Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X4624
Acta Limnologica Brasiliensia
Thematic Section: Neotropical Zooplankton Symposium

Community attributes reflecting the zooplankton secondary production: using field and experimental approaches

Atributos da comunidade refletindo a produção secundária do zooplâncton: usando abordagens de campo e experimentais

Juliana Deo Dias; Nadson Ressye Simões; María Rosa Miracle; Thais Xavier de Melo; Claudia Costa Bonecker

Downloads: 0
Views: 90

Abstract

Aim: We investigated the relationship between ecological attributes of the zooplankton community and its secondary production.

Methods: Samples were taken from lakes in the floodplain of the Upper Paraná River (Brazil), in low and high-water periods, and in a manipulative experiment realized in mesocosms.

Results: The highest amount of production was related to the dominance of few species. Secondary production of larger and long-lived organisms, such as copepods, had been most associated with the biomass, whereas smaller ones, such as rotifers, with the abundance.

Conclusions: These attributes of the zooplankton community (biomass and abundance) can be used as proxies to estimate the zooplankton secondary production in the floodplain, supporting the studies on monitoring and conservation of these ecosystems.

Keywords

 ecosystem property; environmental monitoring; proxies; biomass; abundance

Resumo

Objetivo: Nós investigamos a relação entre atributos ecológicos da comunidade zooplanctônica e a produção secundária.

Métodos: Amostras foram coletadas em lagos da planície de inundação do Alto Rio Paraná (Brasil), em períodos de águas baixas e altas, e em um experimento manipulativo realizado em mesocosmos.

Resultados: A maior produção secundária esteve relacionada à dominância de poucas espécies. A produção secundária de organismos de maior tamanho e maior ciclo de vida, como os copépodes, foi mais associada à biomassa, enquanto os menores, como os rotíferos, à abundância.

Conclusões: Esses atributos da comunidade zooplanctônica (biomassa e densidade) podem ser usados ​​como proxies para estimar a produção secundária de zooplâncton na planície de inundação, subsidiando os estudos de monitoramento e conservação desses ecossistemas.

Palavras-chave

propriedade do ecossistema; monitoramento ambiental; proxies; biomassa; abundância

Referencias

Agostinho, A.A., Thomaz, S.M., & Gomes, L.C., 2004. Threats for biodiversity in the floodplain of the Upper Paraná River: effects of hydrological regulation by dams. Ecohydrol. Hydrobiol. 4(3), 255-256.

Akbulut, N.E., 2000. Short-term secondary production and population dynamics of Crustacea and Rotifera in three different biotopes of Neusiedler See (Austria). Turk. J. Zool. 24, 149-158.

Allan, J.D., 1976. Life history patterns in zooplankton. Am. Nat. 110(971), 165-180. http://doi.org/10.1086/283056.

Alves, G.M., Velho, L.F.M., Lansac-Tôha, L.A., Robertson, B., & Bonecker, C.C., 2005. Effect of the connectivity on the diversity and abundance of cladoceran assemblages in lagoons of the upper Paraná river floodplain. Acta Limnol. Bras. 17(3), 317-327.

Azam, F., Fenchel, T., Field, J.G., Graf, J.S., Meyer-Reil, L.A., & Thingstad, F., 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257-263. http://doi.org/10.3354/meps010257.

Azevedo, F., Dias, J.D., Braghin, L.S.M., & Bonecker, C.C., 2012. Length-weight regressions of the microcrustacean species from a tropical floodplain. Acta Limnol Bras. 24(1), 1-11. http://doi.org/10.1590/S2179-975X2012005000021.

Baranyi, C., Hein, T., Holarek, C., Keckeis, S., & Schiemer, F., 2002. Zooplankton biomass and community structure in a Danube River floodplain system: effects of hydrology. Freshw. Biol. 47(3), 1-10. http://doi.org/10.1046/j.1365-2427.2002.00822.x.

Benke, A.C., 1993. Concepts and patterns of invertebrate production in running waters. Verh. Internat. Verein. Limnol. 25(1), 15-38. http://doi.org/10.1080/03680770.1992.11900056.

Benke, A.C., 2010. Secondary production as part of bioenergetic theory-contributions from freshwater benthic science. River Res. Appl. 26(1), 36-44. http://doi.org/10.1002/rra.1290.

Bonecker, C.C., Aoyagui, A.S.M., & Santos, R.M., 2009. The impact of impoundment on the rotifer communities in two tropical floodplain environments: interannual pulse variations. Braz. J. Biol. 69(2 Suppl.), 529-537. http://doi.org/10.1590/S1519-69842009000300008.

Bottrell, H.H., Duncan, A., Gliwicz, Z., Gryiek, E., Herzig, A., Hillbricht-Ilkowska, A., Kurasawa, H., Larsson, P., & Weglenska, T., 1976. Review of some problems in zooplankton production studies. Nor. J. Zool. 24, 419-456.

Brooks, J.L., & Dodson, S.I., 1965. Predation, body size, and composition of plankton. Science 150(3692), 28-35. PMid:17829740. http://doi.org/10.1126/science.150.3692.28.

Cardoso, L.D.S., & Marques, D.D.M., 2004. Structure of the zooplankton community in a subtropical shallow lake (Itapeva Lake – South of Brazil) and its relationship to hydrodynamic aspects. Hydrobiologia 518(1-3), 123-134. http://doi.org/10.1023/B:HYDR.0000025062.08366.1b.

Casanova, S. M. C., Panarelli, E. A., & Henry, R., 2009. Rotifer abundance, biomass, and secondary production after the recovery of hydrologic connectivity between a river and two marginal lakes (São Paulo, Brazil). Limnologica. 39(4), 292-301. http://doi.org/10.1016/j.limno.2009.06.008.

Dias, J.D., Bonecker, C.C., & Miracle, M.R., 2014. The rotifer community and its functional role in lakes of a neotropical floodplain. Int. Rev. Hydrobiol. 99(1-2), 72-83. http://doi.org/10.1002/iroh.201301706.

Dias, J.D., Miracle, M.R., & Bonecker, C.C., 2017. Do water levels control zooplankton secondary production in Neotropical floodplain lakes? Fundamental and Applied Limnology. Arch. Hydrobiol. 190(1), 49-62. http://doi.org/10.1127/fal/2017/0869.

Dodson, S., 1992. Predicting crustacean zooplankton species richness. Limnol. Oceanogr. 37(4), 848-856. http://doi.org/10.4319/lo.1992.37.4.0848.

Dolbeth, M., Cusson, M., Sousa, R., & Pardal, M.A., 2012. Secondary production as a tool for better understanding of aquatic ecosystems. Can. J. Fish. Aquat. Sci. 69(7), 1230-1253. http://doi.org/10.1139/f2012-050.

Downing, J.A., & Rigler, F.H., eds., 1984. A manual on methods for the assessment of secondary productivity in fresh waters. Hoboken: Blackwell Scientific Publications, 2 ed.

Dumont, H.J., Van de Velde, I., & Dumonte, S., 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda, and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19(1), 75-97. PMid:28308833. http://doi.org/10.1007/BF00377592.

Edmondson, W.T., & Winberg, G.C., 1971. A manual on methods for the assessment of secondary productivity in freshwaters. Hoboken: Blackwell.

Edmondson, W.T., 1974. Secondary production. Verh. Des Internationalen Verein Limnol. 20, 229-272.

Espíndola, E.L.G., 1994. Dinâmica da associação congenérica das espécies de Notodiaptomus spp. na represa de Barra Bonita. São Paulo: Universidade Federal de São Carlos.

Gomez, M., Martinez, I., Mayo, I., Morales, J.M., Santana, A., & Packard, T.T., 2012. Testing zooplankton secondary production models against Daphnia magna growth. ICES J. Mar. Sci. 69(3), 421-428. http://doi.org/10.1093/icesjms/fsr193.

Gotelli, N.J., & Ellison, A.M., 2004. A primer of ecological statistics. Sunderland: Sinauer Associates Publishers.

Grosholz, E., & Gallo, E., 2006. The influence of flood cycle and fish predation on invertebrate production on a restored California floodplain. Hydrobiologia 568(1), 91-109. http://doi.org/10.1007/s10750-006-0029-z.

Guevara, G., Lozano, P., Reinoso, G., & Villa, F., 2009. Horizontal and seasonal patterns of tropical zooplankton from the eutrophic Prado Reservoir (Colombia). Limnologica. 39(2), 128-139. http://doi.org/10.1016/j.limno.2008.03.001.

Hooper, D.U., Chapin 3rd, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A.J., Vandermeer, J., & Wardle, D.A., 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75(1), 3-35. http://doi.org/10.1890/04-0922.

Huntley, M.E., & Lopez, M.D.G., 1992. Temperature-dependent production of marine copepods: a global synthesis. Am. Nat. 140(2), 201-242. PMid:19426057. http://doi.org/10.1086/285410.

Iglesias, C., Mazzeo, N., Meerhoff, M., Lacerot, G., Clemente, J.M., Scasso, F., Kruk, C., Goyenola, G., García-Alonso, J., Amsinck, S.L., Paggi, J.C., José-de Paggi, S., & Jeppesen, E., 2011. High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments. Hydrobiologia 667(1), 133-147. http://doi.org/10.1007/s10750-011-0645-0.

José de Paggi, S.B., & Paggi, J.C., 2008. Hydrological connectivity as a shaping force in the zooplankton community of two lakes in the Paraná river floodplain. Int. Rev. Hydrobiol. 93(6), 659-678. http://doi.org/10.1002/iroh.200711027.

Kang, J., Joo, S., Nam, S., Jeong, G., Yang, D., Park, H.K., & Park, S., 2009. Secondary productivity of pelagic zooplankton in Lake Paldang and Lake Cheongpyeong. J. Ecol. Field Biol. 32, 257-265.

Lampert, W., & Sommer, U., 2007. Limnoecology: the ecology of lakes and streams. Oxford: Oxford University Press, 2 ed.

Lansac-Tôha, F., Bonecker, C., Velho, L., Simões, N., Dias, J., Alves, G., & Takahashi, E., 2009. Biodiversity of zooplankton communities in the Upper Paraná River floodplain: interannual variation from long-term studies. Braz. J. Biol. 69(2, Suppl.), 539-549. PMid:19738961. http://doi.org/10.1590/S1519-69842009000300009.

Lehman, J.T., 1988. Ecological principles affecting community structure and secondary production by zooplankton in marine and freshwater environments. Limnol. Oceanogr. 33(4), 931-945. http://doi.org/10.4319/lo.1988.33.4_part_2.0931.

Lemke, A.M., & Benke, A.C., 2009. Spatial and temporal patterns of microcrustacean assemblage structure and secondary production in a wetland ecosystem. Freshw. Biol. 54(7), 1406-1426. http://doi.org/10.1111/j.1365-2427.2009.02193.x.

Lindeman, R.L., 1942. The trophic-dynamic aspect of ecology. Ecology 23(4), 399-417. http://doi.org/10.2307/1930126.

Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J.P., Hector, A., Hooper, D.U., Huston, M.A., Raffaelli, D., Schmid, B., Tilman, D., & Wardle, D.A., 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294(5543), 804-808. PMid:11679658. http://doi.org/10.1126/science.1064088.

Mageed, A.A.A., 2006. Biomass, production, and turnover rate of zooplankton in Lake Manzala (South Mediterranean Sea, Egypt). Egypt. J. Aquat. Res. 32, 158-167.

Maia-Barbosa, P.M., & Bozelli, R.L., 2005. Length-weight relationships for five cladoceran species in an Amazonian lake. Braz. Arch. Biol. Technol. 48(2), 303-308. http://doi.org/10.1590/S1516-89132005000200018.

Margalef, R., 1997. Our biosphere. In: Kinne, O., ed. Excellence in ecology. Oldendorf: International Ecology Institute, no. 10.

Melão, M., 1999. Desenvolvimento e aspectos reprodutivos dos cladóceros e copépodos de águas continentais brasileiras. In: Pompêo M.L.M., ed. Perspectivas na limnologia do Brasil. São Carlos: Gráfica e Editora União, 45-57.

Melão, M.G.G., & Rocha, O., 2000. Productivity of zooplankton in a tropical oligotrophic reservoir over short periods of time. Verh. Des Internationalen Verein Limnol. 27, 2879-2887.

Melo, T.X., Dias, J.D., Simões, N.R., & Bonecker, C.C., 2019. Effects of nutrient enrichment on primary and secondary productivity in a subtropical floodplain system: an experimental approach. Hydrobiologia 827(1), 171-181. http://doi.org/10.1007/s10750-018-3763-0.

Panarelli, E.A., Casanova, S.M.C., & Henry, R., 2010. Secondary production and biomass of Cladocera in marginal lakes after the recovery of their hydrologic connectivity in a river-reservoir transition zone. Lakes Reservoirs: Res. Manage. 15(4), 319-334. http://doi.org/10.1111/j.1440-1770.2010.00444.x.

Pomeroy, L.R., 1974. The ocean food web: a changing paradigm. Bioscience 24, 499-504. http://doi.org/10.2307/1296885.

R Core Team, 2014. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

Rietzler, A.C., 1995. Alimentação, ciclo de vida e análise da coexistência de espécies de na represa de Barra Bonita. São Paulo: Universidade de São Paulo. http://doi.org/10.11606/T.18.1995.tde-14082024-113836.

Ruttner-Kolisko, A., 1977. Suggestion for biomass calculations of plankton rotifers. Arch. Fur Hydrobiologie–Beiheft Ergeb. Der Limnol. Ergeb. Der Limnol. 8, 71-76.

Santos, R., Negreiros, N., Silva, L., Rocha, O., & Santos-Wisniewski, M., 2010. Biomass and production of Cladocera in Furnas Reservoir, Minas Gerais, Brazil. Braz. J. Biol. 70(3, Suppl.), 879-887. PMid:21085793. http://doi.org/10.1590/S1519-69842010000400019.

Santos-Wisniewski, M., & Rocha, O., 2007. Spatial distribution and secondary production of Copepoda in a tropical reservoir: Barra Bonita, SP, Brazil. Braz. J. Biol. 67(2), 223-233. PMid:17876432. http://doi.org/10.1590/S1519-69842007000200007.

Sastri, A.R., Juneau, P., & Beisner, B.E., 2013. Evaluation of chitobiase-based estimates of biomass and production rates for developing freshwater crustacean zooplankton communities. J. Plankton Res. 35(2), 407-420. http://doi.org/10.1093/plankt/fbs104.

Setubal, R., Araújo do Nascimento, R., & Bozelli, R., 2020a. Zooplankton secondary production: main methods, overview and perspectives from Brazilian studies. Int. Aquatic Research 12(2), 85-99. http://doi.org/10.22034/iar(20).2020.1897659.1037.

Setubal, R.B., Sodré, E.O., Martins, T., & Bozelli, R.L., 2020b. Effects of functional diversity and salinization on zooplankton productivity: an experimental approach. Hydrobiologia 847(13), 2845-2862. http://doi.org/10.1007/s10750-020-04276-0.

Shuter, B. J., & Ing, K. K., 1997. Factors affecting the production of zooplankton in lakes. Can. J. Fish. Aquat. Sci. 54, 359-377. http://doi.org/10.1139/f96-270.

Simões, N.R., Lansac-Tôha, F.A., & Bonecker, C.C., 2013. Drought disturbances increase temporal variability of zooplankton community structure in floodplains. Int. Rev. Hydrobiol. 98(1), 24-33. http://doi.org/10.1002/iroh.201201473.

Simões, N.R., Lansac-Tôha, F.A., Velho, L.F.M., & Bonecker, C.C., 2012. Intra and inter-annual structure of zooplankton communities in floodplain lakes: a long-term ecological research study. Rev. Biol. Trop. 60(4), 1819-1836. PMid:23342531. http://doi.org/10.15517/rbt.v60i4.2183.

Thackeray, S.J., 2007. Crustacean zooplankton species richness and productivity: to what extent do the conclusions depend upon the choice of metrics? Oikos 116(4), 614-628. http://doi.org/10.1111/j.0030-1299.2007.15513.x.

Tilman, D., Wedin, D., & Knops, J., 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379(22), 718-720. http://doi.org/10.1038/379718a0.

Valentine-Rose, L., Rypel, A.L., & Layman, C.A., 2011. Community secondary production as a measure of ecosystem function: a case study with aquatic ecosystem fragmentation. Bull. Mar. Sci. 87(4), 913-937. http://doi.org/10.5343/bms.2010.1043.

Winberg, G.C., Pechen, G.A., & Shusshkina, E.A., 1965. Production of planktonic crustaceans in three lakes of different type. Zool. Zhurnal. 44, 676-687.

Woodward, G., Ebenman, B., Emmerson, M., Montoya, J., Olesen, J., Valido, A., & Warren, P., 2005a. Body size in ecological networks. Trends Ecol. Evol. 20(7), 402-409. PMid:16701403. http://doi.org/10.1016/j.tree.2005.04.005.

Woodward, G., Speirs, D.C., & Hildrew, A.G., 2005b. Quantification and resolution of a complex, size-structured food web. Adv. Ecol. Res. 36, 85-135. http://doi.org/10.1016/S0065-2504(05)36002-8.
 


Submitted date:
14/05/2024

Accepted date:
10/09/2024

Publication date:
11/11/2024

6732162ca95395666330eb24 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections