Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X3321
Acta Limnologica Brasiliensia
Original Article

Effects of formaldehyde preservation time on the length-weight relationship of the ubiquitous neotropical cladoceran Ceriodaphnia silvestrii

Efeito do tempo de preservação por formaldeído na relação peso-comprimento do ubíquo cladócero neotropical Ceriodaphnia silvestrii

Rafael Lacerda Macêdo; Lorena Pinheiro-Silva; Adriana Lamanna Puga; Gabriel Klippel; Betina Kozlowsky-Suzuki; Odete Rocha; Christina Wyss Castelo Branco

Downloads: 0
Views: 925

Abstract

Abstract: : Aim: In this study, the effect of preservation time on total body length and dry weight of adult specimens of the neotropical cladoceran Ceriodaphnia silvestrii preserved with 4% formalin solution were examined.

Methods: The relationship between these variables was examined under increasing gradual time effects (i.e. 7, 30, and 60 days) after preservation using linear models and analysis of variance.

Results: Total body length did not statistically differ between fresh and preserved cladocerans at any preservation time, whereas dry weight was drastically reduced with increasing preservation time, with 15, 47 and 57% weight losses. Length-weight relationships were significantly and positively related in all treatments, though higher values of slope were found for fresh and 7 days samples.

Conclusions: We highlight that, for Ceriodaphnia silvestrii, the use of the formalin solution as a preservation fixative is not adequate when the major interest is biomass estimation. Also, we recommend that dry weight estimations from preserved samples should be done as soon as possible. Finally, considering the preservation losses and intra-specific composition of organisms, the application of correction factors is advised since preserved samples are important in the evaluation of long-term changes of biological communities.

Keywords

body length, Daphnidae, dry weight, fresh weight, secondary productivity

Resumo

Resumo: : Objetivo: Neste estudo, examinamos o efeito do tempo de preservação no comprimento total do corpo e no peso seco de espécimes adultos do cladócero neotropical Ceriodaphnia silvestrii fixados com solução de formalina a 4%.

Métodos: A relação entre essas variáveis foi examinada sob efeito crescente do tempo (7, 30 e 60 dias) após a preservação usando modelos lineares e análise de variância.

Resultados: O comprimento corporal total não diferiu estatisticamente entre os cladóceros não-preservados e preservados, enquanto o peso seco foi reduzido com o aumento do tempo de preservação, resultando 15, 47 e 57% de perda de peso, respectivamente. As relações peso-comprimento foram significativamente positivas em todos os tratamentos, embora valores mais elevados tenham sido encontrados em amostras frescas e de 7 dias.

Conclusões: Destacamos que, para Ceriodaphnia silvestrii, o uso da solução de formalina como método de preservação não é adequado quando o principal interesse é a estimativa de biomassa. Recomendamos que as estimativas de peso seco de amostras preservadas sejam feitas o mais rápido possível. Por fim, considerando as perdas atribuídas à preservação e às variações intraespecíficas da biomassa dos organismos, recomenda-se a aplicação de fatores de correção uma vez que amostras preservadas são importantes na avaliação de mudanças de longo prazo nas comunidades biológicas.
 

Palavras-chave

tamanho corporal, Daphnidae, peso seco, peso fresco, produção secundária

References

ARCIFA, M.S. Zooplankton composition of ten reservoirs in Southern Brazil. Hydrobiologia, 1984, 113(1), 137-145. http://dx.doi.org/10.1007/BF00026600.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS – ABNT. NBR 13373: Ecotoxicologia aquática - Toxicidade crônica: Métodos de ensaio com Ceriodaphnia spp (Crustáceo, Cladocera). Rio de Janeiro: ABNT, 2005.

BLETTLER, M.C.M. and BONECKER, C.C. Avaliação da biomassa de microcrustáceos em ambientes aquáticos continentais. Interciencia, 2006, 31, 591-597.

BONECKER, C.C., AZEVEDO, F. and SIMÕES, N.R. Zooplankton body-size structure and biomass in tropical floodplain lakes: relationship with planktivorous fishes. Acta Limnologica Brasiliensia, 2011, 23(3), 217-228. http://dx.doi.org/10.1590/S2179-975X2012005000005.

BONECKER, C.C., NAGAE, M.Y., BLETLLER, M.C.M., VELHO, L.F.M. and LANSAC-TÔHA, F.A. Zooplankton biomass in tropical reservoirs in southern Brazil. Hydrobiologia, 2007, 579(1), 115-123. http://dx.doi.org/10.1007/s10750-006-0391-x.

BOTTRELL, H.H., DUNCAN, A., GLIWICZ, Z.M., GRYGIEREK, E., HERZIG, A., HILLBRICHT-ILKOWSKA, A., KURASAWA, H., LARSSON, P. and WEGLENSKA, T. A Review of some problems in zooplankton production studies. Norwegian Journal of Zoology, 1976, 24(24), 419-456.

BRASIL, L.S., LUIZA-ANDRADE, A., KISAKA, T.B., ILHA, P. and SOUSA, F.D.R. Cladocera distribution along an environmental gradient on the Cerrado-Amazon ecotone: a preliminary study. Acta Limnologica Brasiliensia, 2019, 31, e29. http://dx.doi.org/10.1590/s2179-975x2919.

BRITO, S.L., MAIA-BARBOSA, P.M. and PINTO-COELHO, R.M. Length-weight relationships and biomass of the main microcrustacean species of two large tropical reservoirs in Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, 2013, 73(3), 593-604. http://dx.doi.org/10.1590/S1519-69842013000300017. PMid:24212700.

BROWN, J.H., GILLOOLY, J.F., ALLEN, A.P., SAVAGE, V.M. and WEST, G.B. Toward a metabolic theory of ecology. Ecology, 2004, 85(7), 1771-1789. http://dx.doi.org/10.1890/03-9000.

BURGIS, M.J. Revised estimates for the biomass and production of zooplankton in Lake George, Uganda. Freshwater Biology, 1974, 4(6), 535-541. http://dx.doi.org/10.1111/j.1365-2427.1974.tb00113.x.

CASTILHO-NOLL, M.S. and ARCIFA, M.S. Length-weight relationships for zooplanktonic species of a tropical Brazilian lake: Lake Monte Alegre. Acta Limnologica Brasiliensia, 2007, 9, 93-100.

CORGOSINHO, P.H.C. and PINTO-COELHO, R.M. Zooplankton biomass, abundance and allometric patterns along an eutrophic gradient at Furnas Reservoir (Minas Gerais, Brazil). Acta Limnologica Brasiliensia, 2006, 18(2), 213-224.

COSTA, A.B., SILVA, M.B., FRAGA, R.E., ROCHA, A.A., NISHIYAMA, P.B., ANJOS, M.S., BUCHAIM, J.J.S. and ROCHA, M.A. Evaluation of an alternative technique for preserving crustaceans in dry conditions with joint mobility: a proposal for didactic purposes. Acta Scientiarum. Biological Sciences, 2021, 43(1), e53450. http://dx.doi.org/10.4025/actascibiolsci.v43i1.53450.

COSTA-PAIVA, E.M., PAIVA, P.C. and KLAUTAU, M. Anaesthetization and fixation effects on the morphology of Sabellid polychaetes (Annelida: Polychaeta: Sabellidae). Journal of the Marine Biological Association of the United Kingdom, 2007, 87(5), 1127-1132. http://dx.doi.org/10.1017/S002531540705223X.

CULVER, D.A., BOUCHERLE, M.M., BEAN, D.J. and FLETCHER, J.W. Biomass of freshwater crustacean zooplankton from length-weight regressions. Canadian Journal of Fisheries and Aquatic Sciences, 1985, 42(8), 1380-1390. http://dx.doi.org/10.1139/f85-173.

DADAY, E.V. Mikroskopische süsswasserthiere aus patagonien, gesammelt von Dr. Filippo Silvestri. Természetrajzi Füzetek, 1902, 25, 201-310.

DONALD, G.L. and PATERSON, C.G. Effect of preservation on wet weight biomass of chironomid larvae. Hydrobiologia, 1977, 53(1), 75-80. http://dx.doi.org/10.1007/BF00021235.

DUMONT, H.J., VAN DE VELDE, I. and DUMONT, S. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia, 1975, 19(1), 75-97. http://dx.doi.org/10.1007/BF00377592. PMid:28308833.

DURBIN, E.G. and DURBIN, A.G. Length and weight relationships of Acartia clausi from Narragansett Bay, R.I. Limnology and Oceanography, 1978, 23(5), 958-969. http://dx.doi.org/10.4319/lo.1978.23.5.0958.

EDMONDSON, W.T. and WINBERG, G.G. A manual on methods for the assessment of secondary productivity in fresh waters. Oxford: IBP Handbook, 1971, 358 p.

EDMONDSON, W.T. Secondary production. Verhandlungen des Internationalen Verein Limnologie., 1974, 20, 229-272.

ELMOOR-LOUREIRO, L.M.A. Brazilian cladoceran studies: where do we stand? Nauplius, 2000, 8(1), 117-131.

ELMOOR-LOUREIRO, L.M.A. Identificação de Cladóceros Límnicos do Brasil. Brasília: Editora Universa UCB, 1997

FORRÓ, L., KOROVCHINSKY, N.M., KOTOV, A.A. and PETRUSEK, A. Global diversity of cladocerans (Cladocera; Crustacea) in freshwater. Hydrobiologia, 2008, 595(1), 177-184. http://dx.doi.org/10.1007/s10750-007-9013-5.

GENG, H. Der futterwert der nat urlichen fischnahrung. Zeit. fur Fischerei, 1925, 23, 137-165.

GHIDINI, A.R. and SANTOS-SILVA, E.N. Biomassa de quatro espécies de Cladocera (Crustacea: Branchiopoda) e sua variação nictemeral no Lago Tupé, Amazonas, Brasil. In: E.N. SANTOS-SILVA, ed. Biotupé: Meio Físico, Diversidade Biológica e Sociocultural do Baixo Rio Negro, Amazônia Central Manaus. Manaus: UEA Edições, 2009, pp. 53-62.

GIGUÈRE, L.A., ST-PIERRE, J.F., BERNIER, B., VEZINA, A. and RONDEAU, J.G. Can we estimate the true weight of zooplankton samples after chemical preservation? Canadian Journal of Fisheries and Aquatic Sciences, 1989, 46(3), 522-527. http://dx.doi.org/10.1139/f89-070.

GUARINO, A.W.S., BRANCO, C.W.C., DINIZ, G.P. and ROCHA, R. Limnological characteristics of an old tropical reservoir (Ribeirão das Lajes Reservoir, RJ, Brazil). Water, 2005, 17(2), 129-141.

GUEVARA, G., LOZANO, P., REINOSO, G. and VILLA, F. Horizontal and seasonal patterns of tropical zooplankton from the eutrophic Prado Reservoir (Colombia). Limnologica, 2009, 39(2), 128-139. http://dx.doi.org/10.1016/j.limno.2008.03.001.

HANAZATO, T. Response of a zooplankton community to insecticide application in experimental ponds: a review and the implications of the effects of chemicals on the structure and functioning of freshwater communities. Environmental Pollution, 1998, 101(3), 361-373. http://dx.doi.org/10.1016/S0269-7491(98)00053-0.

HARRIS, R.P., WIEBE, P.H., LOPEZ, J., SKJOLDAL, H.R. and HUNTLEY. M. Ices Zooplankton Methodology Manual. London: Academic Press, 2000.

HUFFMAN, W.W., DAM, H., MASON, R. and BAUMANN, Z. Formalin-preserved zooplankton are not reliable for historical reconstructions of methylmercury bioaccumulation. The Science of the Total Environment, 2020, 738, 139803. http://dx.doi.org/10.1016/j.scitotenv.2020.139803. PMid:32563789.

IRVINE, K. and WAYA, R. Spatial and temporal patterns of zooplankton standing biomass and production in Lake Malawi. In: O.V. LINDQVIST, H. MÖLSÄ, K. SALONEN and J. SARVALA, ed. From Limnology to Fisheries: Lake Tanganyika and other large lakes. Dordrecht: Springer, 1999, pp. 191-205. http://dx.doi.org/10.1007/978-94-017-1622-2_18

JEPPESEN, E., NÕGES, P., DAVIDSON, T.A., HABERMAN, J., NÕGES, T., BLANK, K., LAURIDSEN, T.L., SØNDERGAARD, M., SAYER, C., LAUGASTE, R., JOHANSSON, L.S., BJERRING, R. and AMSINCK, S.L. Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia, 2011, 676(1), 279-297. http://dx.doi.org/10.1007/s10750-011-0831-0.

KARUTHAPANDI, M. and RAO, D.V. Cladoceran diversity, distribution and ecological significance. In: A.K. CHAKRAVARTHY and S. SRIDHARA, ed. Arthropod diversity and conservation in the tropics and sub-tropics. Singapore: Springer, 2016, pp. 183-196. http://dx.doi.org/10.1007/978-981-10-1518-2_11.

KLIPPEL, G., MACÊDO, R.L. and BRANCO, C.W.C. Comparison of different trophic state indices applied to tropical reservoirs. Lakes & Reservoirs: Science, Policy and Management for Sustainable Use, 2020, 25(2), 214-229. http://dx.doi.org/10.1111/lre.12320.

KUREK, J., KOROSI, J.B., JEZIORSKI, A. and SMOL, J.P. Establishing reliable minimum count sizes for cladoceran subfossils sampled from lake sediments. Journal of Paleolimnology, 2010, 44(2), 603-612. http://dx.doi.org/10.1007/s10933-010-9440-6.

LABARBERA, M. Analyzing body size as a factor in ecology and evolution. Annual Review of Ecology and Systematics, 1989, 20(1), 97-117. http://dx.doi.org/10.1146/annurev.es.20.110189.000525.

LEPPÄNEN, J.J. An overview of Cladoceran studies conducted in mine water impacted lakes. International Aquatic Research., 2018, 10(3), 207-221. http://dx.doi.org/10.1007/s40071-018-0204-7.

LINCOLN, R.J. and SHEALS, G.J. Invertebrate animals: collection and preservation. London: Cambridge University Press, 1979. http://dx.doi.org/10.5962/bhl.title.138449.

MACÊDO, R.L., LOPES, V.G., KOZLOWSKY-SUZUKI, B. and BRANCO, C.W.C. Zooplankton community attributes in an oligo-mesotrophic reservoir: a comparative study of two sampling strategies. Anais da Academia Brasileira de Ciências, 2019, 91(1), e20170807. PMid:30569965.

MACKAY, R.J. and KALFF, J. Seasonal variation in standing crop and species diversity of insect communities in a small Quebec stream. Ecology, 1969, 50(1), 101-109. http://dx.doi.org/10.2307/1934667.

MAIA-BARBOSA, P.M. and BOZELLI, R.L. Length-weight relationships for five cladoceran species in an Amazonian lake. Brazilian Archives of Biology and Technology, 2005, 48(2), 303-308. http://dx.doi.org/10.1590/S1516-89132005000200018.

MANGAS, E. and GARCIA, H. Seasonal fluctuations of zooplankton biomass in Lake Xolotlán (Managua). Hydrological Bulletin, 1991, 25(2), 157-162. http://dx.doi.org/10.1007/BF02291248.

MANSANO, A.S., SOUZA, J.P., CANCINO-BERNARDI, J., VENTURINI, F.P., MARANGONI, V.S. and ZUCOLOTTO, V. Toxicity of copper oxide nanoparticles to Neotropical species Ceriodaphnia silvestrii and Hyphessobrycon eques. Environmental Pollution, 2018, 243(Pt A), 723-733. http://dx.doi.org/10.1016/j.envpol.2018.09.020. PMid:30228063.

MASLIN, J.L. and PATTEE, E. La production du peuplement benthique d’une petite rivière: son évaluation par la méthode de Hynes, Coleman et Hamilton. Archiv für Hydrobiologie, 1981, 92, 321-345.

MATSUMURA-TUNDISI, T., RIETZLER, A. and TUNDISI, J.G. Biomass (dry weight and carbon content) of plankton crustacea from Broa reservoir (São Carlos, SP. – Brazil) and its fluctuation across one year. Hydrobiologia, 1989, 179(3), 229-236. http://dx.doi.org/10.1007/BF00006636.

MCCAULEY, E. The estimation of abundance and biomass of zooplankton in samples. In: J.A. DOWNING and F. RIGLER, ed. Manual of methods for the assessment of secondary productivity in fresh waters. Oxford: Blackwell Scientific Publications, 1984, pp. 228-265.

MELÃO, M.G.G. and ROCHA, O. Productivity of zooplankton in a tropical oligotrophic reservoir over short periods of time. SIL Proceedings, 2000, 27, 2879-2887.

MICHALOUDI, E. Dry weights of the Zooplankton of Lake Mikri Prespa (Macedonia, Greece). Belgian Journal of Zoology, 2005, 135(2), 223-227.

MILIOU, H. and MORAITOU-APOSTOLOPOULOU, M. Combined effects of temperature and salinity on the population dynamics of Tisbe holothuriae Humes (Copepoda: Harpacticoida). Archiv für Hydrobiologie, 1991, 121, 431-448.

NANDINI, S., SARMA, S.S.S. and RAMÍREZ-GARCÍA, P. Length-weight relationships of three cladoceran species from a tropical reservoir in Mexico. Journal of Freshwater Ecology, 2005, 20(2), 405-406. http://dx.doi.org/10.1080/02705060.2005.9664981.

OMORI, M. Some factors affecting dry weight, organic weight and concentration of carbon and nitrogen in freshly prepared and in preserved zooplankton. Internationale Revue der Gesamten Hydrobiologie, 1978, 63(2), 261-269. http://dx.doi.org/10.1002/iroh.19780630211.

PACE, L.M. and ORCUTT JUNIOR, J.D.J.R. The relative importance of protozoans, rotifers, and crustaceans in a freshwater zooplankton community. Limnology and Oceanography, 1981, 26(5), 822-830. http://dx.doi.org/10.4319/lo.1981.26.5.0822.

PAKHOMOV, E.A. Correction of zooplankton and benthos biomass underestimations from formaldehyde-preserved samples. Archiv für Fischerei- und Meeresforschung, 2003, 50, 141-148.

PAKRASHI, S., DALAI, S., HUMAYUN, A., CHAKRAVARTY, S., CHANDRASEKARAN, N. and MUKHERJEE, A. Ceriodaphnia dubia as a potential bio-indicator for assessing acute aluminum oxide nanoparticle toxicity in fresh water environment. PLoS One, 2013, 8(9), e74003. http://dx.doi.org/10.1371/journal.pone.0074003. PMid:24040143.

PEDERSON, G.L., WELCH, E.B. and LITT, A.H. Plankton secondary productivity and biomass: their relation to lake trophic state. Hydrobiologia, 1976, 50(2), 129-144. http://dx.doi.org/10.1007/BF00019816.

PLATT, T., BRAWN, V.W. and IRWIN, B. Calorific and carbon equivalents of zooplankton biomass. Journal of the Fisheries Research Board of Canada, 1969, 26(9), 2345-2349. http://dx.doi.org/10.1139/f69-228.

R CORE TEAM. R: A language and environment for statistical computing [online]. Vienna: R Foundation for Statistical Computing, 2020 [viewed 23 Sep. 2020]. Available from: https://www.R-project.org/.

SAINT-JEAN, L. and BONOU, S.J. Growth, production, and demography of Moina micrura in brackish tropical fishponds (Layo, Ivory Coast). Hydrobiologia, 1994, 272(1-3), 125-146. http://dx.doi.org/10.1007/BF00006517.

SANTOS, R.M., NEGREIROS, N.F., SILVA, L.C., ROCHA, O. and SANTOS-WISNIEWSKI, M.J. Biomass and production of Cladocera in Furnas Reservoir, Minas Gerais, Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, 2010, 70, 879-887, 3 Supplement. http://dx.doi.org/10.1590/S1519-69842010000400019. PMid:21085793.

SENDACZ, S., CALEFFI, S. and SANTOS-SOARES, J. Zooplankton biomass of reservoirs in different trophic conditions in the State of São Paulo, Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, 2006, 66(1B), 337-350. http://dx.doi.org/10.1590/S1519-69842006000200016. PMid:16710526.

SILVA, L.H.S., HUSZAR, V.L.M., MARINHO, M.M., RANGEL, L.M., BRASIL, J., DOMINGUES, C.D., BRANCO, C.C. and ROLAND, F. Drivers of phytoplankton, bacterioplankton, and zooplankton carbon biomass in tropical hydroelectric reservoirs. Limnologica, 2014, 48, 1-10. http://dx.doi.org/10.1016/j.limno.2014.04.004.

SOARES, M.C.S., MARINHO, M.M., HUSZAR, V.L.M., BRANCO, C.W.C. and AZEVEDO, S.M.F.O. The effects of water retention time and watershed features on the limnology of two tropical reservoirs in Brazil. Lakes and Reservoirs: Research and Management, 2008, 13(4), 257-269. http://dx.doi.org/10.1111/j.1440-1770.2008.00379.x.

SOUZA, G.B.G. and BARROS, F. Cost/benefit and the effect of sample preservation procedures on quantitative patterns in benthic ecology. Helgoland Marine Research, 2017, 71(1), 21. http://dx.doi.org/10.1186/s10152-017-0501-3.

STEFANELLI-SILVA, G., ZUANON, J. and PIRES, T. Revisiting Amazonian water types: experimental evidence highlights the importance of forest stream hydrochemistry in shaping adaptation in a fish species. Hydrobiologia, 2019, 830(1), 151-160. http://dx.doi.org/10.1007/s10750-018-3860-0.

TESSIER, A.J., HENRY, L.L., GOULDEN, C.E. and DURAND, M.W. Starvation in Daphnia: energy reserves and reproductive allocation. Limnology and Oceanography, 1983, 28(4), 667-676. http://dx.doi.org/10.4319/lo.1983.28.4.0667.

TIMM, T. and MARTIN, P.J. Clitellata: Oligochaeta. In: J. THORP and D.C. ROGERS, ed. Ecology and general biology: Thorp and Covich’s freshwater invertebrates. Cambridge: Academic Press, 2015, pp. 529-549. http://dx.doi.org/10.1016/B978-0-12-385026-3.00021-8.

WETZEL, M.A., LEUCHS, H. and KOOP, J.H.E. Preservation effects on wet weight, dry weight, and ash-free dry weight biomass estimates of four common estuarine macro-invertebrates: no difference between ethanol and formalin. Helgoland Marine Research, 2005, 59(3), 206-213. http://dx.doi.org/10.1007/s10152-005-0220-z.

WICKHAM, H. Ggplot2: elegant graphics for data analysis. New York: Springer-Verlag, 2016 [viewed 30 Apr. 2021]. Available from: https://ggplot2.tidyverse.org

WIEDERHOLM, T. and ERIKSSON, L. Effects of alcohol-preservation on the weight of some benthic invertebrates. Zoon, 1977, 5, 29-31.

WILLIAMS, R. and ROBINS, D.B. Effects of preservation on wet weight, dry weight, nitrogen and carbon contents of Calanus helgolandicus. Marine Biology, 1982, 71(3), 271-281. http://dx.doi.org/10.1007/BF00397044.

WINBERG, G.G. Methods for the estimation of production of aquatic animals. London: Academic Press, 1971.

WOODWARD, G., EBENMAN, B., EMMERSON, M., MONTOYA, J.M., OLESEN, J.M., VALIDO, A. and WARREN, P.H. Body size in ecological networks. Trends in Ecology & Evolution, 2005, 20(7), 402-409. http://dx.doi.org/10.1016/j.tree.2005.04.005. PMid:16701403.
 


Submitted date:
04/30/2021

Accepted date:
09/26/2021

Publication date:
04/28/2022

626a8afaa95395360d202515 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections