Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X6723
Acta Limnologica Brasiliensia
Original Article

Are functional freshwater Nematode traits a good tool for view an early succession on hard artificial substrate in a reservoir of Brazilian semiarid?

Traços funcionais dos Nematoda são uma boa ferramenta para visualizar uma sucessão ecológica em substratos artificiais em um reservatório do semiárido brasileiro?

Fábio Lucas de Oliveira Barros; Sebastião Tilbert; Taciana Kramer Pinto; Maria Cristina da Silva; Francisco José Victor de Castro; Miodeli Nogueira Júnior

Downloads: 0
Views: 142

Abstract

Aim: The Brazilian tropical semiarid is a biome with small freshwater ecosystems, often intermittent, acting as a mosaic in constant transformation between dry and rainy seasons. Meiobenthic communities play crucial roles in these environments, and understanding their colonization and succession processes is essential to comprehend how these organisms’ structure in a defaunated habitat. In addition to the traditional taxonomic approach, functional traits provide valuable insights into the dynamics of these processes. In this study, we tested the following hypotheses: i) although meiofauna consists of microscopic organisms with limited active dispersion, they quickly colonize new substrates, increasing in abundance, richness, and diversity; ii) functional traits of freshwater Nematoda are a good tool for view an early succession on hard artificial substrate in a lentic reservoir.

Methods: We placed 27 ceramic plates in a reservoir in the Brazilian semiarid and randomly sampled three replicates each week over nine weeks. Weekly differences in community abundance, richness, and diversity were tested with one-way ANOVA and pairwise PERMANOVA.

Results: Nematoda predominated in the first week, with Rotifera taking over from the second week of the experiment. No differences were observed in the Nematode taxonomic structure over the weeks. There was an increase in the functional complexity of the Nematoda community over time, as indicated by the maturity index and trophic structure. Colonizers/persistents emerged quickly in the first week. Deposit feeders dominated, but an increase in trophic diversity was observed with the growing presence of chewers over the weeks.

Conclusions: This study highlights that the functional traits of Nematoda represent a robust tool for assessing ecological succession in freshwater lentic environments in the tropical semiarid.

Keywords

maturity index, trophic structure, Caatinga, meiobenthos

Resumo

Objetivo: O semiárido tropical brasileiro é um bioma que possui pequenos ecossistemas de água doce, frequentemente intermitentes, que atuam como um mosaico em constante transformação entre as estações seca e chuvosa. As comunidades meiobentônicas desempenham papéis cruciais nesses ambientes, e compreender seus processos de colonização e sucessão é fundamental para entender como esses organismos se estruturam em um habitat defaunado. Além da abordagem taxonômica tradicional, os traços funcionais oferecem perspectivas valiosas sobre a dinâmica desses processos. Neste estudo, testamos as seguintes hipóteses: i) embora a meiofauna seja composta por organismos microscópicos com dispersão ativa limitada, eles colonizam rapidamente novos substratos, aumentando em abundância, riqueza e diversidade; ii) as características funcionais dos Nematoda de água doce são uma boa ferramenta para observar uma sucessão inicial em substrato artificial duro em um reservatório lêntico.


Métodos: Colocamos 27 placas de cerâmica em um reservatório no semiárido brasileiro e amostramos aleatoriamente três réplicas a cada semana, ao longo de nove semanas. As diferenças semanais na abundância, riqueza e diversidade da comunidade foram testadas com one-way ANOVA e pairwise PERMANOVA.

Resultados: Os Nematoda predominaram na primeira semana, com os Rotifera dominando a partir da segunda semana de experimento. Não observamos diferenças na estrutura taxonômica da comunidade de Nematoda ao longo das semanas. Entretanto, houve um aumento na complexidade funcional da comunidade de Nematoda ao longo do tempo, conforme indicado pelo índice de maturidade e pela estrutura trófica. Os colonizadores/persistentes surgiram rapidamente na primeira semana. Os comedores de depósito dominaram, mas observou-se um aumento na diversidade trófica com a presença crescente dos mastigadores ao longo das semanas.

Conclusões: Este estudo destaca que as características funcionais dos Nematoda representam uma ferramenta robusta para avaliar a sucessão ecológica em ambientes lênticos de água doce no semiárido tropical.

Palavras-chave

índice de maturidade, estrutura trófica, Caatinga, meiobentos

References

Abebe, E., Decraemer, W., & De Ley, P., 2008. Global diversity of nematodes (Nematoda) in freshwater. Hydrobiologia 595(1), 67-78. http://doi.org/10.1007/s10750-007-9005-5.

Andrade-Lima, D., 1982. Present day forest refuges in Northeastern Brazil. In: Prance, G.T., ed. Biological diversification in the tropics. New York: Columbia University, 245-254.

Atilla, N., 2000. Meiofaunal colonization of artificial substrates in an estuarine embayment. Mar. Ecol. (Berl.) 21(1), 69-83. http://doi.org/10.1046/j.1439-0485.2000.00700.x.

Atilla, N., Fleeger, J.W., & Finelli, C.M., 2005. Effects of habitat complexity and hydrodynamics on the abundance and diversity of small invertebrates colonizing artificial substrates. J. Mar. Res. 63(6), 1151-1172. http://doi.org/10.1357/002224005775247580.

Atilla, N., Wetzel, M.A., & Fleeger, J.W., 2003. Abundance and colonization potential of artificial hard substrate-associated meiofauna. J. Exp. Mar. Biol. Ecol. 287(2), 273-287. http://doi.org/10.1016/S0022-0981(02)00569-5.

Barbosa, J.E.D.L., Medeiros, E.S.F., Brasil, J., Cordeiro, R.D.S., Crispim, M.C.B., & Silva, G.H.G.D., 2012. Aquatic systems in semiarid Brazil: limnology and management. Acta Limnol. Bras. 24(1), 103-118. http://doi.org/10.1590/S2179-975X2012005000030.

Barros, F.L.O., 2018. Colonização meiofaunística e nematofaunística em substrato artificial em um ecossistema lêntico [Monografia]. Campina Grande: Universidade Federal de Campina Grande.

Barros, F.L.O., Silva, M.C.D., Castro, F.J.V.D., & Nogueira Júnior, M., 2021. Marine free-living nematodes in semiarid inland waters. Acta Limnol. Bras. 33, e15. http://doi.org/10.1590/s2179-975x6520.

Benzie, J.A., 1984. Zooplankton of an Australian high alpine lake, Lake Cootapatamba, Kosciusko range. Mar. Freshw. Res. 35(6), 691-702. http://doi.org/10.1071/MF9840691.

Boeckner, M.J., Sharma, J., & Proctor, H.C., 2009. Revisiting the meiofauna paradox: dispersal and colonization of nematodes and other meiofaunal organisms in low-and high-energy environments. Hydrobiologia 624(1), 91-106. http://doi.org/10.1007/s10750-008-9669-5.

Bongers, T., 1990. The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83(1), 14-19. PMid:28313236. http://doi.org/10.1007/BF00324627.

Bongers, T., 1999. The Maturity Index, the evolution of nematode life history traits, adaptive radiation and cp-scaling. Plant Soil 212(1), 13-22. http://doi.org/10.1023/A:1004571900425.

Bongers, T., De Goede, R.G.M., Korthals, G.W., & Yeates, G.W., 1995. Proposed changes of cp classification for nematodes. Russ. J. Nematol. 3(1), 61-62.

Bongers, T., & Ferris, H., 1999. Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol. Evol. 14(6), 224-228. PMid:10354624. http://doi.org/10.1016/S0169-5347(98)01583-3.

Brown, C.J., 2005. Epifaunal colonization of the Loch Linnhe artificial reef: influence of substratum on epifaunal assemblage structure. Biofouling 21(2), 73-85. PMid:16167388. http://doi.org/10.1080/08927010512331344197.

Bush, M.B., Whittaker, R.J., & Partomihardjo, T., 1995. Colonization and succession on Krakatau: an analysis of the guild of vining plants. Biotropica 27(3), 355-372. http://doi.org/10.2307/2388921.

Cobb, N.A., 1917. A genus of free-living predatory Nematodes: contributions to a science of Nematology VI: (with 75 Illustration in the text). Soil Sci. 3(5), 431-486. http://doi.org/10.1097/00010694-191705000-00004.

Costa, A.B.H.P., Valença, A.P.M.C., & Santos, P.J.P., 2016. Is meiofauna community structure in Artificial Substrate Units a good tool to assess anthropogenic impact in estuaries? Mar. Pollut. Bull. 110(1), 354-361. PMid:27315755. http://doi.org/10.1016/j.marpolbul.2016.06.041.

de Grisse, A.T., 1969. Redescription ou modification de quelques techniques utilisées dans l’étude des nématodes phytoparasitaires. Meded. Fac. Landbouwwet. Rijksuniv. Gent 34, 35.

Decraemer, W., & Backeljau, T., 2015. Utility of classical α-taxonomy for biodiversity of aquatic nematodes. J. Nematol. 47(1), 1-10. PMid:25861112.

Derycke, S., Backeljau, T., & Moens, T., 2013. Dispersal and gene flow in free-living marine nematodes. Front. Zool. 10(1), 1. http://doi.org/10.1186/1742-9994-10-1.

Derycke, S., Fonseca, G., Vierstraete, A., Vanfleteren, J., Vincx, M., & Moens, T., 2008. Disentangling taxonomy within the Rhabditis (Pellioditis) marina (Nematoda, Rhabditidae) species complex using molecular and morhological tools. Zool. J. Linn. Soc. 152(1), 1-15. http://doi.org/10.1111/j.1096-3642.2007.00365.x.

Ettema, C.H., & Bongers, T., 1993. Characterization of nematode colonization and succession in disturbed soil using the Maturity Index. Biol. Fertil. Soils 16(2), 79-85. http://doi.org/10.1007/BF00369407.

Fastie, C.L., 1995. Causes and ecosystem consequences of multiple pathways of primary succession at Glacier Bay, Alaska. Ecology 76(6), 1899-1916. http://doi.org/10.2307/1940722.

Ferreira, R.C., Nascimento-Junior, A.B., Santos, P.J.P., Botter-Carvalho, M.L., & Pinto, T.K., 2015. Responses of estuarine nematodes to an increase in nutrient supply: an in situ continuous addition experiment. Mar. Pollut. Bull. 90(1-2), 115-120. PMid:25499965. http://doi.org/10.1016/j.marpolbul.2014.11.012.

Fonseca, G., Norenburg, J., & Di Domenico, M., 2014. Diversity of marine meiofauna on the coast of Brazil. Mar. Biodivers. 44(3), 459-462. http://doi.org/10.1007/s12526-014-0261-0.

Fonsêca-Genevois, V.D., Somerfield, P.J., Neves, M.H.B., Coutinho, R., & Moens, T., 2006. Colonization and early succession on artificial hard substrata by meiofauna. Mar. Biol. 148(5), 1039-1050. http://doi.org/10.1007/s00227-005-0145-8.

Fox, J., & Weisberg, S., 2019. car: Companion to Applied Regression. Vienna: R Foundation for Statistical Computing. Retrieved in 2023, July 7, from https://CRAN.R-project.org/package=car

Freixa, A., Ortiz-Rivero, J., & Sabater, S., 2023. Artificial substrata to assess ecological and ecotoxicological responses in river biofilms: use and recommendations. MethodsX 10, 102089. PMid:36915862. http://doi.org/10.1016/j.mex.2023.102089.

Gallucci, F., Moens, T., Vanreusel, A., & Fonseca, G., 2008. Active colonisation of disturbed sediments by deep-sea nematodes: evidence for the patch mosaic model. Mar. Ecol. Prog. Ser. 367, 173-183. http://doi.org/10.3354/meps07537.

García-Gómez, J.C., Garrigós, M., & Garrigós, J., 2021. Plastic as a vector of dispersion for marine species with invasive potential: a review. Front. Ecol. Evol. 9, 629756. http://doi.org/10.3389/fevo.2021.629756.

Gerlach, S.A., & Schrage, M., 1971. Life cycles in marine meiobenthos. Experiments at various temperatures with Monhystera disjuncta and Theristus pertenuis (Nematoda). Mar. Biol. 9(3), 274-280. http://doi.org/10.1007/BF00351390.

Jouili, S., Essid, N., Semprucci, F., Boufahja, F., Nasri, A., Beyrem, H., & Mahmoudi, E., 2017. Environmental quality assessment of El Bibane lagoon (Tunisia) using taxonomic and functional diversity of meiofauna and nematodes. J. Mar. Biol. Assoc. U. K. 97(8), 1593-1603. http://doi.org/10.1017/S0025315416000990.

Justino, J.T., Demetrio, G.R., Neres, P.F., Meneses, D., & Pinto, T.K., 2023. A functional perspective of nematode assemblages as proxy of quality in tropical estuarine tidal flats. Mar. Environ. Res. 186, 105922. PMid:36812839. http://doi.org/10.1016/j.marenvres.2023.105922.

Madaliński, K., 1961. Moss dwelling Rotifers of Tatra streams. Pol. Arch. Hydrobiol. 9(22), 243-263.

Magneville, C., Loiseau, N., Albouy, C., Casajus, N., Claverie, T., Escalas, A., Leprieur, F., Maire, E., Mouillot, D., & Villéger, S., 2022. mFD: an R package to compute and illustrate the multiple facets of functional diversity. Ecography 2022(1), ecog.05904. http://doi.org/10.1111/ecog.05904.

Majdi, N., & Traunspurger, W., 2015. Free-living nematodes in the freshwater food web: a review. J. Nematol. 47(1), 28-44. PMid:25861114.

Majdi, N., Tackx, M., Traunspurger, W., & Buffan-Dubau, E., 2012. Feeding of biofilm-dwelling nematodes examined using HPLC-analysis of gut pigment contents. Hydrobiologia 680(1), 219-232. http://doi.org/10.1007/s10750-011-0920-0.

Margalef, R., 1963. On certain unifying principles in ecology. Am. Nat. 97(897), 357-374. http://doi.org/10.1086/282286.

Martinez Arbizu, P., 2019. pairwiseAdonis: Pairwise multilevel comparison using adonis. 2017. R package version 00, 1. São Francisco: GitHub, Inc.

Mirto, S., & Danovaro, R., 2004. Meiofaunal colonisation on artificial substrates: a tool for biomonitoring the environmental quality on coastal marine systems. Mar. Pollut. Bull. 48(9-10), 919-926. PMid:15111039. http://doi.org/10.1016/j.marpolbul.2003.11.016.

Moens, T., Vafeiadou, A.M., De Geyter, E., Vanormelingen, P., Sabbe, K., & De Troch, M., 2014. Diatom feeding across trophic guilds in tidal flat nematodes, and the importance of diatom cell size. J. Sea Res. 92, 125-133. http://doi.org/10.1016/j.seares.2013.08.007.

Netto, S.A., & Fonseca, G., 2017. Regime shifts in coastal lagoons: evidence from free-living marine nematodes. PLoS One 12(2), e0172366. PMid:28235030. http://doi.org/10.1371/journal.pone.0172366.

Netto, S.A., & Valgas, I., 2010. The response of nematode assemblages to intensive mussel farming in coastal sediments (Southern Brazil). Environ. Monit. Assess. 162(1-4), 81-93. PMid:19238569. http://doi.org/10.1007/s10661-009-0777-0.

Palmer, M. A. (1988). Dispersal of marine meiofauna: a review and conceptual model explaining passive transport and active emergence with implications for recruitment. Marine Ecology Progress Series, 48(1), 81-91.

Pennak, R.W., 1989. Eubranchiopoda (Fairy, Tadpole, and Clam Shrimps). In: Pennak, R.W., ed. Fresh-water Invertebrates of the United States: protozoa to mollusca. New York: John Wiley & Sons, 3 ed.

Peters, L., Traunspurger, W., Wetzel, M.A., & Rothhaupt, K.O., 2005. Community development of free-living aquatic nematodes in littoral periphyton communities. Nematology 7(6), 901-916. http://doi.org/10.1163/156854105776186352.

Peters, L., Wetzel, M.A., Traunspurger, W., & Rothhaupt, K.O., 2007. Epilithic communities in a lake littoral zone: the role of water-column transport and habitat development for dispersal and colonization of meiofauna. J. N. Am. Benthol. Soc. 26(2), 232-243. http://doi.org/10.1899/0887-3593(2007)26[232:ECIALL]2.0.CO;2.

Pianka, E.R., 1970. On r-and K-selection. Am. Nat. 104(940), 592-597. http://doi.org/10.1086/282697.

Pieczyńska, E., 1964. Investigations on colonization of new substrates by nematodes (Nematoda) and some other periphyton organisms. Ekol. Pol. A 12(13), 185-234.

Pielou, E.C., 1966. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131-144. http://doi.org/10.1016/0022-5193(66)90013-0.

Pinto, T.K., Austen, M.C., Warwick, R.M., Somerfield, P.J., Esteves, A.M., Castro, F.J., Fonseca-Genevois, V.G., & Santos, P.J.P., 2013. Nematode diversity in different microhabitats in a mangrove region. Mar. Ecol. 34(3), 257-268. http://doi.org/10.1111/maec.12011.

Platt, H.M., & Warwick, R.M., 1983. A synopsis of the free-living marine nematodes, part I. British enoplids. Cambridge: Cambridge University Press.

Prado, D., 2003. As caatingas da América do Sul. In: Leal, I.R., Tabarelli, M., & Silva, J.M.C., eds. Ecologia e conservação da Caatinga. Recife: Editora Universitária da UFPE, 3-73.

Ptatscheck, C., & Traunspurger, W., 2014. The meiofauna of artificial water-filled tree holes: colonization and bottom-up effects. Aquat. Ecol. 48(3), 285-295. http://doi.org/10.1007/s10452-014-9483-2.

Ptatscheck, C., & Traunspurger, W., 2020. The ability to get everywhere: dispersal modes of free-living, aquatic nematodes. Hydrobiologia 847(17), 3519-3547. http://doi.org/10.1007/s10750-020-04373-0.

Riemann, F., & Schrage, M., 1978. The mucus-trap hypothesis on feeding of aquatic nematodes and implications for biodegradation and sediment texture. Oecologia 34(1), 75-88. PMid:28309389. http://doi.org/10.1007/BF00346242.

Ristau, K., Spann, N., & Traunspurger, W., 2015. Species and trait compositions of freshwater nematodes as indicative descriptors of lake eutrophication. Ecol. Indic. 53, 196-205. http://doi.org/10.1016/j.ecolind.2015.01.010.

Robertson, A.L., 2000. Lotic meiofaunal community dynamics: colonisation, resilience and persistence in a spatially and temporally heterogeneous environment. Freshw. Biol. 44(1), 135-147. http://doi.org/10.1046/j.1365-2761.2000.00595.x.

Rule, M.J., & Smith, S.D., 2007. Depth-associated patterns in the development of benthic assemblages on artificial substrata deployed on shallow, subtropical reefs. J. Exp. Mar. Biol. Ecol. 345(1), 38-51. http://doi.org/10.1016/j.jembe.2007.01.006.

Shannon, C.E., 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379-423. http://doi.org/10.1002/j.1538-7305.1948.tb01338.x.

Smith, F., & Brown, A.V., 2006. Effects of flow on meiofauna colonization in artificial streams and reference sites within the Illinois River, Arkansas. Hydrobiologia 571(1), 169-180. http://doi.org/10.1007/s10750-006-0237-6.

Soetaert, K., Muthumbi, A., & Heip, C., 2002. Size and shape of ocean margin nematodes: morphological diversity and depth-related patterns. Mar. Ecol. Prog. Ser. 242, 179-193. http://doi.org/10.3354/meps242179.

Spagnolo, A., Cuicchi, C., Punzo, E., Santelli, A., Scarcella, G., & Fabi, G., 2014. Patterns of colonization and succession of benthic assemblages in two artificial substrates. J. Sea Res. 88, 78-86. http://doi.org/10.1016/j.seares.2014.01.007.

Sroczyńska, K., Chainho, P., Vieira, S., & Adao, H., 2021. What makes a better indicator? Taxonomic vs functional response of nematodes to estuarine gradient. Ecol. Indic. 121, 107113. http://doi.org/10.1016/j.ecolind.2020.107113.

Steel, H., de la Peña, E., Fonderie, P., Willekens, K., Borgonie, G., & Bert, W., 2010. Nematode succession during composting and the potential of the nematode community as an indicator of compost maturity. Pedobiologia 53(3), 181-190. http://doi.org/10.1016/j.pedobi.2009.09.003.

Thomas, M.C., & Lana, P.C., 2011. A new look into the small-scale dispersal of free-living marine nematodes. Zoologia 28(4), 449-456. http://doi.org/10.1590/S1984-46702011000400006.

Tita, G., Vincx, M., & Desrosiers, G., 1999. Size spectra, body width and morphotypes of intertidal nematodes: an ecological interpretation. J. Mar. Biol. Assoc. U. K. 79(6), 1007-1015. http://doi.org/10.1017/S0025315499001241.

Traunspurger, W., 1996. Autecology of Monhystera paludicola De Man, 1880-seasonal, bathymetric and vertical distribution of a free‐living Nematode in an Oligotrophic Lake. Int. Rev. Ges. Hydrobiol. 81(2), 199-211. http://doi.org/10.1002/iroh.19960810205.

Traunspurger, W., 2014. Ecology of Freshwater Nematodes. In: Schimidt-Rhaesa, A., ed. Handbook of zoology: Gastrotricha, Cycloneuralia and Gnathifera. Berlin: NHBS Ltd., 153-170, vol. 3.

Traunspurger, W., Bergtold, M., & Goedkoop, W., 1997. The effects of nematodes on bacterial activity and abundance in a freshwater sediment. Oecologia 112(1), 118-122. PMid:28307367. http://doi.org/10.1007/s004420050291.

Traunspurger, W., Wilden, B., & Majdi, N., 2020. An overview of meiofaunal and nematode distribution patterns in lake ecosystems differing in their trophic state. Hydrobiologia 847(12), 2665-2679. http://doi.org/10.1007/s10750-019-04092-1.

Vidaković, J., Palijan, G., & Cerba, D., 2011. Relationship between nematode community and biomass and composition of periphyton developing on artificial substrates in floodplain lake. Pol. J. Ecol. 59(3), 577-588.

Vranken, G., Thielemans, L.K., Heip, C., & Vandycke, M., 1981. Aspects of the life cycle of Monhystera parelegantula (Nematoda, Monhysteridae). Mar. Ecol. Prog. Ser. 6, 67-72. http://doi.org/10.3354/meps006067.

Walkley, A., & Black, I.A., 1934. An examination of the Degtjareff method for determining soil organic matter, and proposed modification of the chromic acid titration method. Soil Sci. 37(1), 29-38. http://doi.org/10.1097/00010694-193401000-00003.

Warwick, R.M., Platt, H.M., & Somerfield, P.J., 1998. Free-living marine nematodes. Part III. British Monhysterids. Shrewsbury: The Linnean Society of London and The Estuarine and Coastal Science Association, 296 p., Synopses of the British Fauna (New Series).

Weitere, M., Erken, M., Majdi, N., Arndt, H., Norf, H., Reinshagen, M., Traunspurger, W., Walterscheid, A., & Wey, J.K., 2018. The food web perspective on aquatic biofilms. Ecol. Monogr. 88(4), 543-559. http://doi.org/10.1002/ecm.1315.

Wilden, B., Tasevska, O., & Traunspurger, W., 2020. A comparison of benthic meiofaunal communities in the oldest European lake. J. Great Lakes Res. 46(5), 1146-1155. http://doi.org/10.1016/j.jglr.2020.01.018.

Williams, D.D., & Hynes, H.B.N., 1976. The recolonization mechanisms of stream benthos. Oikos 27(2), 265-272. http://doi.org/10.2307/3543905.

Zeppilli, D., Sarrazin, J., Leduc, D., Arbizu, P.M., Fontaneto, D., Fontanier, C., Gooday, A.J., Kristensen, R.M., Ivanenko, V.N., Sørensen, M.V., Vanreusel, A., Thébault, J., Mea, M., Allio, N., Andro, T., Arvigo, A., Castrec, J., Danielo, M., Foulon, V., Fumeron, R., Hermabessiere, L., Hulot, V., James, T., Langonne-Augen, R., Le Bot, T., Long, M., Mahabror, D., Morel, Q., Pantalos, M., Pouplard, E., Raimondeau, L., Rio-Cabello, A., Seite, S., Traisnel, G., Urvoy, K., Van Der Stegen, T., Weyand, M., & Fernandes, D., 2015. Is the meiofauna a good indicator for climate change and anthropogenic impacts? Mar. Biodivers. 45(3), 505-535. http://doi.org/10.1007/s12526-015-0359-z.

Zhou, H., 2001. Effects of leaf litter addition on meiofaunal colonization of azoic sediments in a subtropical mangrove in Hong Kong. J. Exp. Mar. Biol. Ecol. 256(1), 99-121. PMid:11137508. http://doi.org/10.1016/S0022-0981(00)00310-5.

Zullini, A., 2010. Identification manual for freshwater Nematode Genera. Italian: Università di Milano Bicocca, 112 p.
 


Submitted date:
07/07/2023

Accepted date:
06/24/2024

Publication date:
09/09/2024

66df3a93a953956f165050f2 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections