Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X5724
Acta Limnologica Brasiliensia
Thematic Section: Neotropical Zooplankton Symposium

Hatching of Cladocera (Crustacea: Branchiopoda) resting eggs from permanently hydrated and temporarily dehydrated sediments of an Amazon lake

Eclosão dos ovos de resistência de Cladocera (Crustacea: Branchiopoda) dos sedimentos permanentemente hidratados e temporariamente desidratados de um lago amazônico

Camila de Araújo Couto; Raize Castro-Mendes; Renan Gomes do Nascimento; Alexander Armando Flores Arzabe; Luis Geraldes Primeiro; Maiby Glorize da Silva Bandeira; Edinaldo Nelson dos Santos-Silva

Downloads: 0
Views: 121

Abstract

Aim: i) to characterize the composition of the Cladocera species hatched from the resting eggs of permanently hydrated and temporarily dehydrated sediments; ii) to test whether periodic dehydration reduces the hatching of the resting eggs.

Methods: Cladocera resting eggs were collected from the sediment of Tupé lake, Amazonas, Brazil. Sampling was performed in the dry season, when the sediment was found in two conditions: Permanently Hydrated Sediment (PHS) in the lake main channel and Temporarily Dehydrated Sediment (TDS) on the margin. Hatching was experimented through a temperature of 24 °C (± 2 °C) and a photoperiod of 12h light: 12h dark, for 20 days.

Results: Eight Cladocera taxa were counted among the two sediments. In PHS five taxa (one exclusive) were identified and seven taxa (three exclusive) occurred in TDS. The comparison of the hatching rate of Cladocera eggs between TDS (0.36 ± 0.48%) and PHS (0.32 ± 0.49%) was not significant (GLM: χ21= 0.012; P > 0.05; Pseudo-R2M= 0.0006).

Conclusions: The hypothesis that periodic dehydration of Cladocera resting eggs reduces egg hatching has been refuted. This leads us to conclude that natural periodic dehydration does not affect the hatching of resistance eggs, therefore, resistance eggs, as already reported in the literature are an important mechanism for the maintenance and success of organisms in environments, even undergoing profound changes caused due to the large variation in water levels that occur in Amazon rivers and associated environments.

Keywords

diapause; dormancy; ephippium; zooplankton

Resumo

Objetivo: i) caracterizar a composição das espécies de Cladocera eclodidas dos ovos de resistência de sedimentos permanentemente hidratados e temporariamente desidratados; e ii) testar se a desidratação periódica reduz a eclosão dos ovos de resistência.

Métodos: Os ovos de resistência de Cladocera foram coletados do sedimento do lago Tupé, Amazonas, Brasil. A amostragem foi realizada no período da seca, quando o sedimento é encontrado em duas condições: i) sedimento permanentemente hidratado (SPH) no canal do lago; e ii) sedimento temporariamente desidratado (STD) nas margens. Com isso foi realizado um experimento de eclosão, com temperatura de 24 °C (± 2 °C) e fotoperíodo de 12h claro: 12h escuro, durante 20 dias.

Resultados: Dos dois tipos de sedimentos foram contabilizados oito táxons de Cladocera. Em PHS foram identificados cinco táxons (um exclusivo) e em TDS ocorreram sete espécies (três exclusivas). A comparação da proporção de eclosão dos ovos de Cladocera entre STD (0,36 ± 0,48%) e SPH (0,32 ± 0,49%) não foi estatisticamente significativa (GLM: χ21= 0,012; P > 0,05; Pseudo-R2M= 0,0006).

Conclusões: A hipótese de que a desidratação periódica dos ovos de resistência de Cladocera reduz a eclosão dos ovos foi refutada. Isto nos leva a concluir que a desidratação periódica natural não afeta a eclosão de ovos de resistência, portanto, os ovos de resistência, como já reportado na literatura são um importante mecanismo de manutenção e sucesso dos organismos nos ambientes, mesmo sofrendo profundas modificações causadas pela grande variação do núvel das águas que ocorrem nos rios amazônicos e ambientes associados.

Palavras-chave

diapausa; dormência; efípio; zooplâncton

References

Abramowitz, M., & Stegun, I.A., 1972. Elementary transcendental functions: logarithmic, exponential, circular, and hyperbolic functions. In: Abramowitz, M., & Stegun, I.A., eds. Handbook of mathematical functions. New York: Dover, chap. 4.

Alekseev, V.R., De Stasio, B., & Gilbert, J.J., 2007. Diapause in aquatic invertebrates: theory and human use. Dordrecht: Springer. http://doi.org/10.1007/978-1-4020-5680-2.

Aprile, F.M., & Darwich, A.J., 2005. Modelos geomorfológicos para o lago Tupé. In: Santos-Silva, E.N., Aprile, F.M., Scudeller, V.V., & Melo, S., eds. Biotupé: meio físico, diversidade biológica e sociocultural do baixo rio Negro, Amazônia Central. Manaus: Instituto Nacional de Pesquisas da Amazônia, 3-17, vol. 1.

Araújo, L.R., 2012. Importância da hidroconectividade e do banco de ovos de resistência na recolonização de ambientes costeiros por organismos zooplanctônicos [Dissertação de Mestrado em Ecologia Aplicada]. Juíz de Fora: Universidade Federal de Juíz de Fora, 96 p.

Bandeira, M.G.S., Martins, K.P., Palma-Silva, C., Hepp, L.U., & Albertoni, E.F., 2020. Hydration time influences microcrustacean hatching in intermittent wetlands: in situ and ex situ approaches. Hydrobiologia 847(15), 3227-3245. http://doi.org/10.1007/s10750-020-04315-w.

Bittencourt, M.M., & Amadio, S.A., 2007. Proposta para identificação rápida dos períodos hidrológicos em áreas de várzea do rio Solimões-Amazonas nas proximidades de Manaus. Acta Amazon. 37(2), 303-308. http://doi.org/10.1590/S0044-59672007000200019.

Brandorff, G.O., & Hardy, E.R., 2009. Crustacean zooplankton of Lago Tupé, a neotropical black water lake in the Central Amazon. In: Santos-Silva, E.N., & Scudeller, V.V., eds. Biotupé: meio físico, diversidade biológica e sociocultural. Manaus: UEA Edições, 206 p., vol. 2.

Branstrator, D.K., Shannon, L.J., Brown, M.E., & Kitson, M.T., 2013. Effects of chemical and physical conditions on hatching success of Bythotrephes longimanus resting eggs. Limnol. Oceanogr. 58(6), 2171-2184. http://doi.org/10.4319/lo.2013.58.6.2171.

Brede, N., Straile, D., Streit, B., & Schwenk, K., 2007. The contribution of differential hatching success to the fitness of species and interspecific hybrids. Hydrobiologia 594(1), 83-89. http://doi.org/10.1007/s10750-007-9088-z.

Brock, M.A., Nielsen, D.L., Shiel, R.J., Green, J.D., & Langley, J.D., 2003. Drought and aquatic community resilience: the role of eggs and seeds in sediments of temporary wetlands. Freshw. Biol. 48(7), 1207-1218. http://doi.org/10.1046/j.1365-2427.2003.01083.x.

Carvalho, G.R., & Wolf, H.G., 1989. Resting eggs of lake-Daphnia. I. Distribution, abundance and hatching of eggs collected from various depths in lake sediments. Freshw. Biol. 22(3), 459-470. http://doi.org/10.1111/j.1365-2427.1989.tb01118.x.

Couto, C.A., Ghidini, A.R., & Santos-Silva, E.N., 2009. Aspectos da reprodução de cladóceros associados aos bancos de Utricularia foliosa L. (Lentibulariaceae) no Lago Tupé, Manaus-AM. In: Arce, I.M.R., ed. Anais da XVIII Jornada de Iniciação Científica do PIBIC/CNPQ/FAPEAM/INPA - Ciência, Sociedade e Meio Ambiente. Manaus: INPA, 56 p.

Crispim, M.C., & Watanabe, T., 2001. What can dry reservoir sediments in a semi-arid region in Brazil tell us about cladocera? Hydrobiologia 442(1-3), 101-105. http://doi.org/10.1023/A:1017550603022.

Dobson, A.J., 1990. An introduction to generalized linear models. London: Chapman & Hall, 221 p. http://doi.org/10.1007/978-1-4899-7252-1.

Dobson, A.J., 2002. An introduction to generalized linear models. London: Chapman & Hall/CRC, 2 ed., 221 p.

Elmoor-Loureiro, L.M.A., 1997. Manual de identificação de Cladóceros Límnicos do Brasil. Brasília: Universidade Católica de Brasília, 155 p.

Fleischmann, A.S., Papa, F., Fassoni-Andrade, A., Melack, J.M., Wongchuig, S., Paiva, R.C.D., Hamilton, S.K., Fluet-Chouinard, E., Barbedo, R., Aires, F., Al Bitar, A., Bonnet, M.-P., Coe, M., Ferreira-Ferreira, J., Hess, L., Jensen, K., McDonald, K., Ovando, A., Park, E., Parrens, M., Pinel, S., Prigent, C., Resende, A.F., Revel, M., Rosenqvist, A., Rosenqvist, J., Rudorff, C., Silva, T.S.F., Yamazaki, D., & Collischonn, W., 2022. How much inundation occurs in the Amazon River basin? Remote Sens. Environ. 278, 113099. http://doi.org/10.1016/j.rse.2022.113099.

Fleischmann, A.S., Papa, F., Hamilton, S.K., Fassoni-Andrade, A., Wongchuig, S., Espinoza, J.-C., Paiva, R.C.D., Melack, J.M., Fluet-Chouinard, E., Castello, L., Almeida, R.M., Bonnet, M.-P., Alves, L.G., Moreira, D., Yamazaki, D., Revel, M., & Collischonn, W., 2023. Increased floodplain inundation in the Amazon since 1980. Environ. Res. Lett. 18(3), 034024. http://doi.org/10.1088/1748-9326/acb9a7.

Flores-Mendez, D.N., & Gutierrez, M.F., 2024. Comparative analysis of ex situ zooplankton hatching methods. Acta Limnol. Bras. 36, e23. http://doi.org/10.1590/s2179-975x11323.

Freiry, R.F., Weber, V., Bonecker, C.C., Lansac-Tôha, F.A., Pires, M.M., Stenert, C., & Maltchik, L., 2020. Additive partitioning of the diversity of the dormant zooplankton communities in intermittent ponds along a forest–grassland transition. Hydrobiologia 847(5), 1327-1342. http://doi.org/10.1007/s10750-020-04187-0.

García-Roger, E.M., Carmona, M.J., & Serra, M., 2006. Hatching and variability of rotifer diapausing eggs collected from pond sediments. Freshw. Biol. 51(7), 1351-1358. http://doi.org/10.1111/j.1365-2427.2006.01583.x.

Ghidini, A.R., & Santos-Silva, E.N., 2018. Composition, abundance, and diversity of limnetic cladocerans (Crustacea: Anomopoda and Ctenopoda) in a black-water lake in the Negro River basin, Amazonas State, Brazil. Nauplius 26, e2018018. http://doi.org/10.1590/2358-2936e2018018.

Ghidini, A.R., 2011. Cladóceros (Crustacea: Anomopoda e Ctenopoda) associados a diferentes hábitats de um lago de águas pretas da Amazônia Central (Lago Tupé, Amazonas, Brasil) [Tese de doutorado em Biologia de Água e Pesca Interior]. Manaus: Instituto Nacional de Pesquisas da Amazônia, 144 p.

Grice, G.D., & Marcus, N.H., 1981. Dormant eggs of marine copepods. Oceanogr. Mar. Biol. Annu. Rev. 19, 125-140. http://doi.org/10.1007/BF00017691.

Guimarães, W.L., Panarelli, E.A., Santos, N.G., & Castilho-Noll, M.S.M., 2024. Factors stimulating the hatching of resting eggs and their contribution to the composition of cladoceran assemblages in tropical temporary lagoons. Acta Limnol. Bras. 36, e28. http://doi.org/10.1590/s2179-975x4221.

Gyllström, M., & Hansson, L.A., 2004. Dormancy in freshwater zooplankton: Induction, termination and the importance of benthic-pelagic coupling. Aquat. Sci. 66, 274-295. http://doi.org/10.1007/s00027-004-0712-y.

Hairston, N.G., Perry Junior, L.J., Bohonak, A.J., Fellows, M.Q., Kearns, C.M., & Engstrom, D.R., 1999. Population biology of a failed invasion: paleolimnology of Daphnia exilis in upstate New York. Limnol. Oceanogr. 44(3), 477-486. http://doi.org/10.4319/lo.1999.44.3.0477.

Iglesias, C., Bonecker, C., Brandão, L., Crispim, M.C., Eskinazi-Sant’Anna, M.C., Gerhard, M., Portinho, J.L., Maia-Barbosa, P., Panarelli, E., & Santangelo, J.M., 2016. Current knowledge of South American cladoceran diapause: a brief review. Int. Rev. Hydrobiol. 101(3-4), 91. http://doi.org/10.1002/iroh.201501825.

James, C.S., Thoms, M.C., & Quinn, G.P., 2008. Zooplankton dynamics from inundation to drying in a complex ephemeral floodplain-wetland. Aquat. Sci. 70(3), 259-271. http://doi.org/10.1007/s00027-008-8034-0.

Junk, W.J., Bayley, P.B., & Sparks, R.E., 1989. The flood pulse concept in river–floodplain systems. Can. Spec. Publ. Fish. Aquat. Sci. 106, 110-127.

Korovchinsky, N.M., & Boikova, O.S., 1996. The resting eggs of the Ctenopoda (Crustacea: Branchiopoda): a review. Hydrobiologia 320(1-3), 131-140. http://doi.org/10.1007/BF00016814.

Korovchinsky, N.M., 1992. Sididae and Holopediidae (Crustacea: Daphniiformes): guides to the identification of the micro-invertebrates of the continental waters of the world. The Hague: SPB Academic Publishing, 82 p., vol. 3.

Kotov, A.A., & Dumont, H.J., 2000. Analysis of the Ilyocryptus spinifer species group (Anomopoda, Branchiopoda), with description of a new species. Hydrobiologia 428(1), 85-113. http://doi.org/10.1023/A:1003977208875.

Kotov, A.A., & Štifter, P., 2006. Guides to the identification of the microinvertebrates of continental waters of the world - Cladocera: Family Ilyocryptidae (Branchiopoda: Cladocera: Anomopoda). Gent: State University of Gent, 172 p.

Lampert, W., & Krause, I., 1976. Ztir Biologie der Cladocere Holopedium gibberum Zaddach im Windgefallweiher (Schwarzwald). Arch. Hydrobiol. 48, 262-286.

Lesack, L.F.W., & Melack, J.M., 1995. Flooding hydrology and mixture dynamics of lake water derived from multiple sources in an Amazon floodplain lake. Water Resour. Res. 31(2), 329-345. http://doi.org/10.1029/94WR02271.

Maia-Barbosa, P.M., Eskinazi-Sant’Anna, E.M., Valadares, C.F., & Pessoa, G.C.D., 2003. The resting eggs of zooplankton from a tropical, eutrophic reservoir (Pampulha Reservoir, south-east Brazil). Lakes Reservoirs: Res. Manage. 8(3-4), 269-275. http://doi.org/10.1111/j.1440-1770.2003.00229.x.

Ning, N., & Nielsen, D., 2011. Assessing the potential for zooplankton and aquatic plant communities to recolonise wetlands impacted by the presence of sulfidic sediments. In: North American Benthological Society Annual Meeting. Logan, UT: Utah State University.

Onbé, T., 1978. Sugar floatation method for sorting the resting eggs of marine cladocerans and copepods from sea bottom sediment. Nippon Suisan Gakkaishi 44(12), 1411. http://doi.org/10.2331/suisan.44.1411.

Orlova-Bienkowskaja, M.J. 2001. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World – Cladocera: Anomopoda: Daphniidae genus Simocephalus. Gent: State University of Gent, 130 p.

Pietrzak, B., & Slusarczyk, M., 2006. The fate of the ephippia Daphnia dispersal in time and space. Pol. J. Ecol. 54, 709-714.

Radzikowski, J., 2013. Resistance of dormant stages of planktonic invertebrates to adverse environmental conditions. J. Plankton Res. 35(4), 707-723. http://doi.org/10.1093/plankt/fbt032.

Radzikowski, J., Krupinska, K., & Slusarczyk, M., 2018. Different thermal stimuli initiate hatching of Daphnia diapausing eggs originating from lakes and temporary waters. Limnology 19(1), 81-88. http://doi.org/10.1007/s10201-017-0520-4.

Ricci, C., 2001. Dormancy patterns in rotifers. Hydrobiologia 446-447, 1-11. http://doi.org/10.1023/A:1017548418201.

Santangelo, J.M., Araújo, L.R., Esteves, F.A., Manca, M., & Bozelli, R.L., 2011. Method for hatching resting eggs from tropical zooplankton: effects of drying or exposing to low temperatures before incubation. Acta Limnol. Bras. 23(1), 42-47. http://doi.org/10.4322/actalb.2011.017.

Sars, G.O., 1901. Contributions to the knowledge of the freshwater Entomostraca of South America, as shown by artificial hatching from dried material. 1. Cladocera. Archiv for Mathematik og Naturvidenskab, 23(3), 1-102.

Schröder, T., 2005. Diapause in monogonont rotifers. Hydrobiologia 546(1), 291-306. http://doi.org/10.1007/s10750-005-4235-x.

Schwartz, S.S., & Hebert, P.D.N., 1987. Methods for the activation of the resting eggs of Daphnia. Freshw. Biol. 17(2), 373-379. http://doi.org/10.1111/j.1365-2427.1987.tb01057.x.

Smirnov, N.N., 1992. The Macrothricidae of the world. In: Dumont, H.J.F., ed. Guides to the identification of the microinvertebrates of continental waters of the world. The Hague: SPB Academic Publishing, 143 p., vol. 1.

Smirnov, N.N., 1996. Cladocera: the Chydorinae and Sayciinae (Chydoridae) of the World. In: Dumont, H.J.F., ed. Guides to the identification of the microinvertebrates of the continental waters of the world. Amsterdam: SPB Academic Publishing, 197 p.

Smyly, W.J.P., 1977. A note on the resting egg of Holopedium gibberurn Zaddach (Crustacea: Cladocera). Microsc. Lond. 33, 170-171.

Tollrian, R., 1993. Neckteeth formation in Daphnia pulex as an example of continuous phenotypic plasticity - morphological effects of Chaoborus kairomone concentration and their quantification. J. Plankton Res. 15(11), 1309-1318. http://doi.org/10.1093/plankt/15.11.1309.

Van Damme, K., & Dumont, H.J., 2010. Cladocera of the Lençóis Maranhenses (NE - Brazil): faunal composition and a reappraisal of Sars’ Method. Ghent: Department of Biology, Ghent University, 25 p.

Vandekerkhove, J., Declerck, S., Brendonck, L., Conde-Porcuna, J.M., Jeppesen, E., & De Meester, L., 2005a. Hatching of cladoceran resting eggs: temperature and photoperiod. Freshw. Biol. 50(1), 96-104. http://doi.org/10.1111/j.1365-2427.2004.01312.x.

Vandekerkhove, J., Declerck, S., Brendonck, L., Conde-Porcuna, J.M., Jeppesen, E., Johansson, L.S., & De Meester, L., 2005b. Uncovering hidden species: hatching diapausing eggs for the analysis of cladoceran species richness. Limnol. Oceanogr. Methods 3(9), 399-407. http://doi.org/10.4319/lom.2005.3.399.

Vargas, A.L., Santangelo, J.M., & Bozelli, R.L., 2019. Recovery from drought: viability and hatching patterns of hydrated and desiccated zooplankton resting eggs. Int. Rev. Hydrobiol. 104(1-2), 26-33. http://doi.org/10.1002/iroh.201801977.

Villalobos, M.J., & González, E.J., 2006. Studies on the biology and ecology of Ceriodaphnia cornuta Sars: a review. Interciencia 31(5), 351-357.

Waterkeyn, A., Vanschoenwinkel, B., Grillas, P., & Brendoncka, L., 2010. Effect of salinity on seasonal community patterns of Mediterranean temporary wetland crustaceans: a mesocosm study. Limnol. Oceanogr. 55(4), 1712-1722. http://doi.org/10.4319/lo.2010.55.4.1712.
 


Submitted date:
06/13/2024

Accepted date:
10/14/2024

Publication date:
11/26/2024

674625b5a953957d264bebe6 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections