Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X3322
Acta Limnologica Brasiliensia
Original Article

The combined use of paleolimnological and long-term limnological information to identify natural and anthropogenic environmental changes

O uso combinado de informação paleolimnológica e limnológica histórica para identificar mudanças ambientais naturais e antropogênicas

Felipe García-Rodríguez; Ana Paula Tavares Costa; Alien Mavi Frantz; Cassia F. Martins da Silva; Karoline Pereira Martins; Andrea L. M. Moraes; Felipe Lopes Alves; Leandro Bugoni; Cleber Palma-Silva; Edélti Faria Albertoni; Paulo Henrique Mattos; Grasiela Lopes Leães Pinho; Vanessa Ochi Agostini

Downloads: 0
Views: 1034

Abstract

Abstract: Aim: Urbanization leads to rapid changes in ecosystem structure and function. Wetlands on university campuses under urbanization pressure could be used as case studies of multidisciplinary aquatic research and good environmental practices promoting sustainability.

Methods: A paleolimnological study was undertaken in a semi-artificial lake on a university campus in southern Brazil to trace historical impacts and ecological changes back to the mid-1970s through complementary approaches: historical data, nutrients, δ13C and δ15N stable isotopes, diatoms, microplastics and associated microbial community analysis.

Results: The eutrophication process started to intensify after the lake was used for nocturnal roosting by waterbirds, and especially after the establishment of constructions along the margins with septic tank sanitary sewage, which eventually spilled and leached into the lake. Over decades, we identified a limnological hypertrophication process leading to recurrent cyanobacterial blooms and massive macrophyte proliferation coupled with changes in isotopic ratios and algal occupation with several transitions between shallow lake alternative states. Such a limnological process has resembled the paleolimnological eutrophication trends and isotopic changes in sedimentary organic matter. The microplastic deposition was detected as a proxy for the intensification of urbanization, especially during the construction of the University facilities.

Conclusions: The combined use of paleolimnological and historical limnological data represents a powerful approach for inferring both natural and cultural impacts on the lake, and identifying management strategies based on such scientific information.

Keywords

diatoms, eutrophication, microplastics, pollution, trophic state

Resumo

Resumo: Objetivo: A urbanização leva a mudanças rápidas na estrutura e função do ecossistema. Terras úmidas em câmpus universitários sujeitos ao desenvolvimento da urbanização podem ser usados como estudos de caso de pesquisa aquática multidisciplinar e boas práticas ambientais que promovam a sustentabilidade.

Métodos: Foi realizado um estudo paleolimnológico em um lago semiartificial em um campus universitário no sul do Brasil para inferir impactos históricos e mudanças ecológicas desde a década de 1970 por meio de abordagens complementares: dados históricos, nutrientes, isótopos estáveis δ13C e δ15N, diatomáceas, microplásticos e análise da comunidade microbiana associada.

Resultados: O processo de eutrofização começou a se intensificar após o uso noturno por aves aquáticas de árvores como poleiros, e especialmente após o estabelecimento de construções ao longo das margens com fossa séptica de esgoto sanitário, que ocasionalmente transbordava e carreava material para o lago. Ao longo de décadas, identificamos um processo limnológico de hipertrofização que induziu a florações recorrentes de cianobactérias e proliferação maciça de macrófitas, juntamente com mudanças isotópicas e ocupação de algas com várias transições entre estados alternativos de lagos rasos. Tal processo limnológico foi claramente espelhado nas tendências de eutrofização paleolimnológica e mudanças isotópicas da matéria orgânica sedimentar. A deposição de microplásticos foi detectada como proxy para a intensificação da urbanização especialmente durante a construção das instalações da Universidade.

Conclusões: O uso combinado de dados paleolimnológicos e limnológicos históricos representa uma abordagem poderosa para identificar os impactos naturais e culturais no lago e identificar estratégias de manejo baseadas em tais informações científicas.
 

Palavras-chave

diatomáceas, eutrofização, microplásticos, poluição, estado trófico

References

Adhurya, S., Das, S., & Ray, S., 2020. Guanotrophication by waterbirds in freshwater lakes: a review on ecosystem perspective. In: Roy, P.K., Cao, X., Li, X.Z., Das, P., & Deo, S., eds. Mathematical analysis and applications in modeling. Singapore: Springer, 253-269, Springer Proceedings in Mathematics & Statistics, vol. 302. http://dx.doi.org/10.1007/978-981-15-0422-8_22.

Agostini, V.O., Macedo, A.J., & Muxagata, E., 2018. O papel do biofilme bacteriano no acoplamento bento-pelágico, durante o processo de bioincrustação. Rev. Liberato 19(31), 23-41. http://dx.doi.org/10.31514/rliberato.2018v19n31.p23.

Agostini, V.O., Macedo, A.J., Muxagata, E., Silva, M.V., & Pinho, G.L.L., 2020. Non-toxic antifouling potential of Caatinga plant extracts: effective inhibition of marine initial biofouling. Hydrobiologia 847(1), 45-60. http://dx.doi.org/10.1007/s10750-019-04071-6.

Albertoni, E., Palma-Silva, C., Trindade, C.R.T., & Furlanetto, L.M., 2014. Field evidence of the influence of aquatic macrophytes on water quality in a shallow eutrophic lake over a 13-year period. Acta Limnol. Bras. 26(2), 176-185. http://dx.doi.org/10.1590/S2179-975X2014000200008.

Allen, S.E., Grimshaw, H.M., Parkinson, J.A., & Quarmby, C., 1974. Chemical analysis of ecological materials. Oxford: Blackwell Scientific.

Azcune, G., Pérez-Parada, A., & Fornaro, L., 2020. Dating through 210Pb-137Cs implementation in Uruguay in the recognition of climatic-environmental variability of the upper Holocene. Case study: Laguna de las Nutrias, Rocha, Uruguay. Innotec 20, 89-105. http://dx.doi.org/10.26461/20.04.

Barquete, V., Bugoni, L., & Vooren, C.M., 2008a. Diet of the Neotropic cormorant (Phalacrocorax brasilianus) in an estuarine environment. Mar. Biol. 153(3), 431-443. http://dx.doi.org/10.1007/s00227-007-0824-8.

Barquete, V., Vooren, C.M., & Bugoni, L., 2008b. Seasonal abundance of the Neotropic cormorant Phalacrocorax brasilianus at Lagoa dos Patos Estuary, southern Brazil. Hornero 23(1), 15-22.

Behling, H.A., 1995. A high resolution Holocene pollen record from Lago do Pires, SE Brazil: vegetation, climate and fire history. J. Paleolimnol. 14(3), 253-268. http://dx.doi.org/10.1007/BF00682427.

Bond, A.L., & Hobson, K.A., 2012. Reporting stable-isotope ratios in ecology: recommended terminology, guidelines and best practices. Waterbirds 35(2), 324-331. http://dx.doi.org/10.1675/063.035.0213.

Brinkhurst, M., Rose, P., Maurice, G., & Ackerman, J.D., 2011. Achieving campus sustainability: top-down, bottom-up, or neither? Int. J. Sustain. High. Educ. 12(4), 338-354. http://dx.doi.org/10.1108/14676371111168269.

Britto, V.O., & Bugoni, L., 2015. The contrasting feeding ecology of great egrets and roseate spoonbills in limnetic and estuarine colonies. Hydrobiologia 744(1), 187-210. http://dx.doi.org/10.1007/s10750-014-2076-1.

Browne, M.A., Crump, P., Niven, S.J., Teuten, E.L., Tonkin, A., Galloway, T., & Thompson, R.C., 2011. Accumulation of microplastic on shorelines worldwide: sources and sinks. Environ. Sci. Technol. 45(21), 9175-9179. PMid:21894925. http://dx.doi.org/10.1021/es201811s.

Bueno, C., Alves, F.L., Pinheiro, L.M., Perez, L., Agostini, V.O., Fernandes, E.H.L., Möller, O.O., Weschenfelder, J., Pinho, G.L.L., Wallner-Kersanach, M., Moura, R.R., Durán, J.M., Etchevers, I., Costa, L.D.F., Werlang, C.C., Bortolin, E., Machado, E., Figueira, R.C.L., Ferreira, P.A.L., Andrade, C., Fornaro, L., & García-Rodríguez, F., 2021. The effect of agricultural intensification and water-locking on the world’s largest coastal lagoonal system. Sci. Total Environ. 801, 149664. PMid:34418619. http://dx.doi.org/10.1016/j.scitotenv.2021.149664.

Bueno, C., Figueira, R., Ivanoff, M.D., Toldo Junior, E.E., Fornaro, L., & García-Rodríguez, F., 2019. A multi proxy assessment of long-term anthropogenic impacts in Patos Lagoon, southern Brazil. J. Sediment Environ. 4(3), 276-290. http://dx.doi.org/10.12957/jse.2019.44612.

Burdge, R.J., 1991. A brief history and major trends in the field of impact assessment. Impact Assess. 9(4), 93-104. http://dx.doi.org/10.1080/07349165.1991.9726070.

Castañeda, R.A., Avlijas, S., Simard, M.A., Ricciardi, A., & Smith, R., 2014. Microplastic pollution in St. Lawrence River sediments. Can. J. Fish. Aquat. Sci. 71(12), 1767-1771. http://dx.doi.org/10.1139/cjfas-2014-0281.

Corcoran, P.L., Norris, T., Ceccanese, T., Walzak, M.J., Helm, P.A., & Marvin, C.H., 2015. Hidden plastics of Lake Ontario, Canada and their potential preservation in the sediment record. Environ. Pollut. 204, 17-25. PMid:25898233. http://dx.doi.org/10.1016/j.envpol.2015.04.009.

Dillenburg, S.R., Barboza, E.B., Rosa, M.L.C.C., Caron, F., & Sawakuchi, A.O., 2017. The complex prograded Cassino barrier in southern Brazil: geological and morphological evolution and records of climatic, oceanographic and sea level changes in the last 7–6 ka. Mar. Geol. 390, 106-119. http://dx.doi.org/10.1016/j.margeo.2017.06.007.

Duarte, T.H.G., Almeida, T.S., Albertoni, E.F., & Palma-Silva, C., 2020. Role of the propagule bank in reestablishing submerged macrophytes after removal of free floating plants for recovery of a shallow lake in southern Brazil. Ecol. Austral 30(2), 239-250. http://dx.doi.org/10.25260/EA.20.30.2.0.1014.

Ekblom, A., 2012. Livelihood security, vulnerability and resilience: a historical analysis of Chibuene, southern Mozambique. Ambio 41(5), 479-489. PMid:22544636. http://dx.doi.org/10.1007/s13280-012-0286-1.

Faria, F.A., Albertoni, E.F., & Bugoni, L., 2018. Trophic niches and feeding relationships of shorebirds in southern Brazil. Aquat. Ecol. 52(4), 281-296. http://dx.doi.org/10.1007/s10452-018-9663-6.

Faria, F.A., Silva-Costa, A., Gianuca, D.M., & Bugoni, L., 2016. Cocoi heron (Ardea cocoi) connects estuarine, coastal, limnetic and terrestrial environments: an assessment based on conventional dietary and stable isotope analysis. Est. Coasts 39(4), 1271-1281. http://dx.doi.org/10.1007/s12237-016-0073-5.

Fassbender, H.W., 1973. Simultane P-Bestimmung in N-Kjeldahl-aufschlubb von Bodenproben. Phosphorsaure 30, 44-53.

Furlanetto, L.M., Marinho, C.C., Palma-Silva, C., Albertoni, E.F., Figueiredo-Barros, M.P., & Esteves, F.A., 2012. Methane levels in shallow subtropical lake sediments: dependence on the trophic status of the lake and allochthonous input. Limnologica 42(2), 151-155. http://dx.doi.org/10.1016/j.limno.2011.09.009.

Galgani, F., Hanke, G., & Maes, T., 2015. Global distribution, composition and abundance of marine litter. In: Bergmann, M., Gutow, L., & Klages, M., eds. Marine anthropogenic litter. New York: Springer. http://dx.doi.org/10.1007/978-3-319-16510-3_2.

García-Rodríguez , F., Mazzeo, N., Sprechmann, P., Metzeltin, D., Sosa, F., Treutler, H.C., Renom, M., Scharf, B., & Gaucher, C., 2002. Paleolimnological assessment of human impacts in Lake Blanca, SE Uruguay. J. Paleolimnol. 28(4), 457-468. http://dx.doi.org/10.1023/A:1021616811341.

Gascón Díez, E., Corella, J.P., Adatte, T., Thevenon, F., & Loizeau, J.L., 2017. High-resolution reconstruction of the 20th century history of trace metals, major elements, and organic matter in sediments in a contaminated area of Lake Geneva, Switzerland. Appl. Geochem. 78, 1-11. http://dx.doi.org/10.1016/j.apgeochem.2016.12.007.

Hammer, Ø., Harper, D.A.T., & Ryan, P.D., 2001. PAST: Paleontological Statistics Software package for education and data analysis. Palaeontol. Electron. (Online), 4, 1-9. Retrieved in 2022, May 14, from http://palaeo-electronica.org/2001_1/past/issue1_01.htm

Heiri, O., Lotter, A.F., & Lemcke, G., 2001. Loss on ignition as a method for estimating organic and carbonate content: reproducibility and comparability of the results. J. Paleolimnol. 25(1), 101-110. http://dx.doi.org/10.1023/A:1008119611481.

Hennemann, M.C., Simonassi, J.C., & Petrucio, M.M., 2015. Paleolimnological record as an indication of incipient eutrophication in an oligotrophic subtropical coastal lake in southern Brazil. Environ. Monit. Assess. 187(8), 513. PMid:26197956. http://dx.doi.org/10.1007/s10661-015-4726-9.

Hidalgo-Ruz, V., Gutow, L., Thompson, R.C., & Thiel, M., 2012. Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ. Sci. Technol. 46(6), 3060-3075. PMid:22321064. http://dx.doi.org/10.1021/es2031505.

Inda, H., García-Rodríguez, F., del Puerto, L., Stutz, S., Figueira, R.C.L., Ferreira, P.A.L., & Mazzeo, N., 2016. Discriminating between natural and human induced shifts in a shallow coastal lagoon: a multidisciplinary approach. Anthropocene 16, 1-15. http://dx.doi.org/10.1016/j.ancene.2016.09.003.

Isobe, A., Buenaventura, N.T., Chastain, S., Chavanich, S., Cózar, A., DeLorenzo, M.P., Hagmann, P.H., Hinata, H.N., Kozlovskii, N.A.L., Lusher, A.L., Martí, E.Y., Michida, Y.J., Mu, J., Ohno, M., Potter, G., Ross, P.S., Sagawa, N., Shim, W.J., Song, Y.K., Takada, H., Tokai, T., Torii, T., Uchida, K., Vassillenko, K., Viyakarn, V., & Zhang, W., 2019. An interlaboratory comparison exercise for the determination of microplastics in standard sample bottles. Mar. Pollut. Bull. 146, 831-837. PMid:31426225. http://dx.doi.org/10.1016/j.marpolbul.2019.07.033.

Kitchell, J.F., Schindler, D.E., Herwig, B.R., Post, D.M., Olson, M.H., & Oldham, M., 1999. Nutrient cycling at the landscape scale: the role of diel foraging migrations by geese at the Bosque del Apache National Wildlife Refuge, New Mexico. Limnol. Oceanogr. 44(3 Part 2), 828-836. http://dx.doi.org/10.4319/lo.1999.44.3_part_2.0828.

Lamb, A.L., Wilson, G.P., & Leng, M.J., 2006. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth Sci. Rev. 75(1-4), 29-57. http://dx.doi.org/10.1016/j.earscirev.2005.10.003.

Lobelle, D., & Cunliffe, M., 2011. Early microbial biofilm formation on marine plastic debris. Mar. Pollut. Bull. 62(1), 197-200. PMid:21093883. http://dx.doi.org/10.1016/j.marpolbul.2010.10.013.

Marinho, C.C., Palma-Silva, C., Albertoni, E.F., Trindade, C.R., & Esteves, F.A., 2009. Seasonal dynamics of methane in the water column of two subtropical lakes differing in trophic status. Braz. J. Biol. 69(2), 281-287. PMid:19675928. http://dx.doi.org/10.1590/S1519-69842009000200007.

Masura, J., Baker, J., Foster, G., & Arthur, C., 2015. Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments. Silver Spring: NOAA, Technical Memorandum, no. 31.

McGlue, M.M., Silva, A., Assine, M.L., Stevaux, J.C., & Pupim, F.N., 2015. Paleolimnology in the Pantanal: using lake sediments to track Quaternary environmental change in the world’s largest tropical wetland. In: Bergier, I., & Assine, M., eds. Dynamics of the Pantanal wetland in South America. Cham: Springer, 51-81, The Handbook of Environmental Chemistry, no. 37. http://dx.doi.org/10.1007/698_2015_350.

Meerhoff, M., & Jeppesen, E., 2009. Shallow lakes and ponds. In: Likens, G.E., ed. Encyclopedia of inland waters. San Diego: Elsevier-Academic Press. p. 645-655. http://dx.doi.org/10.1016/B978-012370626-3.00041-7.

Metzeltin, D., & García-Rodríguez, F., 2003. Las diatomeas uruguayas. Montevideo: Ediciones DIRAC, Universidad de la República, Facultad de Ciencias.

Metzeltin, D., Lange-Bertalot, H., & García-Rodríguez, F., 2005. Diatoms of Uruguay: taxonomy, biogeography, diversity. In: Lange-Bertalot, H., ed. Iconographia diatomologica. Koenigstein: Koeltz Scientific Books, vol. 15.

Palma-Silva, C., Albertoni, E.F., Trindade, C.R., & Oliveira, S.S., 2008. Nymphoides indica (L.) O. Kuntze (Menyanthaceae) em um pequeno lago raso subtropical (Rio Grande, RS). Iheringia Ser. Bot. (Online), 63(2), 249-256. Retrieved in 2022, May 14, from https://isb.emnuvens.com.br/iheringia/article/view/147

Palma-Silva, C., Marinho, C.C., Albertoni, E.F., Giacomini, I.B., Figueiredo Barros, M.P., Furlanetto, L.M., Trindade, C.R.T., & Esteves, F.A., 2013. Methane emissions in two small shallow Neotropical lakes: the role of temperature and trophic level. Atmos. Environ. 81, 373-379. http://dx.doi.org/10.1016/j.atmosenv.2013.09.029.

Patterson, E.W., 2016. Stocks and sources of carbon buried in the salt marshes and seagrass beds of Patos Lagoon, southern Brazil [Honours Theses]. Maine: Department of Geology, Bates College.

Pereira, S.A., Trindade, C.R., Albertoni, E.F., & Palma-Silva, C., 2012a. Aquatic macrophytes in six subtropical shallow lakes, Rio Grande, Rio Grande do Sul, Brazil. Check List 8(2), 187-191. http://dx.doi.org/10.15560/8.2.187.

Pereira, S.A., Trindade, C.R., Albertoni, E.F., & Palma-Silva, C., 2012b. Aquatic macrophytes as indicators of water quality in subtropical shallow lakes, southern Brazil. Acta Limnol. Bras. 24(1), 52-63. http://dx.doi.org/10.1590/S2179-975X2012005000026.

Pinheiro, L.M., Monteiro, R.C.P., Ivar-do-Sul, J.A., & Costa, M.F., 2019. Do beachrocks affect microplastic deposition on the strandline of sandy beaches? Mar. Pollut. Bull. 141, 569-572. PMid:30955769. http://dx.doi.org/10.1016/j.marpolbul.2019.03.010.

Quintana, G.C.R., & Mirlean, N., 2019. Record of Hg pollution around outset of colonization in southern Brazil. Environ. Monit. Assess. 191(4), 256. PMid:30923917. http://dx.doi.org/10.1007/s10661-019-7404-5.

Roos, N., Heinicke, X., Guenther, E., & Guenther, T.W., 2020. The role of environmental management performance in higher education institutions. Sustainability 12(2), 655. http://dx.doi.org/10.3390/su12020655.

Rosa, M.L.C.C., Barboza, E.G., Abreu, V.S., Tomazelli, L.J., & Dillenburg, S.R., 2017. High-frequency sequences in the Quaternary of Pelotas Basin (coastal plain): a record of degradational stacking as a function of longer-term base-level fall. Braz. J. Geol. 47(2), 183-207. http://dx.doi.org/10.1590/2317-4889201720160138.

Savage, C., 2005. Tracing the influence of sewage nitrogen in a coastal ecosystem using stable nitrogen isotopes. Ambio 34(2), 145-150. PMid:15865312. http://dx.doi.org/10.1579/0044-7447-34.2.145.

Schauser, I., & Chorus, I., 2007. Assessment of internal and external lake restoration measures for two Berlin lakes. Lake Reserv. Manage. 23(4), 366-376. http://dx.doi.org/10.1080/07438140709354024.

Scheffer, M., 1998. Ecology of shallow lakes (1st ed.). London: Chapman & Hall.

Scheffer, M., & van Nes, E.H., 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584(1), 455-466. http://dx.doi.org/10.1007/s10750-007-0616-7.

Silva, J.S., Albertoni, E.F., & Palma-Silva, C., 2015. Temporal variation of phytophilous Chironomidae over a 11-year period in a shallow Neotropical lake in southern Brazil. Hydrobiologia 742(1), 129-140. http://dx.doi.org/10.1007/s10750-014-1972-8.

Smol, J.P., 2008. Pollution of lakes and rivers: a paleoenvironmental perspective (2nd ed.). Oxford: Blackwell Publishing.

Smol, J.P., & Stoermer, E.F., 2010. The diatoms: applications for the environmental and earth sciences (2nd ed.). London: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511763175.

Smucker, N.J., Kuhn, A., Cruz-Quinones, C.J., Serbst, J.R., & Lake, J.L., 2018. Stable isotopes of algae and macroinvertebrates in streams respond to watershed urbanization, inform management goals, and indicate food web relationships. Ecol. Indic. 90, 295-304. PMid:29805317. http://dx.doi.org/10.1016/j.ecolind.2018.03.024.

Trindade, C.R.T., Furlanetto, L.M., & Palma-Silva, C., 2009. Nycthemeral cycles and seasonal variation of limnological factors of a subtropical shallow lake (Rio Grande, RS-Brazil). Acta Limnol. Bras. 21(1), 35-44.

Trumpp, C., Endrikat, J., Zopf, C., & Guenther, E., 2015. Definition, conceptualization, and measurement of corporate environmental performance: a critical examination of a multidimensional construct. J. Bus. Ethics 126(2), 185-204. http://dx.doi.org/10.1007/s10551-013-1931-8.

Turner, S., Horton, A.A., Rose, N.L., & Hall, C., 2019. A temporal sediment record of microplastics in an urban lake, London, UK. J. Paleolimnol. 61(4), 449-462. http://dx.doi.org/10.1007/s10933-019-00071-7.

Universidade Federal do Rio Grande – FURG, 2022. História [online]. Retrieved in 2022, May 14, from https://www.furg.br/a-furg/historia

van Cauwenberghe, L., van Devriese, L., Galgani, F., Robbens, J., & Janssen, C.R., 2015. Microplastics in sediments: a review of techniques, occurrence and effects. Mar. Environ. Res. 111, 5-17. PMid:26095706. http://dx.doi.org/10.1016/j.marenvres.2015.06.007.

Velez, M., Conde, D., Lozoya, J., Rusak, J., García-Rodríguez, F., Seitz, C., Harmon, T., Perillo, G., Escobar, J., & Vilardy, S., 2018. Paleoenvironmental reconstructions improve ecosystem services risk assessment: case studies from two coastal lagoons in South America. Water 10(10), 1350. http://dx.doi.org/10.3390/w10101350.

Villwock, J.A., Tomazelli, L.J., Loss, E.L., Dehnhardt, E.A., Horn-Filho, N.O., Bachi, F.A., & Denhardt, B.A., 1986. Geology of the Rio Grande do Sul Coastal Province. In: Rabassa, J., ed. Quaternary of South America and Antarctic Peninsula. Boca Raton: CRC Press, 79-97.

Wang, R., Dearing, J., Langdon, P., Zhang, E., Yang, X., Dakos, V., & Scheffer, M., 2012. Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature 492(7429), 419-422. PMid:23160492. http://dx.doi.org/10.1038/nature11655.

Woodall, L.C., Sanchez-Vidal, A., Canals, M., Paterson, G.L., Coppock, R., Sleight, V., Calafat, A., Rogers, A.D., Narayanaswamy, B.E., & Thompson, R.C., 2014. The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 1(4), 140317. PMid:26064573. http://dx.doi.org/10.1098/rsos.140317.

Zalasiewicz, J., Waters, C.N., Ivar-do-Sul, J.A., Corcoran, P.L., Barnosky, A.D., Cearreta, A., Edgeworth, M., Galuszka, J., Jeandel, C., Leinfelder, R., McNeill, J.R., Steffen, W., Summerhayes, C., Wagreich, M., Williams, M., Wolfe, A.P., & Yonan, Y., 2016. The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene. Anthropocene 13, 4-17. http://dx.doi.org/10.1016/j.ancene.2016.01.002.

Zettler, E.R., Mincer, T.J., & Amaral-Zettler, L.A., 2013. Life in the Plastisphere: microbial communities on plastic marine debris. Environ. Sci. Technol. 47(13), 7137-7146. PMid:23745679. http://dx.doi.org/10.1021/es401288x.
 


Submitted date:
05/14/2022

Accepted date:
10/28/2022

Publication date:
11/25/2022

63811005a953952a97017122 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections