06OCT

News on Acta Limnologica Brasiliensia to our fellow Limnologists

Fellow Limnologist! Click here to access the latest report from the editorial board of Acta Limnologica Brasiliensia.

Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X6821
Acta Limnologica Brasiliensia
Original Article

Density effect of Polygonum ferrugineum Wedd. (Polygonaceae) and nutrients concentration of sediment on establishment of Alternanthera philoxeroides (Mart.) Griseb. (Amaranthaceae)

Efeito da densidade de Polygonum ferrugineum Weed. (Polygonaceae) e da concentração de nutrientes no sedimento sobre estabelecimento de Alternanthera philoxeroides (Mart.) Griseb. (Amaranthaceae)

Abner José de Souza Vicente; Leticia Figueiredo Candido; Márcio José Silveira; Karina Fidanza

Downloads: 0
Views: 188

Abstract

Abstract: Aim: The effects of neighbor’s species density and nutrient availability in the sediment are essential to understand the structuring rules of emergent macrophyte communities. The objective of this paper was to investigate how the density of Polygonum ferrugineum and the availability of nutrients in the sediment influence the establishment of Alternanthera philoxeroides.

Methods: After collection, we sectioned the stems of each species so that each propagule obtained was composed of two nodes. These propagules were planted in trays with moist sediment for rooting and development of new leaves for 24 days, and only then were transferred to the experimental mesocosms. Our experimental design had an A. philoxeroides propagule submitted to the following treatments: I – control (planted alone); II – associated with three P. ferrugineum propagules; III – associated with five P. ferrugineum propagules. There were 36 mesocosms arranged inside the greenhouse, with half of them representing conditions of low nutrient availability and half representing conditions of high nutrient availability (with 12.5 g of NPK in the sediment). The experiment lasted 60 days, and the following response variables were measured: aerial length, root length, aerial, root and total dry biomass. The response variables related to biomass were obtained after the plants were dried in an oven at 60°C. We also calculated the relative interaction index (RII) for each treatment, in order to analyze the interactions between the species. Each response variable was analyzed using a two-way ANOVA.

Results: Among the main results obtained, we can highlight the lower accumulation of biomass in A. philoxeroides under conditions of low nutrient availability and high density of P. ferrugineum.

Conclusions: These results indicate the negative effects of P. ferrugineum density on the establishment of A. philoxeroides, contributing to the understanding of the dynamics and structuring rules of the emergent macrophyte community.

Keywords

interspecific competition, neighbors’ species, emergent macrophytes, experiment in a greenhouse, relative interaction index

Resumo

Resumo: Objetivo: Os efeitos da densidade de espécies vizinhas e da disponibilidade de nutrientes no sedimento são essenciais para compreender as regras de estruturação de comunidades de macrófitas emergentes. O objetivo deste trabalho foi investigar como a densidade de Polygonum ferrugineum e a disponibilidade de nutrientes no sedimento influenciam o estabelecimento de Alternanthera philoxeroides.

Métodos: Após a coleta, seccionamos os caules de cada espécie de modo que cada propágulo obtido fosse composto de dois nós. Esses propágulos foram plantados em bandejas com sedimento úmido para o enraizamento e desenvolvimento de novas folhas por 24 dias e, só então foram transferidos para os mesocosmos experimentais. Nosso delineamento experimental contou com um propágulo de A. philoxeroides submetido aos seguintes tratamentos: I – controle (plantado sozinho); II – associado com três propágulos de P. ferrugineum; III – associado a cinco propágulos de P. ferrugineum. Houve 36 mesocosmos dispostos dentro da casa de vegetação, com metades deles representando condições de baixa disponibilidade de nutrientes e metade representando condições de alta disponibilidade de nutrientes (com 12,5 g de NPK no sedimento). O experimento durou 60 dias, sendo medido as seguintes variáveis respostas: comprimento aéreo, comprimento da raiz e biomassa seca da parte aérea, raiz e total. As variáveis respostas relacionadas a biomassa foram obtidas após as plantas secarem em estufa a 60°C. Também calculamos o índice de interação relativa (RII) para cada tratamento, com o intuito de analisar as interações entre as espécies. Cada variável resposta foi analisada através de uma Anova two-way.

Resultados: Entre os principais resultados obtidos, pode-se destacar o menor acumulo de biomassa em A. philoxeroides em condições de baixa disponibilidade de nutrientes e de alta densidade de P. ferrugineum.

Conclusões: Esses resultados indicam os efeitos negativos da densidade de P. ferrugineum sobre o estabelecimento de A. philoxeroides, contribuindo para a compreensão da dinâmica e das regras de estruturação da comunidade de macrófitas emergentes.
 

Palavras-chave

competição interespecífica, espécies vizinhas, macrófitas emergentes, experimento em casa de vegetação, índice de interação relativa

References

Almeida, V.L., Larrazábal, M.E., Moura, A.N., & Melo Júnior, M., 2006. Rotífera das zonas limnética e litorânea do reservatório de Tapacurá, Pernambuco, Brasil. Iheringia Ser. Zool. 96(4), 445-451. http://dx.doi.org/10.1590/S0073-47212006000400009.

Armas, C., Ordiales, R., & Pugnaire, F.I., 2004. Measuring plant interactions: a new comparative index. Ecology 85(10), 2682-2686. http://dx.doi.org/10.1890/03-0650.

Brahim, K., Ray, D.T., & Dierig, D.A., 1998. Growth and yield characteristics of Lesquerella fendleri as a function of plant density. Ind. Crops Prod. 9(1), 63-71. http://dx.doi.org/10.1016/S0926-6690(98)00015-6.

Chen, Y., Zhou, Y., Yin, T.F., Liu, C.X., & Luo, F.L., 2013. The invasive wetland plant Alternanthera philoxeroides shows a higher tolerance to waterlogging than its native congener Alternanthera sessilis. PLoS One 8(11), e81456. PMid:24303048. http://dx.doi.org/10.1371/journal.pone.0081456.

Costa, N.V., Cardoso, L.A., Marchi, S.R., Domingos, V.D., & Martins, D., 2005. Controle químico de plantas daninhas aquáticas: Alternanthera philoxeroides, Enhydra anagallis e Pycreus decumbens. Planta Daninha 23(2), 335-342. http://dx.doi.org/10.1590/S0100-83582005000200022.

Craine, J.M., & Dybzinski, R., 2013. Mechanisms of plant competition for nutrients, water and light. Funct. Ecol. 27(4), 833-840. http://dx.doi.org/10.1111/1365-2435.12081.

Deegan, B., White, S., & Ganf, G., 2012. Nutrients and water levels fluctuations: a study of three aquatic plants. River Res. Appl. 28(3), 359-368. http://dx.doi.org/10.1002/rra.1461.

Du, Z.Y., & Wang, Q.F., 2014. Correlations of life form, pollination mode and sexual system in aquatic angiosperms. PLoS One 9(12), e115653. PMid:25525810. http://dx.doi.org/10.1371/journal.pone.0115653.

Esteves, F.A., & Caliman, A., 2011. Águas continentais: características do meio, compartimentos e suas comunidades. In: Esteves, F.A., ed. Fundamentos de limnologia. Rio de Janeiro: Interciência, 113-118, 3 ed.

Ferreira, F.A., Mormul, R.P., Thomaz, S.M., Pott, A., & Pott, V.J., 2011. Macrophytes in the Upper Paraná River Floodplain: checklist and comparison with other large South American Wetlands. Rev. Biol. Trop. 59(2), 541-556. PMid:21717850.

Geng, Y.P., Pan, X.Y., Xu, C.Y., Zhang, W.J., Li, B., & Chen, J.K., 2006. Phenotypic plasticity of invasive Alternanthera philoxeroides in relation to different water availability compared to its native congener. Acta Oecol. 30(3), 380-385. http://dx.doi.org/10.1016/j.actao.2006.07.002.

Gibson, D.J., Connolly, J., Hartnett, D.C., & Weidenhamer, J.D., 1999. Designs for greenhouse studies of interactions between plants. J. Ecol. 87(1), 1-16. http://dx.doi.org/10.1046/j.1365-2745.1999.00321.x.

Gioria, M., & Osborne, B.A., 2014. Resource competition in plant invasions: emerging patterns and research needs. Front. Plant Sci. 5, 501. PMid:25324851. http://dx.doi.org/10.3389/fpls.2014.00501.

Julien, M.H., Skarratt, B., & Maywald, G.F., 1995. Potential geographical distribution of alligator weed and its biological control by Agasicles hygrophila. J. Aquat. Plant Manage. 33, 55-60.

Kankanamge, C.E., & Kodithuwakku, H., 2017. Effect of interspecific competition on the growth and nutrient uptake of three macrophytes in nutrient-rich water. Aquat. Ecol. 51(4), 625-634. http://dx.doi.org/10.1007/s10452-017-9640-5.

Kobayashi, T., Ryder, D.S., Gordon, G., Shannon, I., Ingleton, T., Carpenter, M., & Jacobs, S.J., 2009. Short-term response of nutrients, carbon and planktonic microbial communities to floodplain wetland inundation. Aquat. Ecol. 43(4), 843-858. http://dx.doi.org/10.1007/s10452-008-9219-2.

Macek, P., & Rejmánková, E., 2007. Response of emergent macrophytes to experimental nutrient and salinity addition. Funct. Ecol. 21(3), 478-488. http://dx.doi.org/10.1111/j.1365-2435.2007.01266.x.

McConnaughay, K.D.M., & Coleman, J.S., 1999. Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients. Ecology 80(8), 2581-2593. http://dx.doi.org/10.1890/0012-9658(1999)080[2581:BAIPOO]2.0.CO;2.

Muller, I., Schmid, B., & Weiner, J., 2000. The effect of nutrient availability on biomass allocation Patterns in 27 species of herbaceous plants. Perspect. Plant Ecol. Evol. Syst. 3(2), 115-127. http://dx.doi.org/10.1078/1433-8319-00007.

Murillo, R.A., Alves, D.C., Machado, R.S., Silveira, M.J., Rodrigues, K.F., & Thomaz, S.M., 2019. Responses of two macrophytes of the genus Polygonum to water level fluctuations and interspecific competition. Aquat. Bot. 157, 10-16. http://dx.doi.org/10.1016/j.aquabot.2019.05.003.

Padial, A.A., Carvalho, P., Thomaz, S.M., Boschilia, S.M., Rodrigues, R.B., & Kobayashi, J.T., 2009. The role of an extreme flood disturbance on macrophyte assemblages in a Neotropical floodplain. Aquat. Sci. 71(4), 389-398. http://dx.doi.org/10.1007/s00027-009-0109-z.

Pan, X., Geng, Y., Zhang, W., Li, B., & Chen, J., 2006. The influence of abiotic stress and phenotypic plastic on the distribution of invasive Alternanthera philoxeroides along a riparian zone. Acta Oecol. 30(3), 333-341. http://dx.doi.org/10.1016/j.actao.2006.03.003.

Peršić, V., Horvatic, J., Has-Schon, E., & Bogut, I., 2009. Changes in N and P limitation induced by water level fluctuations in Nature Park Kopački Rit (Croatia): nutrient enrichment bioassay. Aquat. Ecol. 43(1), 27-36. http://dx.doi.org/10.1007/s10452-007-9156-5.

Rolon, A.S., Lacerda, T., Maltchik, L., & Guadagnin, D.L., 2008. Influence of area, habitat and water chemistry on richness and composition of macrophyte assemblages in southern Brazilian wetlands. J. Veg. Sci. 19(2), 221-228. http://dx.doi.org/10.3170/2008-8-18359.

Sainty, G., McCorkelle, G., & Julien, M., 1998. Control and spread of Alligator Wedd Alternanthera philoxeroides (Mart.) Griseb. in Australia: lessons for others regions. Wetlands Ecol. Manage. 5(3), 195-201. http://dx.doi.org/10.1023/A:1008248921849.

Schooler, S.S., Yeates, A., Wilson, J.R., & Julien, M.H., 2007. Herbivory, mowing, and herbicides differently affect production and nutrient allocation of Alternanthera philoxeroides. Aquat. Bot. 86(1), 62-68. http://dx.doi.org/10.1016/j.aquabot.2006.09.004.

Sculthorpe, C.D. 1967. The biology of Aquatic Vascular Plants. London: Edward Arnold Publishers.

Silveira, M.J., Alves, D.C., & Thomaz, S.M., 2018. Effects of the density of the invasive macrophyte Hydrilla verticillata and root competition on growth of one native macrophyte in different sediment fertilities. Ecol. Res. 33(5), 927-934. http://dx.doi.org/10.1007/s11284-018-1602-4.

Souza, D.C., Cunha, E.R., Murillo, A.R., Silveira, M.J., Pulzatto, M.M., Dainez-Filho, M.S., Lolis, L.A., & Thomaz, S.M., 2017. Species inventory of aquatic macrophytes in the last undammed stretch of the Upper Paraná River, Brazil. Acta Limnol. Bras. 29(0), e115. http://dx.doi.org/10.1590/s2179-975x6017.

Souza, S.N.G., Piedade, M.T.F., Demarchi, L.O., & Lopes, A., 2020. Implications of global changes for the development and ecological interactions between two key Amazonian aquatic macrophytes. Acta Bot. Bras. 35(1), 111-121. http://dx.doi.org/10.1590/0102-33062020abb0138.

Stoll, P., & Weiner, J., 2000. A neighborhood view of interactions among individual plants. In: Dieckmann, U., Law, R. & Metz, J.A.J., eds. The geometry of ecological interactions: simplifying spatial complexity. Cambridge:Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511525537.003.

Sun, J., Javed, Q., Azeem, A., Ullah, M.S., Rasool, G., & Du, D., 2020. Addition of Phosphorus and nitrogen support the invasiveness of Alternanthera philoxeroides under water stress. Clean Soil Air Water 48(9), 2000059. http://dx.doi.org/10.1002/clen.202000059.

Thomaz, S.M., Pagioro, T.A., Bini, L.M., & Souza, D.C., 2002. Macrófitas aquáticas da planície de Inundação do Alto rio Paraná: listagem de espécies e padrões de diversidade em ampla escala [online]. PELD, Relatório Anual 2002. Retrieved in 2020, May 30, from http://www.peld.uem.br/Relat2002/pdf/comp_biotico_macrofitas.pdf.

Wang, J.W., Yu, D., Xiong, W., & Han, Y.Q., 2008. Above- and belowground competition between two submersed macrophytes. Hydrobiologia 607(1), 113-122. http://dx.doi.org/10.1007/s10750-008-9371-7.

Xie, Y.H., An, S., Wu, B., & Wang, W., 2006. Density-dependent root morphology and root distribution in the submerged plant Vallisneria natans. Environ. Exp. Bot. 57(1-2), 195-200. http://dx.doi.org/10.1016/j.envexpbot.2005.06.001.

Yu, L.Q., Fujiii, Y., Zhou, Y., Zhang, J., Lu, Y., & Xuan, S. 2007. Response of exotic invasive weed Alternanthera philoxeroides to environmental factors and its competition with rice. Rice Sci. 14(1), 49-55. http://dx.doi.org/10.1016/S1672-6308(07)60008-0.

Zhao, Y.J., Qing, H., Zhao, C.J., Zhou, C.F., Zhang, W.G., Xiao, Y., & An, S.Q., 2010. Phenotypic plasticity of Spartina alterniflora and Phragmites australis in response to nitrogen addition and intraspecific competition. Hydrobiologia 637(1), 143-155. http://dx.doi.org/10.1007/s10750-009-9992-5.
 


Submitted date:
11/06/2021

Accepted date:
02/02/2022

Publication date:
04/28/2022

626a9596a9539537e44046b5 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections