Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X3723
Acta Limnologica Brasiliensia
Original Article

Seasonal precipitation and anthropogenic pressure affect the water quality of reservoirs in the highland humid forest enclaves

A precipitação sazonal e a pressão antrópica afetam a qualidade da água dos reservatórios no Brejo de Altitude

Luciana Gomes Barbosa; Kalline de Almeida Alves Carneiro; Letícia Moro; João Paulo de Oliveira Santos; Rodrigo Santana Macedo

Downloads: 0
Views: 275

Abstract

Aim: Humid forest enclaves are areas with privileged rainfall patterns compared to the surrounding regions, which favours their use for human settlement and agricultural activities, actions that promote severe transformations of the landscape and can contribute to the degradation of local water resources. From this perspective, given the great importance of water reservoirs for this region and the high demand for water, this study aimed to analyse the conservation status of water quality in reservoirs subjected to different anthropic disturbance in a humid forest enclave in the State of Paraíba, Brazil.

Methods: Sampling campaigns were carried out for one year in six reservoirs: Mazagão I, Mazagão II, Vaca Brava, Saulo Maia, Rio do Canto and Lagoa do Paó, to measure the physic-chemical variables of the water.

Results: The influence of annual rainfall patterns on the capacity of these ecosystems to respond to anthropic pressures, indicating the effects of seasonality in the Lagoa do Paó reservoir. For the Vaca Brava, the low accumulated water volumes turned out to be more critical for changes in water quality than the use and occupation of the margins of this reservoir. Furthermore, the Mazagão I and II reservoirs showed low electrical conductivity. The Saulo Maia reservoir exhibit clear waters with low phosphorus content and can be used as a reference for a preserved environment for a highland humid forest enclave.

Conclusions: The conservation of the reservoir environment in the highland humid forest enclave is not sufficient to guarantee the water quality, as it is concentrated an affected at a certain time of the year. These aquatic ecosystems are under great pressure and the lack of decisions based on technical criteria makes them vulnerable to eutrophication.

Keywords

human activities impacts, eutrophication, phosphorus content, reservoir management, land use and occupation

Resumo

Objetivo: Os Brejos de Altitude são áreas com regime pluviométrico privilegiado em relação ao seu entorno, o que favorece seu uso para ocupação humana e atividades agrícolas, ações que promovem severas transformações na paisagem e podem contribuir para a degradação dos recursos hídricos locais. Nessa perspectiva, dada a grande importância dos reservatórios de água para essa região e a alta demanda hídrica, este estudo teve como objetivo analisar o estado de conservação da qualidade da água em reservatórios submetidos a diferentes níveis de perturbação antrópica no Brejo de Altitude do Estado da Paraíba, Brasil.

Métodos: Campanhas de amostragem foram realizadas durante um ano em seis reservatórios: Mazagão I, Mazagão II, Vaca Brava, Saulo Maia, Rio do Canto e Lagoa do Paó, para medir as variáveis físico-químicas da água.

Resultados: Há influência dos padrões pluviométricos anuais sobre a capacidade desses ecossistemas de responder às pressões antrópicas, indicando os efeitos da sazonalidade no reservatório Lagoa do Paó. Para Vaca Brava, os baixos volumes de água acumulados revelaram-se mais críticos para mudanças na qualidade da água do que o uso e ocupação das margens desse reservatório. Além disso, os reservatórios Mazagão I e II apresentaram baixa condutividade elétrica. O reservatório Saulo Maia apresentou águas límpidas com baixo teor de fósforo e pode ser utilizado como referência de ambiente conservado para Brejos de Altitude.

Conclusões: A conservação do entorno dos reservatórios no Brejo de Altitude não é suficiente para garantir a qualidade da água, pois, a precipitação elevada concentrada em determinada época do ano a afeta negativamente. Esses ecossistemas aquáticos estão sob grande pressão, e a ausência de decisões baseadas em critérios técnicos os torna vulneráveis à eutrofização.

Palavras-chave

impacto das atividades humanas, eutrofização, teor de fósforo, gestão de reservatórios, uso e ocupação da terra

References

Agência Executiva de Gestão das Águas do Estado da Paraíba – AESA, 2023. Meteorologia - chuvas [online]. Retrieved in 2023, October, from http://www.aesa.pb.gov.br/aesa-website/meteorologia-chuvas/

Alvares, C.A., Stape, J.L., Sentelhas, P.C., Gonçalves, J.L.M. & Sparovek, G., 2013. Köppen’s climate classification map for Brazil. Meteorol. Z. 22(6), 711-728. http://dx.doi.org/10.1127/0941-2948/2013/0507.

Bahobail, A., Gad El-Rab, S.M.F. & Amin, G.A., 2005. Standard methods for the examination of water and wastewater.Washington, DC: American Public Health Association.

Ballah, M., Bhoyroo, V. & Neetoo, H., 2019. Assessment of the physico-chemical quality and extent of algal proliferation in water from an impounding reservoir prone to eutrophication. J. Ecol. Environ. 43(1), 5. http://dx.doi.org/10.1186/s41610-018-0094-z.

Barbosa, J.D.S., Bellotto, V.R., Silva, D.B. & Lima, T.B., 2019. Nitrogen and phosphorus budget for a deep tropical reservoir of the Brazilian Savannah. Water 11(6), 1205. http://dx.doi.org/10.3390/w11061205.

Barbosa, J.E.L., Andrade, R.A., Lins, R.P. & Diniz, C.R., 2006. Diagnóstico do estado trófico e aspectos limnológicos de sistemas aquáticos da bacia hidrográfica do Rio Taperoá, trópico semiárido brasileiro. Rev. Biol. Ciênc. Terra 1, 81-89.

Barbosa, L.G., Alves, R.M.A., Santos, J.P.O., Araújo, M.C.S.P. & Dantas, Ê.W., 2020. Role of submerged macrophytes in sediment phosphorus stabilization in shallow lakes from the Brazilian semiarid region. Inland Waters 10(4), 505-515. http://dx.doi.org/10.1080/20442041.2020.1814090.

Barcellos, D., Queiroz, H.M., Nóbrega, G.N., Oliveira Filho, R.L., Santaella, S.T., Otero, X.L. & Ferreira, T.O., 2019. Phosphorus enriched effluents increase eutrophication risks for mangrove systems in northeastern Brazil. Mar. Pollut. Bull. 142, 58-63. PMid:31232342. http://dx.doi.org/10.1016/j.marpolbul.2019.03.031.

Beutel, M.W. & Horne, A.J., 2018. Nutrient fluxes from profundal sediment of ultra‐oligotrophic Lake Tahoe, California/Nevada: implications for water quality and management in a changing climate. Water Resour. Res. 54(3), 1549-1559. http://dx.doi.org/10.1002/2017WR020907.

Brasil, J., Attayde, J.L., Vasconcelos, F.R., Dantas, D.D.F. & Huszar, V.L.M., 2016. Drought-induced water-level reduction favors cyanobacteria blooms in tropical shallow lakes. Hydrobiologia 770(1), 145-164. http://dx.doi.org/10.1007/s10750-015-2578-5.

Cabral, J.J.S.P., Braga, R.A.P., Montenegro, S.M.G.L., Campello, M.S.C. & Lopes-Filho, S., 2004. Recursos hídricos e os brejos de altitude. In: Pôrto, K.C., Cabral, J.J.P. & Tabarelli, M., orgs. Brejos de altitude em Pernambuco e Paraíba: história natural, ecologia e conservação. Brasília: Ministério do Meio Ambiente, 31-48.

Câmara, E.R.G., Santos, J.C.B., Araújo Filho, J.C., Shulze, S.M.B.B., Corrêa, M.M., Ferreia, T.O., Sousa, J.E.S. & Souza Júnior, V.S., 2021. Parent rock-pedogenesis relationship: how the weathering of metamorphic rocks influence the genesis of Planosols and Luvisols under a semiarid climate in NE Brazil. Geoderma 385, 114878. http://dx.doi.org/10.1016/j.geoderma.2020.114878.

Cheng, R., Hou, S., Wang, J., Zhu, H., Shutes, B. & Yan, B., 2022. Biochar-amended constructed wetlands for eutrophication control and microcystin (MC-LR) removal. Chemosphere 295, 133830. PMid:35149020. http://dx.doi.org/10.1016/j.chemosphere.2022.133830.

Dalu, T. & Wasserman, R.J., 2018. Cyanobacteria dynamics in a small tropical reservoir: understanding spatio-temporal variability and influence of environmental variables. Sci. Total Environ. 643, 835-841. PMid:29958171. http://dx.doi.org/10.1016/j.scitotenv.2018.06.256.

Dodemaide, D.T., Matthews, T.G., Iervasi, D. & Lester, R.E., 2018. Anthropogenic water bodies as drought refuge for aquatic macroinvertebrates and macrophytes. Sci. Total Environ. 616-617, 543-553. PMid:29128841. http://dx.doi.org/10.1016/j.scitotenv.2017.10.333.

Gunkel, G., Selge, F., Keitel, J., Lima, D., Calado, S., Sobral, M., Rodriguez, M., Matta, E., Hinkelmann, R., Casper, P. & Hupfer, M., 2018. Water management and aquatic ecosystem services of a tropical reservoir. Reg. Environ. Change 18(7), 1913-1925. http://dx.doi.org/10.1007/s10113-018-1324-8.

Hafuka, A., Tsubokawa, Y., Shinohara, R. & Kimura, K., 2021. Phosphorus compounds in the dissolved and particulate phases in urban rivers and a downstream eutrophic lake as analyzed using 31P NMR. Environ. Pollut. 288, 117732. PMid:34256284. http://dx.doi.org/10.1016/j.envpol.2021.117732.

IUSS Working Group WRB, 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps (4th ed.). Vienna: International Union of Soil Sciences, 236 p.

Jalil, A., Li, Y., Zhang, K., Gao, X., Wang, W., Khan, H.O.S., Pan, B., Ali, S. & Acharya, K., 2019. Wind-induced hydrodynamic changes impact on sediment resuspension for large, shallow Lake Taihu, China. Int. J. Sediment Res. 34(3), 205-215. http://dx.doi.org/10.1016/j.ijsrc.2018.11.003.

Jarvie, H.P., Neal, C. & Withers, P.J.A., 2006. Sewage-effluent phosphorus: a greater risk to river eutrophication than agricultural phosphorus? Sci. Total Environ. 360(1-3), 246-253. PMid:16226299. http://dx.doi.org/10.1016/j.scitotenv.2005.08.038.

Jin, X., Wang, S., Pang, Y. & Wu, F.C., 2006. Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake, China. Environ. Pollut. 139(2), 288-295. PMid:16061319. http://dx.doi.org/10.1016/j.envpol.2005.05.010.

Junger, P.C., Dantas, F.C.C., Nobre, R.L.G., Kosten, S., Venticinque, E.M., Araújo, F.C., Sarmento, H., Angelini, R., Terra, I., Gaudêncio, A., They, N.H., Becker, V., Cabral, C.R., Quesado, L., Carneiro, L.S., Caliman, A. & Amado, A.M., 2019. Effects of seasonality, trophic state and landscape properties on CO2 saturation in low-latitude lakes and reservoirs. Sci. Total Environ. 664, 283-295. PMid:30743122. http://dx.doi.org/10.1016/j.scitotenv.2019.01.273.

Kimengich, B.K., Takeuchi, J., Goto, K. & Fujihara, M., 2019. Temporal and spatial change in phosphate–phosphorus concentration and modeling with land-use variation in Sengari reservoir basin. Japan. Paddy Water Environ. 17(2), 131-139. http://dx.doi.org/10.1007/s10333-019-00705-6.

Lacerda, L.D., Santos, J.A., Marins, R.V. & Silva, F.A.D., 2018. Limnology of the largest multi-use artificial reservoir in NE Brazil: the Castanhão Reservoir, Ceará State. An. Acad. Bras. Cienc. 90(2, Suppl. 1), 2073-2096. PMid:30133571. http://dx.doi.org/10.1590/0001-3765201820180085.

Lamparelli, M.C., 2004. Grau de trofia em corpos d’água do estado de São Paulo: avaliação dos métodos de monitoramento [Doctoral dissertation in Sciences: Aquatic and Terrestrial Ecosystems]. São Paulo: Universidade de São Paulo.

Longyang, Q., 2019. Assessing the effects of climate change on water quality of plateau deep-water lake-a study case of Hongfeng Lake. Sci. Total Environ. 647, 1518-1530. PMid:30180357. http://dx.doi.org/10.1016/j.scitotenv.2018.08.031.

Macedo, R.S., Beirigo, R.M., Medeiros, B.M., Felix, V.J.L., Souza, R.F.S. & Bakker, A.P., 2021. Processos pedogenéticos e susceptibilidade dos solos à degradação no Semiárido brasileiro. Caminhos Geogr. 22(81), 176-195. http://dx.doi.org/10.14393/RCG228155397.

Marengo, J.Á., Alves, L.M., Alvala, R.C.S., Cunha, A.P., Brito, S. & Moraes, O.L.L., 2018. Climatic characteristics of the 2010–2016 drought in the semiarid northeast Brazil region. An. Acad. Bras. Cienc. 90(2, Suppl. 1), 1973-1985. PMid:28813107. http://dx.doi.org/10.1590/0001-3765201720170206.

Medeiros, R.L.S., Souza, V.C., Barbosa Neto, M.A., Araújo, L., Barbosa, A.S. & Medeiros, R.L.S., 2016. Estrutura da regeneração natural de Anadenanthera colubrina em fragmento de brejo de altitude em Bananeiras, PB. Pesqui. Florest. Bras. 36(86), 95-101. http://dx.doi.org/10.4336/2016.pfb.36.86.887.

Njagi, D.M., Routh, J., Odhiambo, M., Luo, C., Basapuram, L.G., Olago, D., Klump, V. & Stager, C., 2022. A century of human-induced environmental changes and the combided roles of nutrients and land use in Lake Victoria catchment on euthrophication. Sci. Total Environ. 835, 155425. PMid:35489498. http://dx.doi.org/10.1016/j.scitotenv.2022.155425.

Oliveira, A.F.N., Sousa, L.I.S., Costa, V.A.S., Andrade, J.V.T., Lima, L.A.L., Sales, P.A.F., Silva, D.F., Pereira, A.P.A. & Melo, V.M.M., 2021. Long-term effects of grazing on the biological, chemical, and physical soil properties of the Caatinga biome. Microbiol. Res. 253, 126893. PMid:34678684. http://dx.doi.org/10.1016/j.micres.2021.126893.

Oliveira, C.S.P., Fonseca, A.S., Diaz, C.A. & Santos, W.P., 2020. Reflexões sobre o desafio ambiental: níveis de eutrofização e floração de cianobactérias na Bacia Apodi-Mossoró. Rev. Ibero-Am. Cienc. Ambient. 11(5), 519-530. http://dx.doi.org/10.6008/CBPC2179-6858.2020.005.0047.

Ouni, H., Kawachi, A., Irie, M., M’Barek, N.B., Hariga-Tlatli, N. & Tarhouni, J., 2019. Development of water turbidity index (WTI) and seasonal characteristics of total suspended matter (TSM) spatial distribution in Ichkeul Lake, a shallow brackish wetland, Northern-East Tunisia. Environ. Earth Sci. 78(6), 228. http://dx.doi.org/10.1007/s12665-019-8126-2.

Paerl, H.W. & Huisman, J., 2009. Climate change: a catalyst for global expansion of harmul cyanobacterial blooms. Environ. Microbiol. Rep. 1(1), 27-37. PMid:23765717. http://dx.doi.org/10.1111/j.1758-2229.2008.00004.x.

Pavlidis, G., Ploumistou, E., Karasali, H., Liapis, K., Anagnostopoulos, C., Charalampous, A., Alexakis, D., Gamvroula, D. & Tsihrintzis, V.A., 2018. Evaluation of the water quality status of two surface water reservoirs in a Mediterranean island. Environ. Monit. Assess. 190(10), 570. PMid:30187137. http://dx.doi.org/10.1007/s10661-018-6908-8.

Pérez-Belmont, P., Alvarado, J., Vázquez-Salvador, N., Rodríguez, E., Valiente, E. & Díaz, J., 2019. Water quality monitoring in the Xochimilco peri-urban wetland: experiences engaging in citizen science. Freshw. Sci. 38(2), 342-351. http://dx.doi.org/10.1086/703395.

Pessôa, G.C.M., Souza Neto, J.J., Silva, M.P.A., Soares, W.K.A., Lucena, F.T., Silva, Z.L., Cavalcanti, I.L.R., Moreira, A.R., Sousa, E.F., Silva, K.J.M. & Araújo, J.E.B., 2019. Estudo hidrológico da bacia hidrográfico do Rio Mamanguape. In: Zuffo, A.M., org. As regiões semiáridas e suas especificidades 2. Ponta Grossa: Atena Editora, 181-187. http://dx.doi.org/10.22533/at.ed.91619150321.

R Core Team, 2023. R: a language and environment for statistical computing [online]. Retrieved in 2023, October, from http://www.R-project.org/

Rameshkumar, S., Radhakrishnan, K., Aanand, S. & Rajaram, R., 2019. Influence of physicochemical water quality on aquatic macrophyte diversity in seasonal wetlands. Appl. Water Sci. 9(1), 12. http://dx.doi.org/10.1007/s13201-018-0888-2.

Rietzler, A.C., Botta, C.R., Ribeiro, M.M., Rocha, O. & Fonseca, A.L., 2018. Accelerated eutrophication and toxicity in tropical reservoir water and sediments: an ecotoxicological approach. Environ. Sci. Pollut. Res. Int. 25(14), 13292-13311. PMid:27761862. http://dx.doi.org/10.1007/s11356-016-7719-5.

Rocha Junior, C.A.N., Costa, M.R.A., Menezes, R.F., Attayde, J.L. & Becker, V., 2018. Water volume reduction increases eutrophication risk in tropical semi-arid reservoirs. Acta Limnol. Bras. 30, e106. https://doi.org/10.1590/S2179-975X2117.

Santos, J.C.B., Le Pera, E., Souza Júnior, V.S., Corrêa, M.M. & Azevedo, A.C., 2017. Gneiss saprolite weathering and soil genesis along an east-west regolith sequence (NE Brazil). Catena 150, 279-290. http://dx.doi.org/10.1016/j.catena.2016.11.031.

Scheffer, M. & Van Nes, E.H., 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584(1), 455-466. http://dx.doi.org/10.1007/s10750-007-0616-7.

Sekaluvu, L., Zhang, L. & Gitau, M., 2018. Evaluation of constraints to water quality provements in the Western Lake Erie Basin. J. Environ. Manage. 205, 85-98. PMid:28968590. http://dx.doi.org/10.1016/j.jenvman.2017.09.063.

Sharip, Z., Yusoff, F.M. & Jamin, A., 2019. Seasonal water quality and trophic status of shallow lentic waters and their association with water levels. Int. J. Environ. Sci. Technol. 16(8), 4851-4862. http://dx.doi.org/10.1007/s13762-018-2172-2.

Shi, K., Zhang, Y., Zhu, G., Qin, B. & Pan, D., 2018. Deteriorating water clarity in shallow waters: evidence from long term MODIS and in-situ observations. Int. J. Appl. Earth Obs. Geoinf. 68, 287-297. http://dx.doi.org/10.1016/j.jag.2017.12.015.

Silva-Lehmkuhl, A.M.D., Tremarin, P.I., Vercellino, I.S. & Ludwig, T.A.V., 2019. Periphytic diatoms from an oligotrophic lentic system, Piraquara I reservoir, Paraná state, Brazil. Biota Neotrop. 19(2), e20180568. http://dx.doi.org/10.1590/1676-0611-bn-2018-0568.

Song, H., Meng, X., Wang, S., Zhou, W., Wang, X., Kako, T. & Ye, J., 2019. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water. J. Am. Chem. Soc. 141(51), 20507-20515. PMid:31834789. http://dx.doi.org/10.1021/jacs.9b11440.

Toledo Júnior, A.P., Talarico, M., Chinez, S.J. & Agudo, E.G., 1983. The application of simplified models for the evaluation of the process of eutrophication in tropical lakes and reservoirs. São Paulo: Cetesb.

Tundisi, J.G., 2018. Reservoirs: new challenges for ecosystem studies and environmental management. Water Secur. 4-5, 1-7. http://dx.doi.org/10.1016/j.wasec.2018.09.001.

Wei, Y., Cui, H., Hu, Q., Bai, Y., Qu, K., Sun, J. & Cui, Z., 2022. Eutrophication status assessment in the Laizhou Bay, Bohai Sea: further evidence for the ecosystem degradation. Mar. Pollut. Bull. 181, 113867. PMid:35780630. http://dx.doi.org/10.1016/j.marpolbul.2022.113867.

Woldeab, B., Beyene, A., Ambelu, A., Buffam, I. & Mereta, S.T., 2018. Seasonal and spatial variation of reservoir water quality in the southwest of Ethiopia. Environ. Monit. Assess. 190(3), 163. PMid:29470719. http://dx.doi.org/10.1007/s10661-018-6527-4.

Yuan, H., Tai, Z., Li, Q. & Liu, E., 2020. In-situ, high resolution evidence from water-sediment interface for significance role of iron bound phosphorus in eutrophic lake. Sci. Total Environ. 706, 136040. PMid:31864994. http://dx.doi.org/10.1016/j.scitotenv.2019.136040.

Zhang, Q., Liu, Y.P., Luo, F.L., Dong, B.C. & Yu, F.H., 2019. Does species richness affect the growth and water quality of submerged macrophyte assemblages? Aquat. Bot. 153, 51-57. http://dx.doi.org/10.1016/j.aquabot.2018.11.006.

Ziemińska-Stolarska, A., Imbierowicz, M., Jaskulski, M., Szmidt, A. & Zbiciński, I., 2019. Continuous and periodic monitoring system of surface water quality of an impounding reservoir: Sulejow Reservoir, Poland. Int. J. Environ. Res. Public Health 16(3), 301. PMid:30678078. http://dx.doi.org/10.3390/ijerph16030301.
 


Submitted date:
04/20/2023

Accepted date:
10/27/2023

Publication date:
11/24/2023

65609656a95395612c31b1e6 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections