Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X3821
Acta Limnologica Brasiliensia
Original Article

Do wider riparian zones alter benthic macroinvertebrate assemblages’ diversity and taxonomic composition in neotropical headwater streams?

Zonas ripárias mais largas alteram a diversidade e composição taxonômica de assembleias de macroinvertebrados bentônicos em riachos de cabeceira neotropicais?

Marden S. Linares; Livia B. dos Santos; Marcos Callisto; Jean C. Santos

Downloads: 0
Views: 631

Abstract

Abstract:: Aim: The maintenance and condition of riparian vegetation are important factors for conserving headwater streams and their species diversity. Thus, variations in the width of a riparian zone can have dramatic effects in the structure and functioning of the adjacent freshwater ecosystem. In this study, we aimed to determine if increased riparian zone width changed the benthic assemblages’ structure (diversity, taxonomic and functional composition) in headwater streams.

Methods: We tested two predictions: (1) increased riparian zone width will change the diversity and taxonomic composition of benthic macroinvertebrate assemblages because narrow riparian zones do not buffer the anthropogenic impacts from the surrounding landscape; (2) wider riparian zones will change benthic macroinvertebrate assemblages’ functional structure, due to changes to energetic input and quality. To test the first prediction, we assessed the benthic macroinvertebrate assemblages’ taxonomic composition, richness and Shannon-Wiener diversity index. To test the second prediction, we assessed functional feeding groups (FFG) and metrics based on their proportion.

Results: Our results showed that our first prediction was not corroborated, because taxonomic structure and diversity did not show significant variation with increased riparian zone width. Our second prediction was partially corroborated, because there were significant alterations in the functional structure of benthic macroinvertebrate assemblages between the narrowest riparian zone width (30 m) and the others two (50 and 100 m).

Conclusions: Our results suggest that, contrary to the Brazilian Federal Law 12651/2012, 30-m wide riparian zones are insufficient to protect headwater stream ecosystem functioning.

Keywords

benthic macroinvertebrates, functional feeding groups, functional metrics, bioindicators, ecological processes

Resumo

Resumo:: Objetivo: A conservação da vegetação ripária é um fator importante para a conservação de riachos de cabeceira e sua biodiversidade. Assim, variações na largura da zona ripária podem ter efeitos dramáticos na estrutura e funcionamento de ecossistemas lóticos adjacentes. Nesse estudo objetivamos determinar se o aumento da largura da zona ripária altera a estrutura de assembleias bentônicas (diversidade taxonômica e funcional e composição taxonômica) em riachos de cabeceira.

Métodos: Testamos duas predições: (1) o aumento da largura da zona ripária altera a diversidade e a composição taxonômica de assembleias de macroinvertebrados bentônicos, porque as zonas ripárias mais estreitas não protegem as pressões antrópicas da paisagem circundante; (2) zonas ripárias mais largas alteram a estrutura funcional de assembleias de macroinvertebrados bentônicos, devido a mudanças na entrada de energia nos sistemas. Para testar a primeira predição, avaliamos a composição taxonômica de assembleias de macroinvertebrados bentônicos, a riqueza taxonômica e o índice de diversidade de Shannon-Wiener. Para testar a segunda predição, avaliamos grupos funcionais de alimentação e métricas baseadas em sua proporção.

Resultados: Nossos resultados revelaram que a primeira predição não foi corroborada, pois a estrutura taxonômica e a diversidade não apresentaram variação significativa com o aumento da largura de zona ripária. Nossa segunda predição foi parcialmente corroborada, pois houve alterações significativas na estrutura funcional de assembleias de macroinvertebrados bentônicos entre a largura da zona ribeirinha mais estreita (30 m) e as duas outras (50 e 100 m).

Conclusões: Nossos resultados sugerem que, ao contrário da Lei Federal 12651/2012, as zonas ribeirinhas de 30 m de largura são insuficientes para proteger o funcionamento de ecossistemas de córregos de cabeceira.
 

Palavras-chave

macroinvertebrados bentônicos, grupos funcionais de alimentação, métricas funcionais, bioindicadores, processos ecológicos

References

AGUIAR, A.C.F., GÜCKER, B., BRAUNS, M., HILLE, S. and BOËCHAT, I.G. Benthic invertebrate density, biomass, and instantaneous secondary production along a fifth-order human-impacted tropical river. Environmental Science and Pollution Research International, 2015, 22(13), 9864-9876. http://dx.doi.org/10.1007/s11356-015-4170-y. PMid:25647497.

ANDERSON, M.J. Permutational Multivariate Analysis of Variance (PERMANOVA). In: N. BALAKRISHNAN, T. COLTON, B. EVERITT, W. PIEGORSCH, F. RUGGERI and J. TEUGELS, eds. Wiley StatsRef: statistics reference online. Chichester: John Wiley & Sons, 2017, pp. 1-15. http://dx.doi.org/10.1002/9781118445112.stat07841.

BENKE, A.C. and HURYN, A.D. Benthic invertebrate production: facilitating answers to ecological riddles in freshwater ecosystems. Journal of the North American Benthological Society, 2010, 29(1), 264-285. http://dx.doi.org/10.1899/08-075.1.

BENKE, A.C. Concepts and patterns of invertebrate production in running waters. Internationale Vereinigung für Theoretische und Angewandte Limnologie: Verhandlungen, 1993, 25(1), 15-38. http://dx.doi.org/10.1080/03680770.1992.11900056.

BONADA, N., PRAT, N., RESH, V.H. and STATZNER, B. Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annual Review of Entomology, 2006, 51(1), 495-523. http://dx.doi.org/10.1146/annurev.ento.51.110104.151124. PMid:16332221.

BRITO, J.G., ROQUE, F.O., MARTINS, R.T., NESSIMIAN, J.L., OLIVEIRA, V.C., HUGHES, R.M., DE PAULA, F.R., FERRAZ, S.F.B. and HAMADA, N. Small forest losses degrade stream macroinvertebrate assemblages in the eastern Brazilian Amazon. Biological Conservation, 2020, 241, 108263. http://dx.doi.org/10.1016/j.biocon.2019.108263.

CALLISTO, M., MUGNAI, R., CASTRO, D. and LINARES, M. Sampling methods for aquatic insects. In: J.C. SANTOS and G.W. FERNANDES, eds. Measuring arthropod biodiversity: a handbook of sampling methods. 1st ed. New York: Springer, 2021. http://dx.doi.org/10.1007/978-3-030-53226-0_20.

CALLISTO, M., SOLAR, R., SILVEIRA, F.A.O., SAITO, V.S., HUGHES, R.M., FERNANDES, G.W., GONÇALVES-JÚNIOR, J.F., LEITÃO, R.P., MASSARA, R.L., MACEDO, D.R., NEVES, F.S. and ALVES, C.B.M. A Humboldtian approach to mountain conservation and freshwater ecosystem services. Frontiers in Environmental Science, 2019, 7, 195. http://dx.doi.org/10.3389/fenvs.2019.00195.

CASTRO, D.M.P., DOLÈDEC, S. and CALLISTO, M. Landscape variables influence taxonomic and trait composition of insect assemblages in Neotropical savanna streams. Freshwater Biology, 2017, 62(8), 1472-1486. http://dx.doi.org/10.1111/fwb.12961.

CUMMINS, K.W., MERRITT, R.W. and ANDRADE, P.C.N. The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil. Studies on Neotropical Fauna and Environment, 2005, 40(1), 69-89. http://dx.doi.org/10.1080/01650520400025720.

DALA‐CORTE, R.B., MELO, A.S., SIQUEIRA, T., BINI, L.M., MARTINS, R.T., CUNICO, A.M., PES, A.M., MAGALHÃES, A.L.B., GODOY, B.S., LEAL, C.G., MONTEIRO‐JÚNIOR, C.S., STENERT, C., CASTRO, D.M.P., MACEDO, D.R., LIMA‐JUNIOR, D.P., GUBIANI, É.A., MASSARIOL, F.C., TERESA, F.B., BECKER, F.G., SOUZA, F.N., VALENTE‐NETO, F., SOUZA, F.L., SALLES, F.F., BREJÃO, G.L., BRITO, J.G., VITULE, J.R.S., SIMIÃO‐FERREIRA, J., DIAS‐SILVA, K., ALBUQUERQUE, L., JUEN, L., MALTCHIK, L., CASATTI, L., MONTAG, L., RODRIGUES, M.E., CALLISTO, M., NOGUEIRA, M.A.M., SANTOS, M.R., HAMADA, N., PAMPLIN, P.A.Z., POMPEU, P.S., LEITÃO, R.P., RUARO, R., MARIANO, R., COUCEIRO, S.R.M., ABILHOA, V., OLIVEIRA, V.C., SHIMANO, Y., MORETTO, Y., SÚAREZ, Y.R. and ROQUE, F.O. Thresholds of freshwater biodiversity in response to riparian vegetation loss in the Neotropical region. Journal of Applied Ecology, 2020, 57(7), 1391-1402. http://dx.doi.org/10.1111/1365-2664.13657.

DEATH, R.G. and WINTERBOURN, M.J. Diversity patterns in stream benthic invertebrate communities: the influence of habitat stability. Ecology, 1995, 76(5), 1446-1460. http://dx.doi.org/10.2307/1938147.

DOLBETH, M., CUSSON, M., SOUSA, R. and PARDAL, M. Secondary production as a tool for better understanding of aquatic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 2012, 69(7), 1230-1253. http://dx.doi.org/10.1139/f2012-050.

FANNY, C., VIRGINIE, A., JEAN-FRANÇOIS, F., JONATHAN, B., MARIE-CLAUDE, R. and SIMON, D. Benthic indicators of sediment quality associated with run-of-river reservoirs. Hydrobiologia, 2013, 703(1), 149-164. http://dx.doi.org/10.1007/s10750-012-1355-y.

FIERRO, P., BERTRÁN, C., TAPIA, J., HAUENSTEIN, E., PEÑA-CORTÉS, F., VERGARA, C., CERNA, C. and VARGAS-CHACOFF, L. Effects of local land-use on riparian vegetation, water quality, and the functional organization of macroinvertebrate assemblages. The Science of the Total Environment, 2017, 609, 724-734. http://dx.doi.org/10.1016/j.scitotenv.2017.07.197. PMid:28763669.

FIRMIANO, K.R., CASTRO, D.M.P., LINARES, M.S. and CALLISTO, M. Functional responses of aquatic invertebrates to anthropogenic stressors in riparian zones of Neotropical savanna streams. The Science of the Total Environment, 2021, 753, 141865. http://dx.doi.org/10.1016/j.scitotenv.2020.141865. PMid:32891996.

FIRMIANO, K.R., LIGEIRO, R., MACEDO, D.R., JUEN, L., HUGHES, R.M. and CALLISTO, M. Mayfly bioindicator thresholds for several anthropogenic disturbances in neotropical savanna streams. Ecological Indicators, 2017, 74, 276-284. http://dx.doi.org/10.1016/j.ecolind.2016.11.033.

GALETI, G., CAPITANIO, B.M. and BALDISSERA, R. Variation of benthic macroinvertebrate communities in streams of three landscapes of south Brazilian grasslands. Revista de Biología Tropical, 2020, 68(1), 108-121. http://dx.doi.org/10.15517/rbt.v68i1.37652.

GREGORY, S.V., SWANSON, F.J., MCKEE, W.A. and CUMMINS, K.W. An ecosystem perspective of Riparian zones Focus on links between land and water. Bioscience, 2007, 41(8), 540-551. http://dx.doi.org/10.2307/1311607.

HEINO, J., MELO, A.S., JYRKÄNKALLIO-MIKKOLA, J., PETSCH, D.K., SAITO, V.S., TOLONEN, K.T., BINI, L.M., LANDEIRO, V.L., SILVA, T.S.F., PAJUNEN, V., SOININEN, J. and SIQUEIRA, T. Subtropical streams harbour higher genus richness and lower abundance of insects compared to boreal streams, but scale matters. Journal of Biogeography, 2018, 45(9), 1983-1993. http://dx.doi.org/10.1111/jbi.13400.

LEAL, C.G., BARLOW, J., GARDNER, T.A., HUGHES, R.M., LEITÃO, R.P., MAC NALLY, R., KAUFMANN, P.R., FERRAZ, S.F.B., ZUANON, J., DE PAULA, F.R., FERREIRA, J., THOMSON, J.R., LENNOX, G.D., DARY, E.P., RÖPKE, C.P. and POMPEU, P.S. Is environmental legislation conserving tropical stream faunas? A large-scale assessment of local, riparian and catchment-scale influences on Amazonian fish. Journal of Applied Ecology, 2018, 55(3), 1312-1326. http://dx.doi.org/10.1111/1365-2664.13028. PMid:32831394.

LECOCQ, T., HARPKE, A., RASMONT, P. and SCHWEIGER, O. Integrating intraspecific differentiation in species distribution models: Consequences on projections of current and future climatically suitable areas of species. Diversity & Distributions, 2019, 25(7), 1088-1100. http://dx.doi.org/10.1111/ddi.12916.

LIBÓRIO, R.A. and TANAKA, M.O. Does environmental disturbance also influence within-stream beta diversity of macroinvertebrate assemblages in tropical streams? Studies on Neotropical Fauna and Environment, 2016, 51(3), 206-214. http://dx.doi.org/10.1080/01650521.2016.1237801.

LINARES, M.S., ASSIS, W., CASTRO SOLAR, R.R., LEITÃO, R.P., HUGHES, R.M. and CALLISTO, M. Small hydropower dam alters the taxonomic composition of benthic macroinvertebrate assemblages in a neotropical river. River Research and Applications, 2019, 35(6), 725-735. http://dx.doi.org/10.1002/rra.3442.

LINARES, M.S., CALLISTO, M. and MARQUES, J.C. Compliance of secondary production and eco-exergy as indicators of benthic macroinvertebrates assemblages’ response to canopy cover conditions in Neotropical headwater streams. The Science of the Total Environment, 2018, 613–614, 1543-1550. http://dx.doi.org/10.1016/j.scitotenv.2017.08.282. PMid:28882459.

LUKE, S.H., SLADE, E.M., GRAY, C.L., ANNAMMALA, K.V., DREWER, J., WILLIAMSON, J., AGAMA, A.L., ATIONG, M., MITCHELL, S.L., VAIRAPPAN, C.S. and STRUEBIG, M.J. Riparian buffers in tropical agriculture: Scientific support, effectiveness and directions for policy. Journal of Applied Ecology, 2019, 56(1), 85-92. http://dx.doi.org/10.1111/1365-2664.13280.

MACDONALD, L.H. and COE, D. Influence of headwater streams on downstream reaches in forested areas. Forest Science, 2007, 53, 148-168. http://dx.doi.org/10.1093/forestscience/53.2.148.

MARTINS, I., MACEDO, D.R., HUGHES, R.M. and CALLISTO, M. Major risks to aquatic biotic condition in a Neotropical Savanna River basin. River Research and Applications, 2021, 37(6), 858-868. http://dx.doi.org/10.1002/rra.3801.

MAURO, M.L., CASTRO, K.J., CAMPOS, I.C., RODRIGUES, N.U.A. and VALERA, C.A. Challenges in the zoning limitation of environmental protection area of Uberaba River (Uberaba/MG). Ambiência, 2016, 12, 851-858. http://dx.doi.org/10.5935/ambiencia.2016.Especial.10.

MERRITT, R.W., CUMMINS, K. and BERG, M. An introduction to the aquatic insects of North America. 4th ed. Dubuque: Kendall/Hunt Publishing, 2008.

METZGER, J.P. O código florestal tem base científica? Natureza & Conservação, 2010, 8(1), 92-99. http://dx.doi.org/10.4322/natcon.00801017.

MILNER, A.M. and GLOYNE-PHILLIPS, I.T. The role of riparian vegetation and woody debris in the development of macroinvertebrate assemblages in streams. River Research and Applications, 2005, 21(4), 403-420. http://dx.doi.org/10.1002/rra.815.

MUGNAI, R., NESSIMIAN, J.L. and BAPTISTA, D.F. Manual de identificação de macroinvertebrados aquáticos do Estado do Rio de Janeiro. Rio de Janeiro: Technical Books, 2010.

OSAKPOLOR, S.E., KATTWINKEL, M., SCHIRMEL, J. and FECKLER, A. Mini-review of process-based food web models and their application in aquatic-terrestrial meta-ecosystems. Ecological Modelling, 2021, 458, 109710. https://doi.org/10.1016/j.ecolmodel.2021.10971.

PARADIS, E. and SCHLIEP, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 2019, 35(3), 526-528. http://dx.doi.org/10.1093/bioinformatics/bty633. PMid:30016406.

R DEVELOPMENT CORE TEAM. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2017.

RAMÍREZ, A. and GUTIÉRREZ-FONSECA, P. FFG of aquatic insect families in Latin America: a critical analysis and review of existing literature. Revista de Biología Tropical, 2014, 62(Suppl 2), 155-167. http://dx.doi.org/10.15517/rbt.v62i0.15785. PMid:25189076.

REZENDE, R.S., GRAÇA, M.A., SANTOS, A.M., MEDEIROS, A.O., SANTOS, P.F., NUNES, Y.R. and GONÇALVES JÚNIOR, J.F. Organic matter dynamics in a tropical gallery forest in a grassland landscape. Biotropica, 2016, 48, 301-310. http://dx.doi.org/10.1111/btp.12308.

RIOS, S.L. and BAILEY, R.C. Relationship between riparian vegetation and stream benthic communities at three spatial scales. Hydrobiologia, 2006, 553(1), 153-160. http://dx.doi.org/10.1007/s10750-005-0868-z.

SANTOS, G.M., LINARES, M.S., CALLISTO, M. and MARQUES, J.C. Two tropical biodiversity hotspots, two different pathways for energy. Ecological Indicators, 2019, 106, 105495. http://dx.doi.org/10.1016/j.ecolind.2019.105495.

SILVA, D.R.O., HERLIHY, A.T., HUGHES, R.M. and CALLISTO, M. An improved macroinvertebrate multimetric index for the assessment of wadeable streams in the neotropical savanna. Ecological Indicators, 2017, 81, 514-525. http://dx.doi.org/10.1016/j.ecolind.2017.06.017.

STANFORD, B., HOLL, K.D., HERBST, D.B. and ZAVALETA, E. In-stream habitat and macroinvertebrate responses to riparian corridor length in rangeland streams. Restoration Ecology, 2020, 28(1), 173-184. http://dx.doi.org/10.1111/rec.13029.

TONKIN, J.D. Drivers of macroinvertebrate community structure in unmodified streams. PeerJ, 2014, 2, e465. http://dx.doi.org/10.7717/peerj.465. PMid:25024926.

WHITTIER, T.R. and VAN SICKLE, J. Macroinvertebrate tolerance values and an assemblage tolerance index (ATI) for western USA streams and rivers. Journal of the North American Benthological Society, 2010, 29(3), 852-866. http://dx.doi.org/10.1899/09-160.1.

ZIMMERMANN, E.M. and DEATH, R.G. Effect of substrate stability and canopy cover on stream invertebrate communities. New Zealand Journal of Marine and Freshwater Research, 2002, 36(3), 537-545. http://dx.doi.org/10.1080/00288330.2002.9517109.
 


Submitted date:
05/26/2021

Accepted date:
09/01/2021

Publication date:
10/15/2021

6169c4c9a953955057443b35 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections