Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X6123
Acta Limnologica Brasiliensia
Original Article

Phytoplankton community diversity, dominance, and rarity: a case study of tropical urban lakes

Diversidade, dominância e raridade da comunidade fitoplanctônica: um estudo de caso em lagos urbanos tropicais

Marlon Pablo Miranda Martins; Khályta Willy da Silva Soares; Priscilla de Carvalho; Jascieli Carla Bortolini

Downloads: 0
Views: 191

Abstract

Aim: The aim of this study was to evaluate how phytoplankton community diversity, dominance, and rarity are influenced by different local environmental conditions in urban lakes. We expect that richness will be negatively influenced in lakes with higher nutrient concentrations and high turbidity, while abundance will be positively influenced. Thus, lakes with these conditions will have greater dominance of a few species and lower rarity, and the opposite in lakes with lower nutrient concentrations and less turbidity.

Methods: Phytoplankton and abiotic variables samples were collected in fourteen lakes distributed in the municipality of Goiânia, Goiás, Brazil, during a rainy period.

Results: It was possible to identify an environmental heterogeneity among the lakes. We identified a separation of the lakes according to phytoplankton richness and density, especially due to the contribution of green algae, desmids, and cyanobacteria. Most lakes showed high diversity and evenness values, with a predominance of rare taxa and few dominant species. The main variables associated with phytoplankton were water temperature, dissolved oxygen, turbidity, and nutrient concentrations.

Conclusions: Therefore, the study of species diversity, dominance, and rarity based on phytoplankton richness and abundance and their relationship with different local environmental conditions can be an important model for assessing water quality in urban lakes.

Keywords

planktonic algae, urbanization, environmental heterogeneity, shallow lakes

Resumo

Objetivo: O objetivo deste estudo foi avaliar como a diversidade, dominância e raridade da comunidade fitoplanctônica são influenciadas por diferentes condições ambientais locais em lagos urbanos. Nós esperamos que a riqueza será influenciada negativamente em lagos com maiores concentrações de nutrientes e maior turbidez, enquanto a abundância será influenciada positivamente. Assim, haverá uma maior dominância de poucas espécies e menor raridade em lagos com essas condições, sendo esperado o contrário em lagos com menores concentrações de nutrientes e menor turbidez.

Métodos: As amostras do fitoplâncton e das variáveis abióticas foram coletadas em quatorze lagos distribuídos no município de Goiânia, Goiás, Brasil, durante um período chuvoso.

Resultados: Foi possível identificar uma heterogeneidade ambiental entre os lagos. Nós identificamos uma separação dos lagos em função da riqueza e densidade fitoplanctônica, especialmente devido à contribuição de algas verdes, desmídias e cianobactérias. A maioria dos lagos apresentou altos valores de diversidade e equitabilidade, com predominância de táxons raros e poucas espécies dominantes. As principais variáveis que estiveram relacionadas com o fitoplâncton, foram a temperatura da água, oxigênio dissolvido, turbidez e as concentrações de nutrientes.

Conclusões: Portanto, o estudo da diversidade, dominância e raridade baseada na riqueza e abundância fitoplanctônica e a sua relação com as diferentes condições ambientais locais pode ser um importante modelo na avaliação da qualidade da água em lagos urbanos.
 

Palavras-chave

algas planctônicas, urbanização, heterogeneidade ambiental, lagos rasos

References

American Public Health Association – APHA, 2017. Standard methods for the examination of water and wastewater (23rd ed.). Washington: APHA.

Bicudo, C.E.M., & Menezes, M., 2017. Gêneros de algas de águas continentais do Brasil: chave para identificação e descrições (3ª ed.). São Paulo: RiMa.

Brabcová, B., Marvan, P., Opatřilová, L., Brabec, K., Fránková, M., & Heteša, J., 2017. Diatoms in water quality assessment: to count or not to count them? Hydrobiologia 795(1), 113-127. http://dx.doi.org/10.1007/s10750-017-3123-5.

Chang, C.W., Miki, T., Ye, H., Souissi, S., Adrian, R., Anneville, O., Agasild, H., Ban, S., Be’eri-Shlevin, Y., Chiang, Y., Feuchtmayr, H., Gal, G., Ichise, S., Kagami, M., Kumagai, M., Liu, X., Matsuzaki, S.S., Manca, M.M., Nõges, P., Piscia, R., Rogora, M., Shiah, F., Thackeray, S.J., Widdicombe, C.E., Wu, J., Zohary, T., & Hsieh, C., 2022. Causal networks of phytoplankton diversity and biomass are modulated by environmental context. Nat. Commun. 13(1), 1140. PMid:35241667. http://dx.doi.org/10.1038/s41467-022-28761-3.

Chen, Q., Huang, M., & Tang, X., 2020. Eutrophication assessment of seasonal urban lakes in China Yangtze River Basin using Landsat 8-derived Forel-Ule index: a six-year (2013-2018) observation. Sci. Total Environ. 745, 135392. PMid:31892484. http://dx.doi.org/10.1016/j.scitotenv.2019.135392.

Clarke, K.R., & Ainsworth, M., 1993. A method of linking multivariate community structure to environmental variables. Mar. Ecol. Prog. Ser. 92, 205-219. http://dx.doi.org/10.3354/meps092205.

Clarke, K.R., 1993. Nonparametric multivariate analysis of changes in community structure. Aust. J. Ecol. 18(1), 117-143. http://dx.doi.org/10.1111/j.1442-9993.1993.tb00438.x.

Coesel, P.F.M., 1982. Structural characteristic and adaptations of desmids communities. J. Ecol. 70(1), 163-177. http://dx.doi.org/10.2307/2259871.

D’Alessandro, E.B., & Nogueira, I.S., 2017. Algas planctônicas flageladas e cocoides verdes de um lago no Parque Beija-Flor, Goiânia, GO, Brasil. Hoehnea 44(3), 415-430. http://dx.doi.org/10.1590/2236-8906-84/2016.

De Groot, R.S., Wilson, M.A., & Boumans, R.M.J., 2002. A typology for the classification, description and valuation of ecosystem function, goods and services. Ecol. Econ. 41(3), 393-408. http://dx.doi.org/10.1016/S0921-8009(02)00089-7.

Dittrich, J., Dias, J.D., Paula, A.C.M., & Padial, A.A., 2023. Experimental nutrient enrichment increases plankton taxonomic and functional richness and promotes species dominance overtime. Hydrobiologia 850(18), 4029-4048. http://dx.doi.org/10.1007/s10750-023-05285-5.

Frau, D., Mayora, G., & Devercelli, M., 2018. Phytoplankton-based water quality metrics: feasibility of their use in a Neotropical shallow lake. Mar. Freshw. Res. 69(11), 1746-1754. http://dx.doi.org/10.1071/MF18101.

Golterman, H.L., Clymo, R.S., & Ohnstad, M.A.M., 1978. Methods of physical and chemical analysis of fresh waters. Oxford: Blackwell Scientific Publications.

González Garraza, G.G., Burdman, L., & Mataloni, G., 2019. Desmids (Zygnematophyceae, Streptophyta) community drivers and potential as a monitoring tool in South American peat bogs. Hydrobiologia 833(1), 125-141. http://dx.doi.org/10.1007/s10750-019-3895-x.

Gavrilidis, A.A., Niță, M.R., Onose, D.A., Badiu, D.L., & Năstase, I.I., 2019. Methodological framework for urban sprawl control through sustainable planning of urban green infrastructure. Ecol. Indic. 96, 67-78. http://dx.doi.org/10.1016/j.ecolind.2017.10.054.

Guiry, M.D., & Guiry, G.M., 2022. AlgaeBase [online]. Galway: National University of Ireland. Retrieved in 2023, June 29, from http://www.algaebase.org

Hamsher, S.E., Ellis, K., Holen, D., & Sanders, R.W., 2020. Effects of light, dissolved nutrients and prey on ingestion and growth of a newly identified mixotrophic algae, Chrysolepidomonas dendrolepidota (Chrysophyceae). Hydrobiologia 847(13), 2923-2932. http://dx.doi.org/10.1007/s10750-020-04293-z.

Hasan, S.S., Zhen, L., Miah, M.G., Ahamed, T., & Samie, A., 2020. Impact of land use change on ecosystem services: a review. Environ. Dev. 34, 100527. http://dx.doi.org/10.1016/j.envdev.2020.100527.

Hill, M.J., Biggs, J., Thornhill, I., Briers, R.A., Gledhill, D.G., White, J.C., Wood, P.J., & Hassall, C., 2017. Urban ponds as an aquatic biodiversity resource in modified landscapes. Glob Change Biol. 23(3), 986-999. PMid:27476680. http://dx.doi.org/10.1111/gcb.13401.

Hossu, C.A., Iojă, I.C., Onose, D.A., Niță, M.R., Popa, A.M., Talabă, O., & Inostroza, L., 2019. Ecosystem services appreciation of urban lakes in Romania: synergies and trade-offs between multiple users. Ecosyst. Serv. 37, 100937. http://dx.doi.org/10.1016/j.ecoser.2019.100937.

Kakouei, K., Kraemer, B.M., Anneville, O., Carvalho, L., Feuchtmayr, H., Graham, J.L., Higgins, S., Pomati, F., Rudstam, L.G., Stockwell, J.D., Thackeray, S.J., Vanni, M.J., & Adrian, R., 2021. Phytoplankton and cyanobacteria abundances in mid-21st century lakes depend strongly on future land use and climate projections. Glob Change Biol. 27(24), 6409-6422. PMid:34465002. http://dx.doi.org/10.1111/gcb.15866.

Kindt, R., & Coe, R., 2005. Tree diversity analysis: a manual and software for common statistical methods for ecological and biodiversity studies [online]. Nairobi: World Agroforestry Centre (ICRAF). Retrieved in 2023, June 29, from http://www.worldagroforestry.org/output/tree-diversity-analysis

Komárek, J., & Fott, B., 1983. Chlorophyceae (Grünalgen), Ordiniung: Chlorococcales. In: Huber-Pestalozzi, G., ed. Das phytoplankton des süsswaser: systematik und biologie pt 7. Stuttgart: E. Schwiezerbat’sche Verlagsbuchhandlung, 1-1044.

Kruk, C., & Segura, A.M., 2012. The habitat template of phytoplankton morphology-based functional groups. Hydrobiologia 698(1), 191-202. http://dx.doi.org/10.1007/s10750-012-1072-6.

Kruk, C., Huszar, V.L.M., Peeters, E.H.M., Bonilla, S., Costa, L., Lurling, M., Reynolds, C.S., & Scheffer, M., 2010. A morphological classification capturing functional variation in phytoplankton. Freshw. Biol. 55(3), 614-627. http://dx.doi.org/10.1111/j.1365-2427.2009.02298.x.

Lamparelli, M.C., 2004. Grau de trofia em corpos d’água do estado de São Paulo: avaliação dos métodos de monitoramento [Tese de doutorado em Ecologia Aplicada]. São Paulo: Departamento de Ecologia, Universidade de São Paulo.

Le, C., Zha, Y., Li, Y., Sun, D., Lu, H., & Yin, B., 2010. Eutrophication of lake waters in China: cost, causes, and control. Environ. Manage. 45(4), 662-668. PMid:20177679. http://dx.doi.org/10.1007/s00267-010-9440-3.

Leitão, R.P., Zuanon, J., Villéger, S., Williams, S.E., Baraloto, C., Fortunel, C., Mendonça, F.P., & Mouillot, D., 2016. Rare species contribute disproportionately to the functional structure of species assemblages. Proc. Biol. Sci. 283(1828), 20160084. PMid:27053754. http://dx.doi.org/10.1098/rspb.2016.0084.

Li, F., Liu, X., Zhang, X., Zhao, D., Liu, H., Zhou, C., & Wang, R., 2017. Urban ecological infrastructure: an integrated network for ecosystem services and sustainable urban systems. J. Clean. Prod. 163, S12-S18. http://dx.doi.org/10.1016/j.jclepro.2016.02.079.

Litchman, E., & Klausmeier, C.A., 2008. Trait-based community ecology of phytoplankton. Annu. Rev. Ecol. Evol. Syst. 39(1), 615-639. http://dx.doi.org/10.1146/annurev.ecolsys.39.110707.173549.

Machado, K.B., Bini, L.M., Melo, A.S., Andrade, A.T., Almeida, A.F., Carvalho, P., Teresa, F.B., Roque, F.O., Bortolini, J.C., Padial, A.A., Vieira, L.C.G., Dala-Corte, R.B., Siqueira, T., Juen, L., Dias, M.S., Gama Júnior, W.A., Martins, R.T., & Nabout, J.C., 2023. Functional and taxonomic diversities are better early indicators of eutrophication than composition of freshwater phytoplankton. Hydrobiologia 850(6), 1393-1411. http://dx.doi.org/10.1007/s10750-022-04954-1.

Magurran, A.E., & Henderson, P.A., 2003. Explaining the excess of rare species in natural species abundance distributions. Nature 422(6933), 714-716. PMid:12700760. http://dx.doi.org/10.1038/nature01547.

Magurran, A.E., 2005. Species abundance distributions: pattern or process? Funct. Ecol. 19(1), 177-181. http://dx.doi.org/10.1111/j.0269-8463.2005.00930.x.

Margalef, R., 1983. Limnología. Barcelona: Omega.

Mouillot, D., Bellwood, D.R., Baraloto, C., Chave, J., Galzin, R., Harmelin-Vivien, M., Kulbicki, M., Lavergne, S., Lavorel, S., Mouquet, N., Paine, C.E.T., Renaud, J., & Thuiller, W., 2013. Rare species support vulnerable functions in high diversity ecosystems. PLoS Biol. 11(5), e1001569. PMid:23723735. http://dx.doi.org/10.1371/journal.pbio.1001569.

Moura, L.C.S., Santos, S.M., Souza, C.A., Santos, C.R.A., & Bortolini, J.C., 2021. Riqueza e abundância fitoplanctônica em resposta à sazonalidade e espacialidade em um reservatório tropical. Acta Limnol. Bras. 33, e13. http://dx.doi.org/10.1590/s2179-975x11419.

Nabout, J.C., & Nogueira, I.S., 2011. Variação temporal da comunidade fitoplanctônica em lagos urbanos eutróficos. Acta Sci. Biol. Sci. 33(4), 383-391. http://dx.doi.org/10.4025/actascibiolsci.v33i4.5955.

Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Henry, M., & Stevens, H., 2017. Vegan: Community Ecology Package. R package version 2.4-5 [online]. Vienna: R Foundation for Statistical Computing. Retrieved in 2023, June 29, from http://CRAN.R-project.org/package=vegan

Padisák, J., Crossetti, L.O., & Naselli-Flores, L., 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621(1), 1-19. http://dx.doi.org/10.1007/s10750-008-9645-0.

Paerl, H.W., & Otten, T.G., 2013. Harmful Cyanobacterial blooms: causes, consequences, and controls. Microb. Ecol. 65(4), 995-1010. PMid:23314096. http://dx.doi.org/10.1007/s00248-012-0159-y.

Paerl, H.W., 2017. Controlling harmful cyanobacterial blooms in a climatically more extreme world: management options and research needs. J. Plankton Res. 39(5), 763-771. http://dx.doi.org/10.1093/plankt/fbx042.

Paerl, H.W., Havens, K.E., Xu, H., Zhu, G., McCarthy, M.J., Newell, S.E., Scott, J.T., Hall, N.S., Otten, T.G., & Qin, B., 2020. Mitigating eutrophication and toxic cyanobacterial blooms in large lakes: the evolution of a dual nutrient (N and P) reduction paradigm. Hydrobiologia 847(21), 4359-4375. http://dx.doi.org/10.1007/s10750-019-04087-y.

Pielou, E.C., 1966. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131-144. http://dx.doi.org/10.1016/0022-5193(66)90013-0.

Potapova, M., & Hamilton, P., 2007. Morphological and ecological variation within the Achnanthidium minutissimum (Bacillariophyceae) species complex. J. Phycol. 43(1), 561-575. http://dx.doi.org/10.1111/j.1529-8817.2007.00332.x.

R Development Core Team, 2021. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

Reinl, K.L., Brookes, J.D., Carey, C.C., Harris, T.D., Ibelings, B.W., Morales-Williams, A.M., De Senerpont Domis, L.N., Atkins, K.S., Isles, P.D.F., Mesman, J.P., North, R.L., Rudstam, L.G., Stelzer, J.A.A., Venkiteswaran, J.J., Yokota, K., & Zhan, Q., 2021. Cyanobacterial blooms in oligotrophic lakes: shifting the high nutrient paradigm. Freshw. Biol. 66(9), 1846-1859. http://dx.doi.org/10.1111/fwb.13791.

Reynolds, C.S., Huszar, V.L.M., Kruk, C., Naselli-Flores, L., & Melo, S., 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24(5), 417-428. http://dx.doi.org/10.1093/plankt/24.5.417.

Salmaso, N., & Tolotti, M., 2021. Phytoplankton and anthropogenic changes in pelagic environments. Hydrobiologia 848(1), 251-284. http://dx.doi.org/10.1007/s10750-020-04323-w.

Shannon, C.E., & Weaver, E., 1963. Mathematical theory of communication. Bull Syst Tecnol J. 27(3), 379-423. http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x.

Silva, F.R., Gonçalves-Souza, T., Paterno, G.B., Provete, D.B., & Vancine, M.H., 2022. Análises ecológicas no R. Recife: Nupeea; São Paulo: Canal 6, 640 p.

Soares, E.M., Figueredo, C.C., Gücker, B., & Boëchat, I.G., 2013. Effects of growth condition on succession patterns in tropical phytoplankton assemblages subjected to experimental eutrophication. J. Plankton Res. 35(5), 1141-1153. http://dx.doi.org/10.1093/plankt/fbt061.

Thornhill, I., Batty, L., Death, R.G., Friberg, N.R., & Ledger, M.E., 2017. Local and landscape scale determinants of macroinvertebrate assemblages and their conservation value in ponds across an urban land-use gradient. Biodivers. Conserv. 26(5), 1065-1086. PMid:32103868. http://dx.doi.org/10.1007/s10531-016-1286-4.

Ulrich, W., Ollik, M., & Ugland, K.I., 2010. A meta-analysis of species-abundance distributions. Oikos 119(7), 1149-1155. http://dx.doi.org/10.1111/j.1600-0706.2009.18236.x.

Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen phytoplankton-methodic. Verh. Internationalen Vereinigung Theoretische Angew. Limnol. 9, 1-38.

van Apeldoorn, M.E., van Egmond, H.P., Speijers, G.J.A., & Bakker, G.J.I., 2007. Toxins of cyanobacteria. Mol. Nutr. Food Res. 51(1), 7-60. PMid:17195276. http://dx.doi.org/10.1002/mnfr.200600185.

Ziter, C., 2016. The biodiversity-ecosystem service relationship in urban areas: a quantitative review. Oikos 125(6), 761-768. http://dx.doi.org/10.1111/oik.02883.
 


Submitted date:
06/29/2023

Accepted date:
11/13/2023

Publication date:
12/29/2023

658ee902a95395241e44c924 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections