Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X3720
Acta Limnologica Brasiliensia
Thematic Section: Opinions about Aquatic Ecology in a Changing World

Not all viruses in nature are human enemies: a perspective on aquatic virus ecology in Brazil

Nem todos os vírus na natureza são inimigos humanos: uma perspectiva sobre a ecologia dos vírus aquáticos no Brasil

Pedro Ciarlini Junger; Rafael Marques Almeida; Raquel Mendonça; Vinicius Fortes Farjalla; Rossana Correa Netto de Melo; Fábio Roland; Nathan Barros

Downloads: 0
Views: 1245

Abstract

Abstract:: Viruses cause various diseases in humans through vector-borne (e.g., Zika and dengue fever), airborne (e.g., measles) and water-borne (e.g., hepatitis) transmission, as well as direct physical contact (e.g., AIDS and herpes). Recently, the new coronavirus (SARS-CoV-2) pandemic has triggered the greatest global health crisis in a century. However, not all viruses in nature are human enemies. A vast body of literature indicates that viral infection is vital for ecosystem functioning by affecting nutrient cycling, controlling species growth and enhancing biodiversity. Here we provide a perspective on the ecological role of viruses in nature, with special focus on Brazilian aquatic ecosystems.

Keywords

viral ecology, virioplankton, microorganisms, aquatic ecosystems, tropics

Resumo

Resumo:: Os vírus causam doenças em humanos por meio de vetores (e.g., Zika e dengue), pelo ar (e.g., sarampo), pela água (e.g., hepatite) e por contato físico direto (e.g., AIDS e herpes). Recentemente, a pandemia do novo coronavírus (SARS-CoV-2) ocasionou a maior crise sanitária do século. No entanto, nem todos os vírus na natureza são inimigos humanos. Diversos estudos têm mostrado que a infecção viral é fundamental para o funcionamento de ecossistemas, afetando o ciclo de nutrientes, controlando o crescimento de algumas espécies e aumentando a biodiversidade. Esta mini-revisão apresenta uma perspectiva do papel ecológico dos vírus na natureza, com foco em ambientes aquáticos Brasileiros.
 

Palavras-chave

ecologia viral, virioplâncton, microrganismos, ecossistemas aquáticos, trópicos

References

ALMEIDA, R.M., ROLAND, F., CARDOSO, S.J., FARJALLA, V.F., BOZELLI, R.L. and BARROS, N.O. Viruses and bacteria in floodplain lakes along a major Amazon tributary respond to distance to the Amazon River. Frontiers in Microbiology, 2015, 6, 158. http://dx.doi.org/10.3389/fmicb.2015.00158. PMid:25788895.

AZAM, F., FENCHEL, T., FIELD, J.G., GRAY, J.S., MEYER-REIL, L.A. and THINGSTAD, F. The ecological role of water-column microbes in the Sea. Marine Ecology Progress Series, 1983, 10, 257-263. http://dx.doi.org/10.3354/meps010257.

BARROS, N., FARJALLA, V.F., SOARES, M.C., MELO, R.C.N. and ROLAND, F. Virus-bacterium coupling driven by both turbidity and hydrodynamics in an Amazonian floodplain lake. Applied and Environmental Microbiology, 2010, 76(21), 7194-7201. http://dx.doi.org/10.1128/AEM.01161-10. PMid:20833790.

BAUDOUX, A.-C. and BRUSSAARD, C.P.D. Characterization of different viruses infecting the marine harmful algal bloom species Phaeocystis globosa. Virology, 2005, 341(1), 80-90. http://dx.doi.org/10.1016/j.virol.2005.07.002. PMid:16081120.

BERGH, O., BØRSHEIM, K.Y., BRATBAK, G. and HELDAL, M. High abundance of viruses found in aquatic environments. Nature, 1989, 340(6233), 467-468. http://dx.doi.org/10.1038/340467a0. PMid:2755508.

BRATBAK, G., HELDAL, M., THINGSTAD, T.F., RIEMANN, B. and HASLUND, O.H. Incorporation of viruses into the budget of microbial C-transfer: a first approach. Marine Ecology Progress Series, 1992, 83(2-3), 273-280. http://dx.doi.org/10.3354/meps083273.

BRUM, J.R., SCHENCK, R.O. and SULLIVAN, M.B. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. The ISME Journal, 2013, 7(9), 1738-1751. http://dx.doi.org/10.1038/ismej.2013.67. PMid:23635867.

BRUSSAARD, C.P.D. Optimization of procedures for counting viruses by flow cytometry. Applied and Environmental Microbiology, 2004, 70(3), 1506-1513. http://dx.doi.org/10.1128/AEM.70.3.1506-1513.2004. PMid:15006772.

CABRAL, A.S., LESSA, M.M., JUNGER, P.C., THOMPSON, F.L. and PARANHOS, R. Virioplankton dynamics are related to eutrophication levels in a tropical urbanized bay. PLoS One, 2017., 12(3), e0174653. http://dx.doi.org/10.1371/journal.pone.0174653.

COTNER, J.B. and BIDDANDA, B.A. Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems, 2002, 5(2), 105-121. http://dx.doi.org/10.1007/s10021-001-0059-3.

DANOVARO, R., CORINALDESI, C., FILIPPINI, M., FISCHER, U.R., GESSNER, M.O., JACQUET, S., MAGAGNINI, M. and VELIMIROV, B. Viriobenthos in freshwater and marine sediments: a review. Freshwater Biology, 2008, 53(6), 1186-1213. http://dx.doi.org/10.1111/j.1365-2427.2008.01961.x.

FARJALLA, V.F., AMADO, A.M. and ESTEVES, F.A. Bacterioplâncton. In: F.A. ESTEVES, ed. Fundamentos de limnologia. 3. ed. Rio de Janeiro: Interciência, 2011, pp. 355-373.

FUHRMAN, J.A. and NOBLE, R.T. Viruses and protists cause similar bacterial mortality in coastal seawater. Limnology and Oceanography, 1995, 40(7), 1236-1242. http://dx.doi.org/10.4319/lo.1995.40.7.1236.

GASTRICH, M.D., LEIGH-BELL, J.A., GOBLER, C.J., ROGER ANDERSON, O., WILHELM, S.W. and BRYAN, M. Viruses as potential regulators of regional brown tide blooms caused by the alga, Aureococcus anophagefferens. Estuaries, 2004, 27(1), 112-119. http://dx.doi.org/10.1007/BF02803565.

GORBALENYA, A.E., KRUPOVIC, M., MUSHEGIAN, A., KROPINSKI, A.M., SIDDELL, S.G., VARSANI, A., ADAMS, M.J., DAVISON, A.J., DUTILH, B.E., HARRACH, B., HARRISON, R.L., JUNGLEN, S., KING, A.M.Q., KNOWLES, N.J., LEFKOWITZ, E.J., NIBERT, M.L., RUBINO, L., SABANADZOVIC, S., SANFAÇON, H., SIMMONDS, P., WALKER, P.J., ZERBINI, F.M. and KUHN, J.H. The new scope of virus taxonomy: partitioning the virosphere into 15 hierarchical ranks. Nature Microbiology, 2020, 5(5), 668-674. http://dx.doi.org/10.1038/s41564-020-0709-x. PMid:32341570.

GREGORY, A.C., ZAYED, A.A., CONCEIÇÃO-NETO, N., TEMPERTON, B., BOLDUC, B., ALBERTI, A., ARDYNA, M., ARKHIPOVA, K., CARMICHAEL, M., CRUAUD, C., DIMIER, C., DOMÍNGUEZ-HUERTA, G., FERLAND, J., KANDELS, S., LIU, Y., MAREC, C., PESANT, S., PICHERAL, M., PISAREV, S., POULAIN, J., TREMBLAY, J.-É., VIK, D., BABIN, M., BOWLER, C., CULLEY, A.I., DE VARGAS, C., DUTILH, B.E., IUDICONE, D., KARP-BOSS, L., ROUX, S., SUNAGAWA, S., WINCKER, P., SULLIVAN, M.B., ACINAS, S.G., BABIN, M., BORK, P., BOSS, E., BOWLER, C., COCHRANE, G., DE VARGAS, C., FOLLOWS, M., GORSKY, G., GRIMSLEY, N., GUIDI, L., HINGAMP, P., IUDICONE, D., JAILLON, O., KANDELS-LEWIS, S., KARP-BOSS, L., KARSENTI, E., NOT, F., OGATA, H., PESANT, S., POULTON, N., RAES, J., SARDET, C., SPEICH, S., STEMMANN, L., SULLIVAN, M.B., SUNAGAWA, S. and WINCKER, P. Marine DNA viral macro- and microdiversity from pole to pole. Cell, 2019, 177(5), 1109-1123. http://dx.doi.org/10.1016/j.cell.2019.03.040. PMid:31031001.

HALL JUNIOR, R.O. and MEYER, J.L. The trophic significance of bacteria in a detritus-based stream food web. Ecology, 1998, 79(6), 1995-2012. http://dx.doi.org/10.1890/0012-9658(1998)079[1995:TTSOBI]2.0.CO;2.

HAMBLY, E. and SUTTLE, C.A. The viriosphere, diversity, and genetic exchange within phage communities. Current Opinion in Microbiology, 2005, 8(4), 444-450. http://dx.doi.org/10.1016/j.mib.2005.06.005. PMid:15979387.

JUNGER, P.C., AMADO, A.M., PARANHOS, R., CABRAL, A.S., JACQUES, S.M.S. and FARJALLA, V.F. Salinity drives the virioplankton abundance but not production in tropical coastal lagoons. Microbial Ecology, 2018, 75(1), 52-63. http://dx.doi.org/10.1007/s00248-017-1038-3. PMid:28721503.

JUNK, W.J., BAYLEY, P.B. and SPARKS, R.E. The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences, 1989, 106(1), 110-127.

KAVAGUTTI, V.S., ANDREI, A., MEHRSHAD, M., SALCHER, M.M. and GHAI, R. Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics. Microbiome, 2019, 7(1), 135. http://dx.doi.org/10.1186/s40168-019-0752-0. PMid:31630686.

KNOWLES, B., SILVEIRA, C.B., BAILEY, B.A., BAROTT, K., CANTU, V.A., COBIÁN-GÜEMES, A.G., COUTINHO, F.H., DINSDALE, E.A., FELTS, B., FURBY, K.A., GEORGE, E.E., GREEN, K.T., GREGORACCI, G.B., HAAS, A.F., HAGGERTY, J.M., HESTER, E.R., HISAKAWA, N., KELLY, L.W., LIM, Y.W., LITTLE, M., LUQUE, A., MCDOLE-SOMERA, T., MCNAIR, K., DE OLIVEIRA, L.S., QUISTAD, S.D., ROBINETT, N.L., SALA, E., SALAMON, P., SANCHEZ, S.E., SANDIN, S., SILVA, G.G.Z., SMITH, J., SULLIVAN, C., THOMPSON, C., VERMEIJ, M.J.A., YOULE, M., YOUNG, C., ZGLICZYNSKI, B., BRAINARD, R., EDWARDS, R.A., NULTON, J., THOMPSON, F. and ROHWER, F. Lytic to temperate switching of viral communities. Nature, 2016, 531(7595), 466-470. http://dx.doi.org/10.1038/nature17193. PMid:26982729.

KOONIN, E.V. and WOLF, Y.I. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Research, 2008, 36(21), 6688-6719. http://dx.doi.org/10.1093/nar/gkn668. PMid:18948295.

MELO, M.L., BERTILSSON, S., AMARAL, J.H.F., BARBOSA, P.M., FORSBERG, B.R. and SARMENTO, H. Flood pulse regulation of bacterioplankton community composition in an Amazonian floodplain lake. Freshwater Biology, 2019, 64(1), 108-120. http://dx.doi.org/10.1111/fwb.13198.

MELO, R.C.N. Células & microscopia: princípios e práticas. 2. ed. Barueri: Manole, 2018, 300 p.

PRADEEP RAM, A.S., CHAIBI-SLOUMA, S., KESHRI, J., COLOMBET, J. and SIME-NGANDO, T. Functional responses of bacterioplankton diversity and metabolism to experimental bottom-up and top-down forcings. Microbial Ecology, 2016, 72(2), 347-358. http://dx.doi.org/10.1007/s00248-016-0782-0. PMid:27179523.

SILVA, B.S.D.O., COUTINHO, F.H., GREGORACCI, G.B., LEOMIL, L., DE OLIVEIRA, L.S., FRÓES, A., TSCHOEKE, D., SOARES, A.C., CABRAL, A.S., WARD, N.D., RICHEY, J.E., KRUSCHE, A.V., YAGER, P.L., DE REZENDE, C.E., THOMPSON, C.C. and THOMPSON, F.L. Virioplankton assemblage structure in the lower river and ocean continuum of the Amazon. MSphere, 2017, 2(5), e00366-e17. http://dx.doi.org/10.1128/mSphere.00366-17. PMid:28989970.

SIME-NGANDO, T. Environmental bacteriophages: viruses of microbes in aquatic ecosystems. Frontiers in Microbiology, 2014, 5, 355. http://dx.doi.org/10.3389/fmicb.2014.00355. PMid:25104950.

SUTTLE, C.A. Viruses in the sea. Nature, 2005, 437(7057), 356-361. http://dx.doi.org/10.1038/nature04160. PMid:16163346.

THINGSTAD, T.F. and LIGNELL, R. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquatic Microbial Ecology, 1997, 13(1), 19-27. http://dx.doi.org/10.3354/ame013019.

WEINBAUER, M.G. and SUTTLE, C.A. Potential significance of lysogeny to bacteriophage production and bacterial mortality in coastal waters of the Gulf of Mexico. Applied and Environmental Microbiology, 1996, 62(12), 4374-4380. http://dx.doi.org/10.1128/AEM.62.12.4374-4380.1996. PMid:16535459.

WILLEY, J.M., SHERWOOD, L. and WOOLVERTON, C.J. Prescott’s microbiology. 9th ed. New York: McGraw Hill, 2014.
 


Submitted date:
05/04/2020

Accepted date:
08/07/2020

Publication date:
09/23/2020

5f6b8f5b0e8825e9719fefc7 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections