Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X5021
Acta Limnologica Brasiliensia
Original Article

Local and regional determinants of phytoplankton communities in water reservoirs from the Cerrado biome

Determinantes locais e regionais da comunidade fitoplanctônica em barragens de água do bioma Cerrado

Leonardo Beserra da Silva; Carla Albuquerque de Souza; Ludgero Cardoso Galli Vieira; Erina Vitório Rodrigues Antonio; Antonio Felipe Couto Junior

Downloads: 0
Views: 1322

Abstract

Abstract:

Aim: Based on a study comprising water reservoirs within the Brazilian Cerrado biome, we seek to answer the following question: how does phytoplankton communities respond to environmental, landscape, and spatial predictors? We expected local predictors to be the main factors structuring the communities. Since phytoplankton has high dispersal capacity, the geographical distance would be of minor importance. Methods: We collected phytoplankton samples from 40 water reservoirs in the rainy season and 37 reservoirs in the dry season. We performed a partial Redundancy Analysis (pRDA) to evaluate the factors influencing the variation in the composition of phytoplankton communities.

Results: We found that spatially structured environmental factors were controlling phytoplankton communities at the rainy season, whereas landscape was the main predictor in the dry season. On the other hand, phytoplankton morphofunctional groups were influenced only by local predictors.

Conclusions: We demonstrated that phytoplankton dynamics differs between rainy and dry seasons, and that distinct predictors affect phytoplankton communities over seasons.
 

Keywords

taxonomic classification, morphofunctional groups, water reservoirs, environmental variables, landscape, metacommunity theory

Resumo

Resumo:

Objetivo: Com base em um estudo envolvendo reservatórios de água no bioma Cerrado brasileiro, buscamos responder a seguinte questão: como a comunidade fitoplanctônica responde a preditores ambientais, uso e ocupação do solo (paisagem) e preditores espaciais? Esperávamos que os preditores locais fossem os principais fatores estruturantes da comunidade. Como os organismos fitoplanctônicos têm grande capacidade de dispersão, a distância geográfica seria de menor importância.

Métodos: Coletamos amostras de fitoplâncton de 40 reservatórios de água na estação chuvosa e em 37 reservatórios na estação seca. Realizamos uma Análise de Redundância Parcial (pRDA) para avaliar os fatores que influenciam a variação na composição das comunidades fitoplanctônicas.

Resultados: Na estação chuvosa, encontramos sinais de que fatores ambientais espacialmente estruturados estavam controlando as comunidades fitoplanctônica, enquanto a paisagem foi o principal preditor na estação seca. Por outro lado, os grupos morfofuncionais do fitoplâncton foram influenciados apenas por preditores locais.

Conclusões: Demonstramos que a dinâmica das comunidades fitoplanctônicas difere na estação chuvosa e seca e que diferentes preditores afetam o fitoplâncton ao longo das estações do ano.
 

Palavras-chave

classificação taxonômica, grupos morfofuncionais, reservatórios de água, variáveis ambientais, paisagem, teoria de metacomunidades

References

Allan, J.D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu Rev Ecol Evol Syst., 35(1), 257-284. http://dx.doi.org/10.1146/annurev.ecolsys.35.120202.110122.

Alvares, C.A., Stape, J.L., Sentelhas, P.C., Gonçalves, J.L.M. & Sparovek, G., 2013. Köppen’s climate classification map for Brazil. Meteorol Z., 22(6), 711-728. http://dx.doi.org/10.1127/0941-2948/2013/0507.

American Public Health Association - APHA, 2015. Standard methods for the examination of water and wastewater (21st ed.). Washington: APHA.

Bicudo, C.E.D.M. & Menezes, M., 2006. Gêneros de algas de águas continentais do Brasil: chave para identificação e descrições (2nd ed.). São Paulo: RiMa.

Bie, T., Meester, L., Brendonck, L., Martens, K., Goddeeris, B., Ercken, D., Hampel, H., Denys, L., Vanhecke, L., van der Gucht, K., van Wichelen, J., Vyverman, W. & Declerck, S.A.J., 2012. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol Lett., 15(7), 740-747. PMid:22583795. http://dx.doi.org/10.1111/j.1461-0248.2012.01794.x.

Blanchet, F.G., Legendre, P. & Borcard, D., 2008. Modelling directional spatial processes in ecological data. Ecol Modell., 215(4), 325-336. http://dx.doi.org/10.1016/j.ecolmodel.2008.04.001.

Borcard, D., Gillet, F. & Legendre, P., 2018. Numerical ecology with R. Cham: Springer. http://dx.doi.org/10.1007/978-3-319-71404-2.

Borges, M.E.S., Soares, F.S., Carvalho Júnior, O.A., Martins, É.S., Guimarães, R.F. & Gomes, R.A.T., 2007. Relação dos compartimentos geomorfológicos com o uso agrícola na Bacia do Rio Preto. Rev Esp Geo., 10(2), 453-476.

Bortolini, J.C., Pineda, A., Rodrigues, L.C., Jati, S. & Velho, L.F.M., 2017. Environmental and spatial processes influencing phytoplankton biomass along a reservoirs-river-floodplain lakes gradient: a metacommunity approach. Freshw. Biol., 62(10), 1756-1767. http://dx.doi.org/10.1111/fwb.12986.

Bortolini, J.C., Silva, P.R.L., Baumgartner, G. & Bueno, N.C., 2019. Response to environmental, spatial, and temporal mechanisms of the phytoplankton metacommunity: comparing ecological approaches in subtropical reservoirs. Hydrobiologia, 830(1), 45-61. http://dx.doi.org/10.1007/s10750-018-3849-8.

Carneiro, P.J.R., Maldaner, V.I., Alves, P.F., Queirós, I.A., Mauriz, T.V. & Pacheco, R.F., 2007. Evolução do uso da água na bacia do Rio Preto no Distrito Federal. Rev Esp Geo., 10, 325-353.

Céréghino, R., Boix, D., Cauchie, H.M., Martens, K. & Oertli, B., 2014. The ecological role of ponds in a changing world. Hydrobiologia, 723(1), 1-6. http://dx.doi.org/10.1007/s10750-013-1719-y.

Chakraborty, P., Acharyya, T., Babu, P.V.R. & Bandyopadhyay, D., 2011. Impact of salinity and pH on phytoplankton communities in a tropical freshwater system: an investigation with pigment analysis by HPLC. J Environ Monit., 13(3), 614-620. PMid:21246149. http://dx.doi.org/10.1039/c0em00333f.

Chambers, J. M., 2014. Package ‘SoDA.’. Indianapolis: The R Foundation.

Chisholm, C., Lindo, Z. & Gonzalez, A., 2011. Metacommunity diversity depends on connectivity and patch arrangement in heterogeneous habitat networks. Ecography, 34(3), 415-424. http://dx.doi.org/10.1111/j.1600-0587.2010.06588.x.

De’ath, G., 2002. Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology, 83(4), 1105-1117. https://doi.org/10.1890/0012-9658(2002)083[1105:MRTANT]2.0.CO;2.

De’ath, G., 2014. ‘mvpart’: multivariate partitioning. Indianapolis: The R Foundation.

Devercelli, M., Scarabotti, P., Mayora, G., Schneider, B. & Giri, F., 2016. Unravelling the role of determinism and stochasticity in structuring the phytoplanktonic metacommunity of the Paraná River floodplain. Hydrobiologia, 764(1), 139-156. http://dx.doi.org/10.1007/s10750-015-2363-5.

Doubek, J.P., Carey, C.C. & Cardinale, B.J., 2015. Anthropogenic land use is associated with N-fixing cyanobacterial dominance in lakes across the continental United States. Aquat Sci., 77(4), 681-694. http://dx.doi.org/10.1007/s00027-015-0411-x.

Downing, J.A., Prairie, Y.T., Cole, J.J., Duarte, C.M., Tranvik, L.J., Striegl, R.G., McDowell, W.H., Kortelainen, P., Caraco, N.F., Melack, J.M. & Middelburg, J.J., 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr., 51(5), 2388-2397. http://dx.doi.org/10.4319/lo.2006.51.5.2388.

Dray, S., Bauman, D., Blanchet, G., Borcard, D., Clappe, S., Guenard, G., Jombart, T., Larocque, G., Legendre, P., Madi, N. & Wagner, H., 2022. adespatial: multivariate multiscale spatial analysis [online]. Retrieved in 2022, December, 20, from https://CRAN.R-project.org/package=adespatial.

Girardi, R., Pinheiro, A., Garbossa, L.H.P. & Torres, É., 2016. Water quality change of rivers during rainy events in a watershed with different land uses in Southern Brazil. RBRH: Rev Bras Recur Hídr., 21(3), 514-524. http://dx.doi.org/10.1590/2318-0331.011615179.

Guan, B.-C., Liu, X., Gong, X., Cai, Q.-Y. & Ge, G., 2019. Genetic landscape and landscape connectivity of Ceratopteris thalictroides, an endangered aquatic fern. Ecol Inform., 53, 100973. http://dx.doi.org/10.1016/j.ecoinf.2019.100973.

Håkanson, L., 1981. A manual of lake morphometry. Berlin: Springer. http://dx.doi.org/10.1007/978-3-642-81563-8.

Hayes, N.M., Vanni, M.J., Horgan, M.J. & Renwick, W.H.W.H., 2015. Climate and land use interactively affect lake phytoplankton nutrient limitation status. Ecology, 96(2), 392-402. PMid:26240861. http://dx.doi.org/10.1890/13-1840.1.

Heino, J., Melo, A.S., Siqueira, T., Soininen, J., Valanko, S. & Bini, L.M., 2015. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshw Biol., 60(5), 845-869. http://dx.doi.org/10.1111/fwb.12533.

Hill, M.J., Heino, J., White, J.C., Ryves, D.B. & Wood, P.J., 2019. Environmental factors are primary determinants of different facets of pond macroinvertebrate alpha and beta diversity in a human-modified landscape. Biol Conserv., 237, 348-357. http://dx.doi.org/10.1016/j.biocon.2019.07.015.

Izaguirre, I., Saad, J.F., Schiaffino, M.R., Vinocur, A., Tell, G., Sánchez, M.L., Allende, L. & Sinistro, R., 2016. Drivers of phytoplankton diversity in patagonian and antarctic lakes across a latitudinal gradient (2150 km): the importance of spatial and environmental factors. Hydrobiologia, 764(1), 157-170. http://dx.doi.org/10.1007/s10750-015-2269-2.

Komarek, J. & Anagnostidis, K., 1983. Cyanoprokaryota 1. Teil: Chroococcales. In: Ettl, H., Gärtner, G., Heynig, H., & Mollenhauer, D., eds. SüBwasserflora von Mitteleuropa. Stuttgart: Gustav Fischer Verlag, 1-548.

Komarek, J. & Fott, B., 1983. Chlorophyceae (Grünalgen), Ordung: Chlorococcales. In: Huber-Pestalozzi, G., Heynig, H., & Mollenhauer, D., eds. Das phytoplankton des Sübwassers: systematik und biologie. Stuttgart: E. Schweizerbart'sche Verlagsbuchhandlung, 1-1044.

Kruk, C., Huszar, V.L.M., Peeters, E.T.H.M., Bonilla, S., Costa, L., Lürling, M., Reynolds, C.S. & Scheffer, M., 2010. A morphological classification capturing functional variation in phytoplankton. Freshw Biol., 55(3), 614-627. http://dx.doi.org/10.1111/j.1365-2427.2009.02298.x.

Lamy, T., Jarne, P., Laroche, F., Pointier, J.P., Huth, G., Segard, A. & David, P., 2013. Variation in habitat connectivity generates positive correlations between species and genetic diversity in a metacommunity. Mol Ecol., 22(17), 4445-4456. PMid:23841902. http://dx.doi.org/10.1111/mec.12399.

Lansac-Tôha, F.M., Meira, B.R., Segovia, B.T., Lansac-Toha, F.A. & Velho, L.F.M., 2016. Hydrological connectivity determining metacommunity structure of planktonic heterotrophic flagellates. Hydrobiologia, 781(1), 81-94. http://dx.doi.org/10.1007/s10750-016-2824-5.

Legendre, P. & Legendre, L.F.J., 2012. Numerical ecology (vol. 24). Oxford: Elsevier.

Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F., Holt, R.D., Shurin, J.B., Law, R., Tilman, D., Loreau, M. & Gonzalez, A., 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett., 7(7), 601-613. http://dx.doi.org/10.1111/j.1461-0248.2004.00608.x.

Litchman, E. & Klausmeier, C.A., 2008. Trait-based community ecology of phytoplankton. Annu Rev Ecol Evol Syst., 39(1), 615-639. http://dx.doi.org/10.1146/annurev.ecolsys.39.110707.173549.

Litchman, E., Edwards, K.F., Klausmeier, C.A. & Thomas, M.K., 2012. Phytoplankton niches, traits and eco-evolutionary responses to global environmental change. Mar Ecol Prog Ser., 470, 235-248. http://dx.doi.org/10.3354/meps09912.

Machado, K.B., Teresa, F.B., Vieira, L.C.G., Huszar, V.L.M. & Nabout, J.C., 2016. Comparing the effects of landscape and local environmental variables on taxonomic and functional composition of phytoplankton communities. J Plankton Res., 38(5), 1334-1346. http://dx.doi.org/10.1093/plankt/fbw062.

Morley, S.A. & Karr, J.R., 2002. Assessing and restoring the health of urban streams in the Puget Sound Basin. Conserv Biol., 16(6), 1498-1509. http://dx.doi.org/10.1046/j.1523-1739.2002.01067.x.

Naselli-Flores, L., Termine, R. & Barone, R., 2016. Phytoplankton colonization patterns. Is species richness depending on distance among freshwaters and on their connectivity? Hydrobiologia, 764(1), 103-113. http://dx.doi.org/10.1007/s10750-015-2283-4.

Oksanen, A.J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., Minchin, P.R., Hara, R.B.O., Simpson, G.L., Solymos, P., Stevens, M.H.H. & Szoecs, E., 2013. Package ‘ vegan .’ 3. Indianapolis: The R Foundation.

Oliveira, P.H.F., Machado, K.B., Teresa, F.B., Heino, J. & Nabout, J.C., 2020. Spatial processes determine planktonic diatom metacommunity structure of headwater streams. Limnologica, 84, 125813. http://dx.doi.org/10.1016/j.limno.2020.125813.

Ouellette, M.H. & Legendre, P., 2012. MVPARTwrap: additional functionalities for package mvpart (0.1-9). Indianapolis: The R Foundation.

R Core Team, 2022. R: a language and environment for statistical computing. Indianapolis: R Foundation for Statistical Computing.

Reynolds, C.S., 2006. The ecology of phytoplankton. Cambridge: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511542145.

Reynolds, C.S., Huszar, V., Kruk, C., Naselli-Flores, L. & Melo, S., 2002. Towards a functional classification of the freshwater phytoplankton. J Plankton Res., 24(5), 417-428. http://dx.doi.org/10.1093/plankt/24.5.417.

Ribeiro, S., Berge, T., Lundholm, N., Andersen, T.J., Abrantes, F. & Ellegaard, M., 2011. Phytoplankton growth after a century of dormancy illuminates past resilience to catastrophic darkness. Nat Commun., 2(1), 311. PMid:21587228. http://dx.doi.org/10.1038/ncomms1314.

Rocha, B.S., Souza, C.A., Machado, K.B., Vieira, L.C.G. & Nabout, J.C., 2020. The relative influence of the environment, land use, and space on the functional and taxonomic structures of phytoplankton and zooplankton metacommunities in tropical reservoirs. Freshw Sci., 39(2), 321-333. http://dx.doi.org/10.1086/708949.

Salmaso, N. & Padisák, J., 2007. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia, 578(1), 97-112. http://dx.doi.org/10.1007/s10750-006-0437-0.

Salmaso, N., Naselli-Flores, L. & Padisák, J., 2015. Functional classifications and their application in phytoplankton ecology. Freshw Biol., 60(4), 603-619. http://dx.doi.org/10.1111/fwb.12520.

Silva, J.S.O., Bustamante, M.M.C., Markewitz, D., Krusche, A.V. & Ferreira, L.G., 2011. Effects of land cover on chemical characteristics of streams in the Cerrado region of Brazil. Biogeochemistry, 105(1-3), 75-88. http://dx.doi.org/10.1007/s10533-010-9557-8.

Silva, L.B., Souza, C.A., Vieira, L.C.G., Rodrigues, E.V., Couto Junior, A.F., 2022. Local and regional determinants of phytoplankton communities in water reservoirs from the Cerrado biome. Acta Limnol Bras., 34, e1. https://doi.org/10.48331/scielodata.UQETEY.

Smith, V.H., Foster, B.L., Grover, J.P., Holt, R.D., Leibold, M.A. & DeNoyelles Junuir, F., 2005. Phytoplankton species richness scales consistently from laboratory microcosms to the world’s oceans. Proc Natl Acad Sci USA., 102(12), 4393-4396. PMid:15753284. http://dx.doi.org/10.1073/pnas.0500094102.

Thébault, E. & Loreau, M., 2005. Trophic interactions and the relationship between species diversity and ecosystem stability. Am Nat., 166(4), E95-E114. PMid:16224699. http://dx.doi.org/10.1086/444403.

Tundisi, G. & Matsumura, T., 2011. Limnology. São Paulo: Oficina de Textos.

Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton. Mitteilungen., 9(1), 1-38. https://doi.org/10.1080/05384680.1958.11904091.

Walker, B.H., 1992. Biodiversity and ecological redundancy. Conserv Biol., 6(1), 18-23. http://dx.doi.org/10.1046/j.1523-1739.1992.610018.x.

Williams, P., Whitfield, M., Biggs, J., Bray, S., Fox, G., Nicolet, P. & Sear, D., 2004. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol Conserv., 115(2), 329-341. http://dx.doi.org/10.1016/S0006-3207(03)00153-8.

Wu, N., Qu, Y., Guse, B., Makarevičiūtė, K., To, S., Riis, T. & Fohrer, N., 2018. Hydrological and environmental variables outperform spatial factors in structuring species, trait composition, and beta diversity of pelagic algae. Ecol Evol., 8(5), 2947-2961. PMid:29531708. http://dx.doi.org/10.1002/ece3.3903.

Yasarer, L.M.W., Bingner, R.L. & Momm, H.G., 2018. Characterizing ponds in a watershed simulation and evaluating their influence on streamflow in a Mississippi watershed. Hydrol Sci J., 63(2), 302-311. http://dx.doi.org/10.1080/02626667.2018.1425954.

Zhai, D.-D., Li, W.-J., Liu, H.-Z., Cao, W.-X. & Gao, X., 2019. Genetic diversity and temporal changes of an endemic cyprinid fish species, Ancherythroculter nigrocauda, from the upper reaches of Yangtze River. Zool Res., 40(5), 427-438. PMid:31111694. http://dx.doi.org/10.24272/j.issn.2095-8137.2019.027.
 


Submitted date:
07/28/2021

Accepted date:
12/20/2022

Publication date:
01/12/2023

63c04c6da953951fb76d9e13 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections