chlorophyll a, Secchi disk depth, and Cyanobacteria cell number: The Cantareira System reservoirs (São Paulo, Brazil). Environ. Sci. Pollut. Res. Int. 28(26), 34990. PMid:33661492.
R Core Team, 2023. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved in 2024, July 22, from
Rejmánková, E., Komárek, J., Dix, M., Komárková, J., & Girón, N., 2011. Cyanobacterial blooms in Lake Atitlan, Guatemala. Limnologica 41(4), 296-302.
Sayyed, T.K., Ovienmhada, U., Kashani, M., Vohra, K., Kerr, G.H., O’Donnell, C., Harris, M.H., Gladson, L., Titus, A.R., Adamo, S.B., Fong, K.C., Gargulinski, E.M., Soja, A.J., Anenberg, S., & Kuwayama, Y., 2024. Satellite data for environmental justice: a scoping review of the literature in the United States. Environ. Res. Lett. 19(3), 033001. PMid:39377051.
Sillen, S.J., Ross, M.R.V., & Collins, S.M., 2024. Long-Term trends in productivity across intermountain west lakes provide no evidence of widespread eutrophication. Water Resour. Res. 60(6), e202334997.
Stanley, E.H., Collins, S.M., Lottig, N.R., Oliver, S.K., Webster, K.E., Cheruvelil, K.S., & Soranno, P.A., 2019. Biases in lake water quality sampling and implications for macroscale research. Limnol. Oceanogr. 64(4), 1572-1585.
Steele, B., Fadum, J., Hall, E., Willi, K., & Ross, M., 2023. Processing pipeline for estimating Secchi depth at Lake Yojoa, Honduras from remote sensing products. Zenodo. Version v1. https://doi.org/10.5281/zenodo.8139922.
Topp, S.N., Pavelsky, T.M., Dugan, H.A., Yang, X., Gardner, J., & Ross, M.R.V., 2021. Shifting patterns of summer lake color phenology in over 26,000 US lakes. Water Resour. Res. 57(5), eWR029123. PMid:34219822.
Topp, S.N., Pavelsky, T.M., Jensen, D., Simard, M., & Ross, M.R.V., 2020. Research trends in the use of remote sensing for inland water quality science: moving towards multidisciplinary applications. Water 12(1), 169.
U.S. Geological Survey, 2016. Landsat International Cooperators and Global Archive Consolidation. Reston: U.S. Geological Survey Fact Sheet.
Vermote, E., Justice, C., Claverie, M., & Franch, B., 2016. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 185(2), 46-56. PMid:32020955.
Watanabe, F., Alcântara, E., Bernardo, N., de Andrade, C., Gomes, A.C., do Carmo, A., Rodrigues, T., & Rotta, L.H., 2019. Mapping the chlorophyll-
Watanabe, F., Alcantara, E., Rodrigues, T., Rotta, L., Bernardo, N., & Imai, N., 2018. Remote sensing of the chlorophyll-
Watanabe, F.S.Y., Alcântara, E., Rodrigues, T.W.P., Imai, N.N., Barbosa, C.C.F., & Silva Rotta, L.H., 2015. Estimation of chlorophyll-
Weigand, M., Wurm, M., Dech, S., & Taubenböck, H., 2019. Remote sensing in environmental justice research: a review. ISPRS Int. J. Geoinf. 8(1), 1.
Wulder, M.A., White, J.C., Loveland, T.R., Woodcock, C.E., Belward, A.S., Cohen, W.B., Fosnight, E.A., Shaw, J., Masek, J.G., & Roy, D.P., 2016. The global Landsat archive: status, consolidation, and direction. Remote Sens. Environ. 185, 271-283.
Yang, X., O’Reilly, C.M., Gardner, J.R., Ross, M.R.V., Topp, S.N., Wang, J., & Pavelsky, T.M., 2022. The color of earth’s lakes. Geophys. Res. Lett. 49(18), e20298925.
Submitted date:
22/07/2024
Accepted date:
02/12/2024
Publication date:
03/02/2025