Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X4621
Acta Limnologica Brasiliensia
Original Article

The phytoplankton community as a descriptor of environmental variability: a case study in five reservoirs of the Paraná River basin

A comunidade fitoplanctônica como descritora da variabilidade ambiental: um estudo de caso em cinco reservatórios da bacia do alto rio Paraná

Matheus Vieira da Silva; Jascieli Carla Bortolini; Susicley Jati

Downloads: 0
Views: 1172

Abstract

Abstract:

Aim: We aimed to characterize the structure of the phytoplankton community and identify the main environmental factors driving the community in five reservoirs constructed in the region of the high Paraná River.

Methods: The phytoplankton and environmental variables were collected at the lacustrine region of the reservoir, between November 2013 and November 2014, with interval between collections ranged from 3 to 6 months. The richness and biomass of the phytoplankton community were measured as a response to the spatial and temporal environmental variability. Data from environmental variables was analyzed by Principal Component Analysis (PCA). Non-Metric Multidimensional Scaling Analyzes (NMDS) were performed on the richness and biomass data of the phytoplankton community.

Results: We identified 80 taxa distributed in 11 taxonomic classes, from which Cyanobacteria and Chlorophyceae were best represented. We did not observe significant temporal variation for either environmental variables or attributes of the phytoplankton community, which may be related to the prolonged drought in this period in the Brazilian Southwest. Higher phytoplankton richness and biomass were found in the Três Irmãos (Tiete River), reservoir located in the most anthropized basin in the country. Cyanobacteria and dinoflagellates dominated the biomass in all reservoirs during the studied period. The Ilha Solteira, Jupiá and Porto Primavera reservoirs showed a tendency to decrease in the values of phytoplankton richness and biomass, and the reservoirs built in series in the Paraná River probably have strong interdependence, according to the CRCC concept.

Conclusions: Spatial variation in phytoplankton attributes was influenced mainly by the position occupied by the reservoir in the hydrographic basin, water retention time (RT) and nutrient concentrations in each reservoir.
 

Keywords

community structure, cyanobacteria, Paraná River, reservoir, water retention time

Resumo

Resumo:

Objetivo: Objetivamos caracterizar a estrutura da comunidade fitoplanctônica e identificar os principais fatores ambientais que impulsionam a comunidade em cinco reservatórios construídos na região do alto rio Paraná.

Métodos: O fitoplâncton e as variáveis ambientais foram coletados na região lacustre do reservatório, entre novembro de 2013 e novembro de 2014, com intervalo entre as coletas de 3 a 6 meses. A riqueza e a biomassa da comunidade fitoplanctônica foram utilizadas como resposta à variabilidade ambiental espacial e temporal dos reservatórios. Os dados das variáveis ambientais foram analisados por meio de uma Análise de Componentes Principais (PCA). Foram realizadas Análises de Escalonamento Multidimensional Não-Métrico (NMDS) aos dados de riqueza e biomassa da comunidade fitoplanctônica.

Resultados: Identificamos 80 táxons distribuídos em 11 classes, dos quais Cyanobacteria e Chlorophyceae foram os mais representados. Não observamos variação temporal significativa para variáveis ambientais ou atributos da comunidade fitoplanctônica, o que pode estar relacionado à prolongada estiagem neste período no sudeste brasileiro. Os maiores valores de riqueza e biomassa fitoplanctônica foram encontradas em Três Irmãos (Rio Tietê), reservatório localizado na bacia mais antropizada do país. Cianobactérias e dinoflagelados dominaram a biomassa em todos os reservatórios durante o período estudado. Os reservatórios de Ilha Solteira, Jupiá e Porto Primavera apresentaram tendência de diminuição nos valores de riqueza e biomassa fitoplanctônica, sendo que os reservatórios construídos em série no rio Paraná provavelmente possuem forte interdependência, de acordo com o conceito do CRCC.

Conclusões: A variação espacial dos atributos fitoplanctônicos foi influenciada principalmente pela posição ocupada pelo reservatório na bacia hidrográfica, tempo de retenção de água (TR) e concentrações de nutrientes em cada reservatório.
 

Palavras-chave

estrutura da comunidade, cyanobacteria, Rio Paraná, reservatório, tempo de retenção da água

Referencias

Agostinho, A.A., Gomes, L.C., & Pelicice, F.M., 2007. Ecologia e manejo de recursos pesqueiros em reservatórios do Brasil. Maringá: Eduem, 501 p.

Akhurst, D.J., Jones, G.B., Clark, M., & Reichelt-Brushett, A., 2017. Effects of fish and macrophytes on phytoplankton and zooplankton community structure in a subtropical freshwater reservoir. Limnologica, 62, 5-18. http://dx.doi.org/10.1016/j.limno.2016.09.009.

American Public Health Association – APHA, 1995. Standard methods for the examination of water and waste-water. Washington: American Public Health Association.

Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol., 26, 32-46.

Barbosa, F.A.R., Padisák, J., Espíndola, E.L.G., Borics, G., & Rocha, O., The Cascading Reservoir Continuum Concept (CRCC) and its application to the river Tietê-Basin, São Paulo State, Brazil. In: Tundisi JG, & Straskraba M, eds. Theoretical reservoir ecology and its applications. São Carlos: International Institute of Ecology, Brazilian Academy of Sciences and Backhuys Publishers, 425-437, 1999.

Barrella, W., & Petrere Junior, M.J., 2003. Fish community alterations due to pollution and damming in Tiete and Paranapanema Rivers (Brazil). River Res. Appl., 19(1), 59-76. http://dx.doi.org/10.1002/rra.697.

Bicudo, C.E.M., & Menezes, M., Gêneros de algas de águas continentais do Brasil (chave para identifcação e descrições) (2. ed.). São Carlos: RIMA, 2006.

Bortolini, J.C., Pineda, A., Rodrigues, L.C., Jati, S., & Velho, L.F.M., 2017a. Environmental and spatial processes influencing phytoplankton biomass along a reservoirs-river floodplain lakes gradient: a metacommunity approach. Freshw. Biol. 62(10), 1756-1767. http://dx.doi.org/10.1111/fwb.12986.

Bortolini, J.C., Train, S., & Rodrigues, L.C., 2017b. The variability in the hydrosedimentological regime supports high phytoplankton diversity in floodplain: a 12-year survey of the Upper Paraná River. J. Limnol., 76(3), 591-604. http://dx.doi.org/10.4081/jlimnol.2017.1509.

Bovo-Scomparin, V.M., Train, S., & Rodrigues, L.C., 2013. Influence of reservoirs on phytoplankton dispersion and functional traits: a case study in the Upper Paraná River, Brazil. Hydrobiologia, 702(1), 115-127. http://dx.doi.org/10.1007/s10750-012-1313-8.

Calijuri, M.C., Santos, A.C.A., & Jati, S., 2002. Temporal changes in the phytoplankton community structure in a tropical and eutrophic reservoir (Barra Bonita, SP-Brazil). J. Plankton Res., 24(7), 617-634. http://dx.doi.org/10.1093/plankt/24.7.617.

Cavalcante, K.P., Cardoso, L.S., Sussella, R., & Becker, V., 2016. Towards a comprehension of Ceratium (Dinophyceae) invasion in Brazilian freshwaters: autecology of C. furcoides in subtropical reservoirs. Hydrobiologia, 771(1), 265-280. http://dx.doi.org/10.1007/s10750-015-2638-x.

Clarke, K.R., 1993. Non-parametric multivariate analyses of changes in community structure. Austral Ecol., 18(1), 117-143. http://dx.doi.org/10.1111/j.1442-9993.1993.tb00438.x.

Coelho, C.A.S., Oliveira, C.P., Ambrizzi, T., Reboita, M.S., Carpenedo, C.B., Campos, J.L.P.S., Tomaziello, A.C.N., Pampuch, L.A., Custódio, M.S., Dutra, L.M.M., Rocha, R.P., & Rehbein, A., 2016. The southeast Brazil austral summer drought: regional scale mechanisms and teleconnections. Clim. Dyn., 46(11-12), 3737-3752. http://dx.doi.org/10.1007/s00382-015-2800-1.

Companhia Hidrelétrica de São Paulo – CESP, 1998. Conservação e manejo nos reservatórios: limnologia, ictiologia e pesca. São Paulo: Série Divulgação e Informação, 220 p.

Crossetti, L., Bicudo, D.C., Bini, L.M., Dala-Corte, R.B., Ferragut, C., & Bicudo, C.E.M., 2019. Phytoplankton species interactions and invasion by Ceratium furcoides are influenced by extreme drought and water-hyacinth removal in a shallow tropical reservoir. Hydrobiologia, 831(1), 71-85. http://dx.doi.org/10.1007/s10750-018-3607-y.

Dantas, E.W., Moura, A.N., & Bittencourt-Oliveira, M.C., 2011. Cyanobacterial blooms in stratified and destratified eutrophic reservoirs in semi-arid region of Brazil. An. Acad. Bras. Cienc., 83(4), 1327-1338. http://dx.doi.org/10.1590/S0001-37652011000400019. PMid:22146960.

Engel, F., Attermeyer, K., Ayala, A.I., Fischer, H., Kirchesch, V., Pierson, D.C., & Weyhenmeyer, G.A., 2019. Phytoplankton gross primary production increases along cascading impoundments in a temperate, low-discharge river: insights from high frequency water quality monitoring. Sci. Rep., 9(1), 6701. http://dx.doi.org/10.1038/s41598-019-43008-w. PMid:31040329.

Ferrão-Filho, A.S., Domingos, P., & Azevedo, S.M.F.O., 2002. Influences of a Microcystis aeruginosa bloom on zooplankton populations in Jacarepaguli Lagoon (Rio de Janeiro, Brazil). Limnologica, 32(4), 295-308. http://dx.doi.org/10.1016/S0075-9511(02)80021-4.

Fialkowska, E., & Pajdak-Stós, A., 2002. Dependence of cyanobacteria defense mode on grazer pressure. Aquat. Microb. Ecol., 27, 149-157. http://dx.doi.org/10.3354/ame027149.

Golterman, H.L., Clymo, R.S., & Ohnstad, M.A.M., Methods for physical and chemical analysis of freshwater (2nd ed.). Oxford: Blackwell Scientific Publication, 1978.

Jati, S., Bortolini, J.C., & Train, S., 2017b. Mixotrophic species influencing phytoplankton community structuring during the filling phase of a subtropical reservoir. Braz. J. Bot., 40(4), 933-941. http://dx.doi.org/10.1007/s40415-017-0407-y.

Jati, S., Bortolini, J.C., Moresco, G.A., Paula, A.C.M., Rodrigues, L.C., Iatskiu, P., Pineda, A., Zanco, B.F., Silva, M.V., & Souza, Y.R., 2017a. Phytoplankton community in the last undammed stretch of the Paraná River: considerations on the distance from the dam. Acta Limnol. Bras., 29, e112. http://dx.doi.org/10.1590/s2179-975x4017.

Kruk, C., & Segura, A.M., 2012. The habitat template of phytoplankton morphology-based functional groups. Hydrobiologia, 698(1), 191-202. http://dx.doi.org/10.1007/s10750-012-1072-6.

Lachi, G.B., & Sipaúba-Tavares, L., 2008. Qualidade da água e composição fitoplanctônica de um viveiro de piscicultura utilizado para fins de pesca esportiva e irrigação. São Paulo. Bol. Inst. Pesca, 34, 29-38.

Lewis Junior, W.M., 1976. Surface/volume ratio: implications for phytoplankton morphology. Science, 192(4242), 885-887. http://dx.doi.org/10.1126/science.192.4242.885. PMid:17817763.

Ling, T.C., 2013. Tomografia computadorizada de raios-x aplicada à análize da qualidade ambiental de solo entorno da Usina Hidrelétrica de Ilha Solteira-SP [Master dissertation]. São Carlos: Escola de Engenharia de São Carlos-Universidade de São Paulo (EESC/USP).

Mackereth, F.Y.H., Heron, J.R., & Tailing, J.F., Water analysis: some revised methods for limnologists. Amblesie: freshwater biological association. Kendal: Titus Wilson and Sons Ltda. 1978.

Marengo, J.A., Nobre, C.A., Seluchi, M.E., Cuartas, A., Alves, L.M., Mendiondo, E.M., Obregón, G., & Sampaio, G., 2015. A seca e a crise hídrica de 2014-2015 em São Paulo. Rev. USP, (106), 31-44. http://dx.doi.org/10.11606/issn.2316-9036.v0i106p31-44.

Marques, E.T., Gunkel, G., & Sobral, M.C., 2019. Management of tropical river basins and reservoirs under water stress: experiences from Northeast Brazil. Environments, 6(6), 62. htp://dx.doi.org/10.3390/environments6060062.

Meira, B.R., Lansac-Tôha, F.M., Segovia, B.T., Oliveira, F.R., Buosi, P.R.B., Jati, S., Rodrigues, L.C., Lansac-Tôha, F.A., & Machado-Velho, L.F., 2017. Abundance and size structure of planktonic protist communities in a Neotropical floodplain: effects of top-down and bottom-up controls. Acta Limnol. Bras., 29, e104. http://dx.doi.org/10.1590/s2179-975x6117.

Moura, A.N., Severiano, J.S., Tavares, N.K.A., & Dantas, E.W., 2013. The role of a cascade of reservoirs and seasonal variation in the phytoplankton structure in a tropical river. Braz. J. Biol., 73(2), 291-298. http://dx.doi.org/10.1590/S1519-69842013000200009. PMid:23917556.

Naselli-Flores, L., Padisák, J., & Albay, M., 2007. Shape and size in phytoplankton ecology: do they matter? Hydrobiologia, 578(1), 157-161. http://dx.doi.org/10.1007/s10750-006-2815-z.

Nogueira, M.G., Ferrareze, M., Moreira, M.L., & Gouvêa, R.M., 2010. Phytoplankton assemblages in a reservoir cascade of a large tropical – subtropical river (SE, Brazil). Braz. J. Biol., 70(3 Suppl.), 781-793. http://dx.doi.org/10.1590/S1519-69842010000400009. PMid:21085783.

Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Henry, M., Stevens, H., Szoecs, E., & Wagner, H., 2017. Vegan: Community Ecology Package. R package version 2.4-5 [online]. Retrieved in 2019, Jan. 23, from http://CRAN.R-project.org/package=vegan

Padisák, J., Barbosa, F.A.R., Borbély, G., Borics, G., Chorus, I., Espindola, E.L.G., Heinze, R., Rocha, O., Törökné, A.K., & Vasas, G., 2000. Phytoplankton composition, biodiversity and a pilot survey of toxic cyanoprokaryotes in a large cascading reservoir system (Tietê basin, Brazil). Internationale Vereinigung für theoretische und angewandte Limnologie. Verhandlungen, 27(5), 2734-2742.

Padisák, J., Crossetti, L.O., & Naselli-Flores, L., 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia, 621(1), 1-19. http://dx.doi.org/10.1007/s10750-008-9645-0.

Panosso, R., Carlsson, P., Kozlowsky-Suzuki, S., Azevedo, S.M.F.O., & Granéli, E., 2003. Effect of grazing by a neotropical copepod, Notodiaptomus, on a natural cyanobacterial assemblage and on toxic and non-toxic cyanobacterial strains. J. Plankton Res., 25(9), 1169-1175. http://dx.doi.org/10.1093/plankt/25.9.1169.

Perbiche-Neves, G., Ferreira, R.A.R., & Nogueira, M.G., 2011. Phytoplankton structure in two contrasting cascade reservoirs (Paranapanema River, Southeast Brazil). Biologia, 66(6), 967-976. http://dx.doi.org/10.2478/s11756-011-0107-1.

Poff, N.L., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J. N. Am. Benthol. Soc., 16(2), 391-409. http://dx.doi.org/10.2307/1468026.

R Development Core Team, 2017. R: A language and environment for statistical computing [online]. Vienna: R Foundation for Statistical Computing. Retrieved in 2019, Jan. 23, from http://www.R-project.org/.

Reynolds, C.S., 2006. The ecology of phytoplankton. Cambridge: Cambridge University Press.

Reynolds, C.S., Huszar, V.L., Kruk, M., Naselli-Flores, L.C., & Melo, S., 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res., 24(5), 417-428. http://dx.doi.org/10.1093/plankt/24.5.417.

Silva, C.A., Train, S., & Rodrigues, L.C., 2005. Phytoplankton assemblages in a Brazilian subtropical cascading reservoir system. Hydrobiologia, 537(1-3), 99-109. http://dx.doi.org/10.1007/s10750-004-2552-0.

Soares, M.C., Marinho, M.M., Huszar, V.L.M., Branco, C.W.C., & Azevedo, S.M.F.O., 2008. The effects of water retention time and watershed features on the limnology of two tropical reservoirs in Brazil. Lakes Reservoirs: Res. Manage., 13(4), 257-269. http://dx.doi.org/10.1111/j.1440-1770.2008.00379.x.

Stanford, J.A., & Ward, J.V., 2001. Revising the serial discontinuity concept. Regul. Rivers Res. Manage., 17(4-5), 303-310. http://dx.doi.org/10.1002/rrr.659.

Stevaux, J.C., Martins, D.P., & Meurer, M., 2009. Changes in a large regulated tropical river: The Paraná River downstream from the Porto Primavera Dam, Brazil. Geomorphology, 113(3-4), 230-238. https://dx.doi.org/10.1016/j.geomorph.2009.03.015.

Sun, J., & Liu, D., 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res., 25(11), 1331-1346. http://dx.doi.org/10.1093/plankt/fbg096.

Tang, C., Sun, B., Yu, K., Shi, J., Liu, M., Jiang, T., Huo, Y., & He, P., 2018. Environmental triggers of a Microcystis (Cyanobacteria) bloom in an artificial lagoon of Hangzhou Bay, China. Mar. Pollut. Bull., 135, 776-782. http://dx.doi.org/10.1016/j.marpolbul.2018.08.005. PMid:30301097.

Thomaz, S.M., Bini, L.M., & Bozelli, R.L., 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia, 579(1), 1-13. http://dx.doi.org/10.1007/s10750-006-0285-y.

Tundisi, J.G., Matsumura-Tundisi, T., & Rocha, O., 1999. Theoretical basis for reservoir management. In: Tundisi, J. G. & Straskraba M., eds. Theoretical Reservoir Ecology and its Applications. São Carlos: International Institute of Ecology, Brazilian Academy of Sciences and Backhuys Publishers, 505-528.

Tundisi, J.G., Matsumura-Tundisi, T., & Tundisi, J.E.M., 2008. Reservoirs and human wellbeing: new challenges for evaluating impacts and benefits in the neotropics. Braz. J. Biol. 68(4 Suppl.), 1133-1135. PMid:19197483. http://dx.doi.org/10.1590/S1519-69842008000500020.

Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen phytoplankton-methodic. Mitt. d. internat. vereinig. of. Limnol., 9, 1-39.

Winemiller, K.O., McIntyre, P.B., Castello, L., Fluet-Chouinard, E., Giarrizzo, T., Nam, S., Baird, I.G., Darwall, W., Lujan, N.K., Harrison, I., Stiassny, M.L.J., Silvano, R.A.M., Fitzgerald, D.B., Pelicice, F.M., Agostinho, A.A., Gomes, L.C., Albert, J.S., Baran, E., Petrere Junior, M., Zarfl, C., Mulligan, M., Sullivan, J.P., Arantes, C.C., Sousa, L.M., Koning, A.A., Hoeinghaus, D.J., Sabaj, M., Lundberg, J.G., Armbruster, J., Thieme, M.L., Petry, P., Zuanon, J., Vilara, G.T., Snoeks, J., Ou, C., Rainboth, W., Pavanelli, C.S., Akama, A., Soesbergen, A., & Sáenz, L., 2016. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science, 351(6269), 128-129. http://dx.doi.org/10.1126/science.aac7082. PMid:26744397.
 


Submitted date:
15/07/2021

Accepted date:
12/11/2021

Publication date:
28/04/2022

626a92f7a9539539216898d2 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections