Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X3324
Acta Limnologica Brasiliensia
Thematic Section: Neotropical Zooplankton Symposium

Importance of abiotic factors and hydroperiod for the zooplankton community from ponds with different hydrological dynamics

Importância dos fatores abióticos e hidroperíodo para a comunidade zooplanctônica de poças com diferentes dinâmicas hidrológicas

José Gabriel Melo da Cruz; Fernanda Zucoloto Domingues; Luisa Rodrigues dos Santos; Rayanne Barros Setubal; Elder de Oliveira Sodré; Reinaldo Luiz Bozelli

Downloads: 0
Views: 38

Abstract

Aim: The increasing impact on natural environments has led to changes in ecosystem characteristics. When not properly understood and managed, these changes can negatively affect the dynamics of aquatic environments, particularly small ones such as temporary ponds. Hydroperiod can influence the structure of aquatic ecosystems and the factors determining species occurrence in these water bodies. Within this context, studies assessing the influence of hydroperiod become highly relevant. This study evaluates how zooplankton species are distributed across five ponds with different hydroperiods in the Restinga de Jurubatiba National Park and the importance of water retention time for the taxonomic and functional diversity of this community.

Methods: We indirectly assessed water retention time through daily temperature measurements over three years and analyzed the main limnological parameters. The zooplankton community was sampled from the five studied ponds, and its diversity was evaluated using species richness (S), Shannon-Wiener diversity index (H’), functional richness (FRic), functional divergence (FDiv), and functional dispersion (FDis).

Results: We observed that even though the ponds are part of the same natural mosaic, they exhibit distinct characteristics. Abiotic factors such as water salinity and a more unstable hydroperiod negatively impacted zooplankton taxonomic and functional diversity, as shown by the integrated analysis of both diversity components. The highest taxonomic diversity values were found in ponds with intermediate water retention conditions (seasonal droughts).

Conclusions: Our results indicate that seasonal environments favor the co-occurrence of species from both perennial and ephemeral ponds, showing higher Shannon-Wiener diversity index (H’), functional richness (FRic), and functional divergence (FDiv) values when analyzed through an integrated approach. Furthermore, we observed that even under the same regional species pool, differences in desiccation frequency were sufficient to determine variations in the zooplankton community.

Keywords

functional richness; temporary ponds; Shannon diversity; functional dispersion

Resumo

Objetivo: O aumento dos impactos nos ambientes naturais tem levado a mudanças nas características dos ecossistemas. Quando não compreendidas e controladas, essas mudanças podem impactar negativamente a dinâmica dos ambientes aquáticos, especialmente os pequenos, como as poças temporárias. O hidroperíodo pode influenciar a estrutura dos ecossistemas aquáticos e os fatores que determinam a ocorrência de espécies nesses corpos d'água. Nesse contexto, estudos que avaliem a influência do hidroperíodo tornam-se altamente relevantes. Este estudo avalia como as espécies zooplanctônicas estão distribuídas em cinco poças com diferentes hidroperíodos no Parque Nacional da Restinga de Jurubatiba e a importância do tempo de retenção de água para a diversidade taxonômica e funcional dessa comunidade.

Métodos: Avaliamos indiretamente o tempo de retenção hídrica por meio de medições diárias de temperatura ao longo de três anos e analisamos os principais parâmetros limnológicos. A comunidade zooplanctônica foi amostrada nas cinco poças estudadas, e sua diversidade foi avaliada por meio da riqueza de espécies (S), índice de diversidade de Shannon-Wiener (H'), riqueza funcional (FRic), divergência funcional (FDiv) e dispersão funcional (FDis).

Resultados: Observamos que, apesar de estarem inseridas no mesmo mosaico natural, as poças apresentam características distintas. Fatores abióticos, como a salinidade da água e um hidroperíodo mais instável, impactaram negativamente a diversidade taxonômica e funcional do zooplâncton, conforme demonstrado pela análise integrada desses componentes de diversidade. Os maiores valores de diversidade taxonômica foram encontrados em poças com condições intermediárias de retenção de água (secas sazonais).

Conclusões: Nossos resultados indicam que ambientes sazonais favorecem a coocorrência de espécies em poças perenes e efêmeras, apresentando maiores valores de índice de diversidade de Shannon-Wiener (H’), riqueza funcional (FRic) e divergência funcional (FDiv) quando analisados de forma integrada. Além disso, observamos que, mesmo sob o mesmo conjunto regional de espécies, diferenças na frequência de dessecação foram suficientes para determinar variações na comunidade zooplanctônica.

Palavras-chave

riqueza funcional; poças temporárias; diversidade de Shannon; dispersão funcional

References

Anderson, T.L., Heemeyer, J.L., Peterman, W.E., Everson, M.J., Ousterhout, B.H., Drake, D.L., & Semlitsch, R.D., 2015. Automated analysis of temperature variance to determine inundation state of wetlands. Wetlands Ecol. Manage. 23(6), 1039-1047. http://doi.org/10.1007/s11273-015-9439-x.

Aranguren-Riaño, N., Guisande, C., & Ospina, R., 2011. Factors controlling crustacean zooplankton species richness in Neotropical lakes. J. Plankton Res. 33(8), 1295-1303. http://doi.org/10.1093/plankt/fbr028.

Arias-Real, R., Delgado-Baquerizo, M., Sabater, S., Gutiérrez-Cánovas, C., Valencia, E., Aragón, G., Cantón, Y., Datry, T., Giordani, P., Medina, N.G., De Los Ríos, A., Romaní, A.M., Weber, B., & Hurtado, P., 2024. Unfolding the dynamics of ecosystems undergoing alternating wet-dry transitional states. Ecol. Lett. 27(8), e14488. PMid:39092560. http://doi.org/10.1111/ele.14488.

Barko, J.W., & James, W.F., 1998. Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation, and resuspension. In: Jeppesen, E., Søndergaard, M., Søndergaard, M., & Christoffersen, K., eds. The structuring role of submerged macrophytes in lakes. New York: Springer, 197-214, vol. 131. http://doi.org/10.1007/978-1-4612-0695-8_10.

Barnett, A., & Beisner, B.E., 2007. Zooplankton biodiversity and lake trophic state: explanations involving resource abundance and distribution. Ecology 88(7), 1675-1686. PMid:17645014. http://doi.org/10.1890/06-1056.1.

Blackwell, M.S.A., & Pilgrim, E.S., 2011. Ecosystem services delivered by small-scale wetlands. Hydrol. Sci. J. 56(8), 1467-1484. http://doi.org/10.1080/02626667.2011.630317.

Boxshall, G.A., & Defaye, D., 2008. Global diversity of copepods (Crustacea: Copepoda) in freshwater. Hydrobiologia 595(1), 195-207. http://doi.org/10.1007/s10750-007-9014-4.

Bozelli, R.L., 1998. Influences of suspended inorganic matter on carbon ingestion and incorporation rates of two tropical cladocerans, Diaphanosoma birgei and Moina minuta. Fundam. Appl. Limnol. 142(4), 451-465. http://doi.org/10.1127/archiv-hydrobiol/142/1998/451.

Bozelli, R. L., Lira, R. T. S., & Sodré, E. O., 2018. Pequenas áreas úmidas: importância para a conservação e gestão da biodiversidade brasileira. Divers. Gest. 2(2), 122-138.

Brendonck, L., Pinceel, T., & Ortells, R., 2017. Dormancy and dispersal as mediators of zooplankton population and community dynamics along a hydrological disturbance gradient in inland temporary pools. Hydrobiologia 796(1), 201-222. http://doi.org/10.1007/s10750-016-3006-1.

Caliman, A., Carneiro, L.S., Santangelo, J.M., Guariento, R.D., Pires, A.P.F., Suhett, A.L., Quesado, L.B., Scofield, V., Fonte, E.S., Lopes, P.M., Sanches, L.F., Azevedo, F.D., Marinho, C.C., Bozelli, R.L., Esteves, F.A., & Farjalla, V.F., 2010. Temporal coherence among tropical coastal lagoons: a search for patterns and mechanisms. Braz. J. Biol. 70(3, Suppl.), 803-814. PMid:21085785. http://doi.org/10.1590/S1519-69842010000400011.

Carper, G.L., & Bachmann, R.W., 1984. Wind resuspension of sediments in a prairie lake. Can. J. Fish. Aquat. Sci. 41(12), 1763-1767. http://doi.org/10.1139/f84-217.

Day, J.W., & Rybczyk, J.M., 2019. Global change impacts on the future of coastal systems: perverse interactions among climate change, ecosystem degradation, energy scarcity, and population. In: Wolanski, E., Day, J.W., Elliott, M., & Ramachandran, R., eds. Coasts and estuaries: the future. Amsterdam: Elsevier, 621-639. http://doi.org/10.1016/B978-0-12-814003-1.00036-8.

Díaz, S., & Cabido, M., 2001. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16(11), 646-655. http://doi.org/10.1016/S0169-5347(01)02283-2.

Drenner, S.M., Dodson, S.I., Drenner, R.W., & Pinder 3rd, J.E., 2009. Crustacean zooplankton community structure in temporary and permanent grassland ponds. Hydrobiologia 632(1), 225-233. http://doi.org/10.1007/s10750-009-9843-4.

Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z., Knowler, D.J., Lévêque, C., Naiman, R.J., Prieur-Richard, A., Soto, D., Stiassny, M.L.J., & Sullivan, C.A., 2006. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81(2), 163-182. PMid:16336747. http://doi.org/10.1017/S1464793105006950.

Elmqvist, T., Folke, C., Nyström, M., Peterson, G., Bengtsson, J., Walker, B., & Norberg, J., 2003. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1(9), 488-494. http://doi.org/10.1890/1540-9295(2003)001[0488:RDECAR]2.0.CO;2.

Erwin, K.L., 2009. Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecol. Manage. 17(1), 71-84. http://doi.org/10.1007/s11273-008-9119-1.

Fernández-Aláez, M., García-Criado, F., García-Girón, J., Santiago, F., & Fernández-Aláez, C., 2020. Environmental heterogeneity drives macrophyte beta diversity patterns in permanent and temporary ponds in an agricultural landscape. Aquat. Sci. 82(2), 20. http://doi.org/10.1007/s00027-020-0694-4.

Finlayson, C.M., Davies, G.T., Moomaw, W.R., Chmura, G.L., Natali, S.M., Perry, J.E., Roulet, N., & Sutton-Grier, A.E., 2019. The second warning to humanity: providing a context for wetland management and policy. Wetlands 39(1), 1-5. http://doi.org/10.1007/s13157-018-1064-z.

Forró, L., Korovchinsky, N.M., Kotov, A.A., & Petrusek, A., 2008. Global diversity of cladocerans (Cladocera; Crustacea) in freshwater. Hydrobiologia 595(1), 177-184. http://doi.org/10.1007/s10750-007-9013-5.

Fox, J.F., 1979. Intermediate-disturbance hypothesis. Science 204(4399), 1344-1345. PMid:17813173. http://doi.org/10.1126/science.204.4399.1344.

Frainer, A., McKie, B.G., & Malmqvist, B., 2014. When does diversity matter? Species functional diversity and ecosystem functioning across habitats and seasons in a field experiment. J. Anim. Ecol. 83(2), 460-469. PMid:26046457. http://doi.org/10.1111/1365-2656.12142.

Gannon, J.E., & Stemberger, R.S., 1978. Zooplankton (especially crustaceans and rotifers) as indicators of water quality. Trans. Am. Microsc. Soc. 97(1), 16. http://doi.org/10.2307/3225681.

Gendreau, K.L., Buxton, V.L., Moore, C.E., & Mims, M.C., 2021. Temperature loggers capture intraregional variation of inundation timing for intermittent ponds. Water. Resour. Res. 57(11), e2021WR029958. http://doi.org/10.1029/2021WR029958.

Gliwicz, Z.M., & Pijanowska, J., 1989. The role of predation in zooplankton succession. In: Sommer, U., ed. Plankton ecology. Berlin: Springer, 253-296. http://doi.org/10.1007/978-3-642-74890-5_7.

Golterman, H.L., Clymo, R.S., & Ohnstad, M.A., 1978. Methods for physical and chemical analysis of freshwaters. Oxford: Blackwell Scientific Publications, 2 ed., IBP Manual, no. 8.

Gozlan, R.E., Karimov, B.K., Zadereev, E., Kuznetsova, D., & Brucet, S., 2019. Status, trends, and future dynamics of freshwater ecosystems in Europe and Central Asia. Inland Waters 9(1), 78-94. http://doi.org/10.1080/20442041.2018.1510271.

Guenther, M., & Bozelli, R., 2004. Effects of inorganic turbidity on the phytoplankton of an Amazonian Lake impacted by bauxite tailings. Hydrobiologia 511(1), 151-159. http://doi.org/10.1023/B:HYDR.0000014095.47409.39.

Hart, B.T., Bailey, P., Edwards, R., Hortle, K., James, K., McMahon, A., Meredith, C., & Swadling, K., 1991. A review of the salt sensitivity of the Australian freshwater biota. Hydrobiologia 210(1-2), 105-144. http://doi.org/10.1007/BF00014327.

Hooper, D.U., Chapin 3rd, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A.J., Vandermeer, J., & Wardle, D.A., 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75(1), 3-35. http://doi.org/10.1890/04-0922.

James, D., & Hornik, K., 2023. chron: Chronological objects which can handle dates and times. Vienna: R Foundation for Statistical Computing.

Jeppesen, E., Nõges, P., Davidson, T.A., Haberman, J., Nõges, T., Blank, K., Lauridsen, T.L., Søndergaard, M., Sayer, C., Laugaste, R., Johansson, L.S., Bjerring, R., & Amsinck, S.L., 2011. Zooplankton as indicators in lakes: A scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 676(1), 279-297. http://doi.org/10.1007/s10750-011-0831-0.

Laliberté, E., & Legendre, P., 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91(1), 299-305. PMid:20380219. http://doi.org/10.1890/08-2244.1.

Lima, S.K.A.F., Setubal, R.B., Vargas, A., Farias, D.S., Sodré, E.O., Casa Nova, C., & Bozelli, R.L., 2022. Taxonomic and functional coherence of active and dormant zooplankton communities between perennial and temporary aquatic environments. J. Plankton Res. 44(2), 181-193. http://doi.org/10.1093/plankt/fbac011.

Litchman, E., Ohman, M.D., & Kiørboe, T., 2013. Trait-based approaches to zooplankton communities. J. Plankton Res. 35(3), 473-484. http://doi.org/10.1093/plankt/fbt019.

Macedo-Soares, P.H.M., Petry, A.C., Farjalla, V.F., & Caramaschi, E.P., 2010. Hydrological connectivity in coastal inland systems: lessons from a Neotropical fish metacommunity. Ecol. Freshwat. Fish 19(1), 7-18. http://doi.org/10.1111/j.1600-0633.2009.00384.x.

Mason, N.W.H., & De Bello, F., 2013. Functional diversity: a tool for answering challenging ecological questions. J. Veg. Sci. 24(5), 777-780. http://doi.org/10.1111/jvs.12097.

Mouchet, M.A., Villéger, S., Mason, N.W.H., & Mouillot, D., 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 24(4), 867-876. http://doi.org/10.1111/j.1365-2435.2010.01695.x.

Nusche, E.A., & Palme, G., 1975. Biologische methoden für die praxis der Gewässeruntersuchung. 1- Bestimmung des Chlorophyll a und Phaepigmentgehaltes in Oberflächenwasser. Gwf-Wasser/Abwasser. 116, 562-565.

Oksanen, J., Simpson, G.L., Guillaume Blanchet, F., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H.B.A., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M.O., Lahti, L., McGlinn, D., Ouellette, M.-H., Cunha, E.R., Smith, T., Stier, A., Ter Braak, C.J.F., Weedon, J., & Borman, T., 2016. vegan: Community ecology package. Vienna: R Foundation for Statistical Computing. Retrieved in 2024, April 15, from https://cran.r-project.org/package=vegan

Pavoine, S., Vallet, J., Dufour, A., Gachet, S., & Daniel, H., 2009. On the challenge of treating various types of variables: application for improving the measurement of functional diversity. Oikos 118(3), 391-402. http://doi.org/10.1111/j.1600-0706.2008.16668.x.

Pires, M.M., Bieger, L., Boelter, T., Stenert, C., & Maltchik, L., 2021. Spatiotemporal assembly patterns of macroinvertebrate metacommunity structure in subtropical wetlands with different hydroperiods. Int. Rev. Hydrobiol. 106(5-6), 239-248. http://doi.org/10.1002/iroh.202002072.

Pitchford, J.L., Wu, C., Lin, L., Petty, J.T., Thomas, R., Veselka 4th, W.E., Welsch, D., Zegre, N., & Anderson, J.T., 2012. Climate change effects on hydrology and ecology of wetlands in the Mid-Atlantic Highlands. Wetlands 32(1), 21-33. http://doi.org/10.1007/s13157-011-0259-3.

R Core Team, 2020. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

Roland, F., & Esteves, F.A., 1998. Effects of bauxite tailing on PAR attenuation in an Amazonian crystalline water lake. Hydrobiologia 377(1-3), 1-7. http://doi.org/10.1023/A:1003252805671.

Scarano, F.R., 2017. Ecosystem-based adaptation to climate change: concept, scalability and a role for conservation science. Perspect. Ecol. Conserv. 15(2), 65-73. http://doi.org/10.1016/j.pecon.2017.05.003.

Segers, H., 2008. Global diversity of rotifers (Rotifera) in freshwater. Hydrobiologia 595(1), 49-59. http://doi.org/10.1007/s10750-007-9003-7.

Seminara, M., Vagaggini, D., & Margaritora, F.G., 2008. Differential responses of zooplankton assemblages to environmental variation in temporary and permanent ponds. Aquat. Ecol. 42(1), 129-140. http://doi.org/10.1007/s10452-007-9088-0.

Setubal, R.B., & Bozelli, R.L., 2021. Zooplankton functional complementarity between temporary and permanent environments. Acta Limnol. Bras. 33, e3. http://doi.org/10.1590/s2179-975x5620.

Villéger, S., Mason, N.W.H., & Mouillot, D., 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89(8), 2290-2301. PMid:18724739. http://doi.org/10.1890/07-1206.1.

Waterkeyn, A., Grillas, P., Vanschoenwinkel, B., & Brendonck, L., 2008. Invertebrate community patterns in Mediterranean temporary wetlands along hydroperiod and salinity gradients. Freshw. Biol. 53(9), 1808-1822. http://doi.org/10.1111/j.1365-2427.2008.02005.x.

Williams, D.D. 2006. The biology of temporary waters. Oxford: Oxford University Press.

Zhang, Z., & Zhou, J., 2019. From ecosystems to human welfare: the role and conservation of biodiversity. Cienc. Rural 49(5), e20170875. http://doi.org/10.1590/0103-8478cr20170875.
 


Submitted date:
04/15/2024

Accepted date:
03/26/2025

Publication date:
05/30/2025

683a275ea95395220c683ce4 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections