Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X6922
Acta Limnologica Brasiliensia
Original Article

Potential of the retention capability of a Neotropical reservoir (São Paulo State, Brazil)

Potencial da capacidade de retenção de um reservatório Neotropical (Estado de São Paulo, Brasil)

Flavia Bottino; Simone Pereira Casali; Marcela Bianchessi Cunha-Santino; Maria do Carmo Calijuri; Irineu Bianchini Júnior

Downloads: 0
Views: 738

Abstract

Abstract:: Aim: Man-made reservoirs lead to several changes in their downstream rivers that depend on the hydraulic characteristics of the reservoirs. However, their multiple uses can also provide facilities that influence the ecosystem services that they provide. This study addressed the potential ability of a Neotropical reservoir to trap chemical species aiming to assess the role of these ecosystems to mitigate pollution.

Methods: Retention capability modeling was examined for a small subtropical reservoir with high hydraulic retention time (> 100 days). The temporal ranges of 9 physical and chemical water variables over a five-year period were used to calculate the mass balance and to determine the retentive capability (alpha parameter) of the Itupararanga Reservoir (São Paulo State, Brazil). To explain the long-term mass balance of these variables, it was assumed that the reservoir is a completely mixed system with a step input.

Results: The highest values of parametrized alpha (high retention capability) occurred in wet months (up to 500 mm) for all variables. High reaction rate constants (k) and low hydraulic flushing suggested that sink processes prevail over the export ones, mainly for total phosphorus. The rainfall pattern showed minor importance for trapping elements.

Conclusions: In the Neotropics, hydraulic characteristics of the ecosystem (e.g., low area:volume ratio) are a tool for pollution management in man-made reservoirs.

Keywords

ecosystem services, mass balance, eutrophication, water resources management, subtropical reservoir

Resumo

Resumo:: Objetivo: Os reservatórios artificiais desencadeiam várias mudanças em seus rios a jusante que dependem das características hidráulicas dos reservatórios. No entanto, seus múltiplos usos também podem fornecer recursos que influenciam os serviços ecossistêmicos que eles fornecem. Este estudo abordou a capacidade potencial de um reservatório Neotropical em capturar espécies químicas, com o objetivo de avaliar o papel desses ecossistemas na mitigação da poluição.

Métodos: A modelagem da capacidade de retenção foi examinada para um pequeno reservatório subtropical com alto tempo de retenção hidráulica (> 100 dias). As variações temporais de 9 variáveis físicas e químicas da água ao longo de um período de cinco anos foram usados para calcular o balanço de massa e determinar a capacidade retentiva (parâmetro alfa) do reservatório Itupararanga (estado de São Paulo, Brasil). Para explicar o balanço de massa de longo prazo dessas variáveis, foi assumido que o reservatório seja um sistema completamente misturado com uma entrada em degrau.

Resultados: Os maiores valores de assimilação (i.e., alta capacidade de retenção) ocorreram nos meses úmidos (até 500 mm) para todas as variáveis. Altos coeficientes de reação (k) e baixa descarga hidráulica sugerem que os processos de sumidouro prevalecem sobre os de exportação, principalmente para fósforo total. O padrão de precipitação mostrou menor importância para o aprisionamento dos elementos.

Conclusões: Nos Neotrópicos, as características hidráulicas do ecossistema (e.g., baixa relação área: volume) são uma ferramenta para o gerenciamento da poluição em reservatórios artificiais.
 

Palavras-chave

serviços ecossistêmicos, balanço de massa, eutrofização, gestão de recursos hídricos, reservatório subtropical

References

Abreu, M.C., & Tonello, K.C., 2017. Avaliação dos parâmetros hidrometeorológicos na bacia do rio Sorocaba/SP. Rev. Bras. Meteorol. 32(1), 99-109. http://dx.doi.org/10.1590/0102-778632120150164.

Agência Nacional de Energia Elétrica - ANEEL, 2005. Atlas de energia elétrica (2. ed.). Brasília: ANEEL.

Akbarzadeh, Z., Maavara, T., Slowinski, S., & Van Cappellen, P., 2019. Effects of damming on river nitrogen fluxes: a global analysis. Global Biogeochem. Cycles 33(11), 1339-1357. http://dx.doi.org/10.1029/2019GB006222.

American Public Health Association - APHA, 2005. Standard methods for examination of water and wastewater (25th ed.). Washington: APHA, AWWA, WEF.

Araújo, F.G., Azevedo, M.C.C., & Ferreira, M.N.L., 2011. Seasonal changes and spatial variation in the water quality of a eutrophic tropical reservoir determined by the inflowing river. Lake Reserv. Manage. 27(4), 343-354. http://dx.doi.org/10.1080/07438141.2011.627753.

Armengol, J., Garcia, J.C., Comerma, M., Romero, M., Dolz, J., Roura, M., Han, B.H., Vidal, A., & Šimek, K., 1999. Longitudinal processes in canyon type reservoirs: the case of Sau (N.E. Spain). In: Tundisi, J.G., & Straškraba, M., eds. Theoretical reservoir ecology and its applications. Leiden: Backhuys, 313-345.

Bartoszek, L., & Koszelnik, P., 2016. The qualitative and quantitative analysis of the coupled C, N, P and Si retention in complex of water reservoirs. Springerplus 5(1), 1157. PMid:27504255. http://dx.doi.org/10.1186/s40064-016-2836-7.

Beghelli, F.G.S., Frascareli, D., Pompêo, M.L.M., & Moschini-Carlos, V., 2016. Trophic state evolution over 15 years in a tropical reservoir with low nitrogen concentrations and cyanobacteria predominance. Water Air Soil Pollut. 227(3), 95. http://dx.doi.org/10.1007/s11270-016-2795-1.

Bianchini Junior, I., Fushita, Â.T., & Cunha-Santino, M.B., 2019. Evaluating the retention capacity of a new subtropical run-of-river reservoir. Environ. Monit. Assess. 191(3), 161. PMid:30771013. http://dx.doi.org/10.1007/s10661-019-7295-5.

Bottino, F., 2011. Diversidade, biomassa e decomposição de macrófitas aquáticas no Reservatório Itupararanga - SP [Doctoral dissertation in Hidráulica e Saneamento]. São Carlos: Universidade de São Paulo. https://doi.org/10.11606/T.18.2011.tde-08022012-104315

Casali, S.P., 2014. A comunidade fitoplanctônica no reservatório de Itupararanga (Bacia do Rio Sorocaba, SP) [Doctoral dissertation in Hidráulica e Saneamento]. São Carlos: Universidade de São Paulo. https://doi.org/10.11606/T.18.2014.tde-25092014-152955

Chapra, S.C., 2008. Surface water-quality modeling. Long Grove: Waveland Press.

Cheng, F.Y., & Basu, N.B., 2017. Biogeochemical hotspots: role of small water bodies in landscape nutrient processing. Water Resour. Res. 53(6), 5038-5056. http://dx.doi.org/10.1002/2016WR020102.

Cole, T.M., & Hannan, H.H., 1990. Dissolved oxygen dynamics. In: Thornton, K.W., Kimmel, B.L., & Payne, F.E., eds. Reservoir limnology: ecological perspectives. New York: Wiley, 71-107.

Companhia Ambiental do Estado de São Paulo - CETESB, 2010. Relatório de Águas Interiores. Retrieved in 2020, October 20, from https://cetesb.sp.gov.br/aguas-interiores/publicacoes-e-relatorios.

Companhia Ambiental do Estado de São Paulo - CETESB, 2011. Relatório de Águas Interiores. Retrieved in 2020, October 20, from https://cetesb.sp.gov.br/aguas-interiores/publicacoes-e-relatorios.

Companhia Ambiental do Estado de São Paulo - CETESB, 2012. Relatório de Águas Interiores. Retrieved in 2020, October 20, from https://cetesb.sp.gov.br/aguas-interiores/publicacoes-e-relatorios.

Companhia Brasileira de Alumínio - CBA, 1993. Relatório técnico administrativo das usinas hidroelétricas. São Paulo: Grupo Votarantim.

Cooke, G.D., Welch, E.B., Peterson, S.A., & Newroth, P.R., 1993. Restoration and management of lakes and reservoirs. Boca Raton: Lewis Publishers.

Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P., & van den Belt, M., 1997. The value of the world’s ecosystem services and natural capital. Nature 387(6630), 253-260. http://dx.doi.org/10.1038/387253a0.

Cunha-Santino, M.B., Fushita, A.T., & Bianchini Junior, I., 2017. A modeling approach for a cascade of reservoirs in the Juquiá-Guaçu River (Atlantic Forest, Brazil). Ecol. Modell. 356, 48-58. http://dx.doi.org/10.1016/j.ecolmodel.2017.04.008.

Dai, A., Qian, T., Trenberth, K.E., & Milliman, J.D., 2009. Changes in continental freshwater discharge from 1948 to 2004. J. Clim. 22(10), 2773-2792. http://dx.doi.org/10.1175/2008JCLI2592.1.

Davidson, E.A., & Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081), 165-173. PMid:16525463. http://dx.doi.org/10.1038/nature04514.

Ford, D.E., 1990. Reservoir transport processes. In: Thornton, K.W., Kimmel, B.L., & Payne, F.E., eds. Reservoir limnology: ecological perspectives. New York: Wiley, 15-41.

Fowe, T., Karambiri, H., Paturel, J.-E., Poussin, J.-C., & Cecchi, P., 2015. Water balance of small reservoirs in the Volta basin: a case study of Boura reservoir in Burkina Faso. Agric. Water Manage. 152, 99-109. http://dx.doi.org/10.1016/j.agwat.2015.01.006.

Fylstra, D., Lasdon, L., Watson, J., & Waren, A., 1998. Design and use of the microsoft excel solver. Interfaces 28(5), 29-55. http://dx.doi.org/10.1287/inte.28.5.29.

Gonzaga, M., Cunha-Santino, M.B., & Bianchini Junior, I., 2007. Methodological test of efficiency of heterotrophic potential. Acta Sci. Biol. Sci. 29(2), 197-201. https://doi.org/10.4025/actascibiolsci.v29i2.526.

Hansen, E., Chan, K.-S., Jones, C.S., & Schilling, K., 2016. Assessing the relative importance of nitrogen-retention processes in a large reservoir using time-series modeling. J. Agric. Biol. Environ. Stat. 21(1), 152-169. http://dx.doi.org/10.1007/s13253-015-0218-1.

Harper, D., 1982. Eutrophication of freshwaters. London: Chapman & Hall.

Hoeinghaus, D.J., Agostinho, A.A., Gomes, L.C., Pelicice, F.M., Okada, E.K., Latini, J.D., Kashiwaqui, E.A.L., & Winemiller, K.O., 2009. Effects of river impoundment on ecosystem services of large tropical rivers: embodied energy and market value of artisanal fisheries. Conserv. Biol. 23(5), 1222-1231. PMid:19459891. http://dx.doi.org/10.1111/j.1523-1739.2009.01248.x.

Horne, A.J., & Goldman, C.R., 1994. Limnology. New York: McGraw-Hill.

Hutchinson, G.E., & Löffler, H., 1956. The thermal classification of lakes. Proc. Natl. Acad. Sci. USA 42(2), 84-86. PMid:16589823. http://dx.doi.org/10.1073/pnas.42.2.84.

Instituto Nacional de Meteorologia - INMET, 2022. Normais climatológicas do Brasil período 1991-2020. Retrieved in 2022, May 20, from https://portal.inmet.gov.br/normais.

Jørgensen, S.E., & Fath, B.D., 2010. Fundamentals of ecological modelling: application in environmental management and research. Amsterdam: Elsevier.

Kawara, O., Yura, E., Fujii, S., & Matsumoto, T., 1998. A study on the role of hydraulic retention time in eutrophication of the Asahi River Dam reservoir. Water Sci. Technol. 37(2), 245-252. http://dx.doi.org/10.2166/wst.1998.0146.

Kennedy, R.H., & Walker, W.W., 1990. Reservoir nutrient dynamics. In: Thornton, K.W., Kimmel, B.L., & Payne, F.E., eds. Reservoir limnology: ecological perspectives. New York: Wiley, 109-131.

Kerimoglu, O., & Rinke, K., 2013. Stratification dynamics in a shallow reservoir under different hydro-meteorological scenarios and operational strategies. Water Resour. Res. 49(11), 7518-7527. http://dx.doi.org/10.1002/2013WR013520.

Kõiv, T., Nõges, T., & Laas, A., 2011. Phosphorus retention as a function of external loading, hydraulic turnover time, area and relative depth in 54 lakes and reservoirs. Hydrobiologia 660(1), 105-115. http://dx.doi.org/10.1007/s10750-010-0411-8.

Köppen, W., 1931. Grundriss der klimakunde. Berlin: De Gruyter. http://dx.doi.org/10.1515/9783111667751.

Kumwimba, M.N., Bao, L., Jie, Z., Li, X., Huang, J., Wang, W., Li, X., Su, J., Muyembe, D.K., Guide, A., & Dzakpasu, M., 2022. Nutrients retention of a series of small dam-impacted urban rivers in northern China. J. Environ. Chem. Eng. 10(3), 107967. http://dx.doi.org/10.1016/j.jece.2022.107967.

Maavara, T., Parsons, C.T., Ridenour, C., Stojanovic, S., Dürr, H.H., Powley, H.R., & Van Cappellen, P., 2015. Global phosphorus retention by river damming. Proc. Natl. Acad. Sci. USA 112(51), 15603-15608. PMid:26644553. http://dx.doi.org/10.1073/pnas.1511797112.

Némery, J., Gratiot, N., Doan, P.T.K., Duvert, C., Alvarado-Villanueva, R., & Duwig, C., 2016. Carbon, nitrogen, phosphorus, and sediment sources and retention in a small eutrophic tropical reservoir. Aquat. Sci. 78(1), 171-189. http://dx.doi.org/10.1007/s00027-015-0416-5.

Pacheco, F.S., Soares, M.C.S., Assireu, A.T., Curtarelli, M.P., Roland, F., Abril, G., Stech, J.L., Alvalá, P.C., & Ometto, J.P., 2015. The effects of river inflow and retention time on the spatial heterogeneity of chlorophyll and water-air CO2 fluxes in a tropical hydropower reservoir. Biogeosciences 12(1), 147-162. http://dx.doi.org/10.5194/bg-12-147-2015.

Prokopová, M., Salvati, L., Egidi, G., & Cudlín, O., 2019. Envisioning present and future land-use change under varying ecological regimes and their influence on landscape stability. Sustainability 11(17), 654. http://dx.doi.org/10.3390/su11174654.

Qin, L., Lei, P., Lei, Q., Liu, H., Li, X., Zhang, H., & Lindsey, S., 2020. Evaluating the effect of dam construction on the phosphorus fractions in sediments in a reservoir of drinking water source, China. Environ. Monit. Assess. 192(2), 99. PMid:31912244. http://dx.doi.org/10.1007/s10661-019-8053-4.

Rosa, A.H., Silva, A.A.M.J., Melo, C.A., Moschini-Carlos, V., Guandique, E.G., Fraceto, L.F., & Lourenço, R.W., 2015. Diagnóstico ambiental e avaliação do uso e ocupação do solo visando a sustentabilidade da represa de Itupararanga, importante área da bacia do médio Tietê. In: Pompêo, M., Moschini-Carlos, V., Nishimura, P.Y., Silva, S.C., & Doval, J.C.L., eds. Ecologia de reservatórios e interfaces. São Paulo: USP, 212-231. Retrieved in 2022, May 20, from http://www.livrosabertos.sibi.usp.br/portaldelivrosUSP/catalog/book/35

Ryan, P.J., & Harleman, D.R.F., 1971. Prediction of the annual cycle of temperature changes in stratified lake or reservoir: mathematical model and user’s manual. Cambridge, MA: MIT Department of Civil Engineering, Technical Report 137, 132 p.

Secchin, L.F., 2012. Caracterização ambiental e avaliação de cargas difusas da área de drenagem da represa Itupararranga, SP. [Master’s thesis in Hidráulica e Saneamento]. São Carlos: Universidade de São Paulo. https://doi.org/10.11606/D.18.2012.tde-30082012-150106

Søndergaard, M., Jensen, J.P., & Jeppesen, E., 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506-509(1-3), 135-145. http://dx.doi.org/10.1023/B:HYDR.0000008611.12704.dd.

Straškraba, M., & Tundisi, J.G., 1999. Reservoir ecosystem functioning: theory and application. In: Tundisi, J.G., & Straškraba, M., eds. Theoretical reservoir ecology and its applications. Leiden: Backhuys, 565-583.

Straškraba, M., 1999. Retention time as a key variable of reservoir limnology. In: Tundisi, J.G., & Straškraba, M., eds. Theoretical reservoir ecology and its applications. Leiden: Backhuys, 385-410.

Teixeira, A.P., Bortolini, J.C., & Carneiro, F.M., 2022. Taxonomic and functional spatial distribution model of phytoplankton in tropical cascading reservoirs. Rev. Bras. Bot. Braz. J. Bot. 45(2), 791-805. http://dx.doi.org/10.1007/s40415-022-00810-7.

Teodoru, C., & Wehrli, B., 2005. Retention of sediments and nutrients in the Iron Gate I Reservoir on the Danube River. Biogeochemistry 76(3), 539-565. http://dx.doi.org/10.1007/s10533-005-0230-6.

Thornton, K.W., 1990. Sedimentary processes. In: Thornton, K.W., Kimmel, B.L., & Payne, F.E., eds. Reservoir limnology: ecological perspectives. New York: Wiley, 43-69.

Universidade Federal de São Carlos - UFSCar, 2008. Inventário limnológico para o monitoramento da qualidade da água e dos sedimentos do reservatório da UHE Itupararanga (Relatório Final). São Carlos: Fai-UFSCar.

Van Cappellen, P., & Maavara, T., 2016. Rivers in the anthropocene: global scale modifications of riverine nutrient fluxes by damming. Ecohydrol. Hydrobiol. 16(2), 106-111. http://dx.doi.org/10.1016/j.ecohyd.2016.04.001.

Vo, N.X.Q., Doan, T.V., & Kang, H., 2014. Impoundments increase potential for phosphorus retention and remobilization in an urban stream. Environ. Eng. Res. 19(2), 175-184. http://dx.doi.org/10.4491/eer.2014.19.2.175.

Vollenweider, R.A., & Kerekes, J., 1982. Eutrophication of waters: monitoring, assessment and control. Paris: Organization for Economic Cooperation and Development.

Zhou, B., Xu, Y., Vogt, R.D., Lu, X., Li, X., Deng, X., Yue, A., & Zhu, L., 2016. Effects of land use change on phosphorus levels in surface waters - a case study of a watershed strongly influenced by agriculture. Water Air Soil Pollut. 227(5), 160. http://dx.doi.org/10.1007/s11270-016-2855-6.
 


Submitted date:
10/20/2022

Accepted date:
02/16/2023

Publication date:
03/22/2023

641b4c23a9539574fb6387d6 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections