Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X3223
Acta Limnologica Brasiliensia
Original Article

Sedimentary sterol levels to track river contamination by sewage in one of the largest Amazonian cities (Belém - Pará), northern Brazil

Níveis de esteróis sedimentares para rastrear a contaminação por esgoto de um rio em uma das maiores cidades da Amazônia (Belém - Pará), norte do Brasil

Jorge Hernando Agudelo Morales; Camila Carneiro dos Santos Rodrigues; Mariana da Silva Messias; Flaviana Cardoso Damasceno; Angela Esmeralda Cely Torres; José Augusto Martins Corrêa

Downloads: 0
Views: 819

Abstract

Aim: The Aurá River, located in the second-largest Brazilian Amazon city, has been experiencing the effects of human activities from riverine communities and the Aurá landfill for many years. In this study, we assess the occurrence, sources, and distribution of selected sterol markers in surface sediments of Aurá River in order to evaluate the organic matter inputs in this water body.

Methods: Gas chromatography-tandem mass spectrometry (GC/MS/MS) was used to identify and quantify sterol compounds. Pearson correlation, principal component analysis (PCA) and sterol ratios were used to assess sewage pollution.

Results: The sterol markers identified, the related diagnostic ratios, and statistical analysis showed that Aurá River sediments presented two primary sterol sources: anthropogenic (domestic sewage and inputs from Aurá landfill) and biogenic sources (terrestrial higher plants). Station 1 (the closest site to the Aurá landfill) presented the highest level of coprostanol (219.8 ng g-1). This maximum level of coprostanol and the sterol ratios indicate moderate human fecal contamination in the upper reach of the Aurá River. Coprostanol levels were similar to the lower to midrange concentrations reported for surficial river sediments around the world.

Conclusions: This study demonstrated that domestic sewage pollution from riverine communities and organic matter inputs from Aurá landfill might be assumed as potential threats to environmental and human health.

Keywords

surface sediments, organic matter, domestic riverine sewage, ecological and human health risk, amazonic aquatic systems

Resumo

Objetivo: O rio Aurá, no nordeste da Amazônia brasileira, vem sofrendo influência antrópica de comunidades ribeirinhas e do aterro sanitário Aurá há muitos anos. Neste trabalho, avaliamos a ocorrência, fontes e distribuição de seis marcadores de esteróis em sedimentos superficiais do Rio Aurá para avaliar aportes orgânicos neste corpo d'água.

Métodos: A cromatografia gasosa-acoplada a espectrometria de massas (GC/MS) foi empregada para determinar os esteróis. A análise de correlação de Pearson, análise de componentes principais (PCA) e razões de esteróis foram utilizadas para avaliar a poluição por esgoto.

Resultados: Os analitos de interesse identificados e as razões diagnósticas indicaram que os sedimentos do rio estudado apresentam compostos orgânicos provenientes de fontes tanto antropogênicas (esgotos domésticos e MO do aterro sanitário) quanto biogênicas autóctones (plantas superiores terrestres). A Análise de Componentes Principais (PCA) corrobora com esse resultado e possibilitou o agrupamento dos pontos de amostragem segundo essas fontes. A estação 1 (ponto mais próximo do aterro Aurá) apresentou o maior nível de contaminação observado e o coprostanol foi detectado em maior concentração 219,8 ng g-1 nesse local, o que indica contaminação fecal humana moderada.

Conclusões: Este trabalho demonstrou que a poluição por esgoto doméstico e insumos de MO do aterro do Aurá podem ser ameaças potenciais ao ecossistema e à saúde humana da região estudada.
 

Palavras-chave

sedimentos superficiais, matéria orgânica, esgoto doméstico em rios, risco ecológico e para a saúde humana, sistemas aquáticos amazônicos

References

Ali, M., & Mudge, S., 2005. Lipid geochemistry in a sediment core from Conwy Estuary, North Wales. Sains Malays. 34(2), 23-33.

Amano, K.O.A., Danso-Boateng, E., Adom, E., Kwame Nkansah, D., Amoamah, E.S., & Appiah-Danquah, E., 2021. Effect of waste landfill site on surface and ground water drinking quality. Water Environ. J. 35(2), 715-729. http://dx.doi.org/10.1111/wej.12664.

Araújo, M.P., Hamacher, C., Farias, C. de O., & Soares, M.L.G., 2021. Fecal sterols as sewage contamination indicators in Brazilian mangroves. Mar. Pollut. Bull. 165, 112149. PMid:33610111. http://dx.doi.org/10.1016/j.marpolbul.2021.112149.

Bacha, D.C.S., Santos, S., Mendes, R.A., Rocha, C.C.S., Corrêa, J.A., Cruz, J.C.R., Abrunhosa, F.A., & Oliva, P.A.C., 2021. Evaluation of the contamination of the soil and water of an open dump in the Amazon Region, Brazil. Environ. Earth Sci. 80(3), 113. http://dx.doi.org/10.1007/s12665-021-09401-3.

Bataglion, G.A., Koolen, H.H.F., Weber, R.R., & Eberlin, M.N., 2016. Quantification of sterol and triterpenol biomarkers in sediments of the Cananéia-Iguape estuarine-lagoonal system (Brazil) by UHPLC-MS/MS. Int. J. Anal. Chem. 2016, 8361375. PMid:27087811.

Bujagić, I., Grujić, S., Jauković, Z., & Laušević, M., 2016. Sterol ratios as a tool for sewage pollution assessment of river sediments in Serbia. Environ. Pollut. 213, 76-83. PMid:26874877. http://dx.doi.org/10.1016/j.envpol.2015.12.036.

Bull, I.D., Lockheart, M.J., Elhmmali, M.M., Roberts, D.J., & Evershed, R.P., 2002. The origin of faeces by means of biomarker detection. Environ. Int. 27(8), 647-654. PMid:11934114. http://dx.doi.org/10.1016/S0160-4120(01)00124-6.

Cabral, A.C., Dauner, A.L.L., Xavier, F.C.B., Garcia, M.R.D., Wilhelm, M.M., dos Santos, V.C.G., Netto, S.A., & Martins, C.C., 2020. Tracking the sources of allochthonous organic matter along a subtropical fluvial-estuarine gradient using molecular proxies in view of land uses. Chemosphere 251, 126435. PMid:32169703. http://dx.doi.org/10.1016/j.chemosphere.2020.126435.

Cabral, A.C., Wilhelm, M.M., Figueira, R.C.L., & Martins, C.C., 2019. Tracking the historical sewage input in South American subtropical estuarine systems based on faecal sterols and bulk organic matter stable isotopes (δ 13 C and δ 15 N. Sci. Total Environ. 655, 855-864. PMid:30481712. http://dx.doi.org/10.1016/j.scitotenv.2018.11.150.

Carneiro, C., Santos, D., Da, L., Soares, S., Augusto, J., & Corrêa, M., 2016. Occurrence and sources of priority polycyclic aromatic hydrocarbons in sediment samples along the Aurá River (Northern Brazil. Geochim. Bras. 30(301), 26-32.

Carreira, R.S., Albergaria-Barbosa, A.C.R., Arguelho, M.L.P.M., & Garcia, C.A.B., 2015. Evidence of sewage input to inner shelf sediments in the NE coast of Brazil obtained by molecular markers distribution. Mar. Pollut. Bull. 90(1-2), 312-316. PMid:25467184. http://dx.doi.org/10.1016/j.marpolbul.2014.11.011.

Carreira, R.S., Ribeiro, P., Silva, C.E.M., & Farias, C.O., 2009. Hydrocarbons and sterols as indicators of source and fate of organic matter in sediments from Sepetiba Bay, Rio de Janeiro. Quim. Nova 32(7), 1805-1811. http://dx.doi.org/10.1590/S0100-40422009000700023.

Chalaux, N., Takada, H., & Bayona, J.M., 1995. Molecular markers in Tokyo bay sediments: sources and distribution. Mar. Environ. Res. 40(1), 77-92. http://dx.doi.org/10.1016/0141-1136(95)90001-8.

Costa, R.L., & Carreira, R.S., 2005. A comparison between faecal sterols and coliform counts in the investigation of sewage contamination in sediments. Braz. J. Oceanogr. 53(4)

Dsikowitzky, L., Schäfer, L., Dwiyitno, Ariyani, F., Irianto, H.E., & Schwarzbauer, J., 2017. Evidence of massive river pollution in the tropical megacity Jakarta as indicated by faecal steroid occurrence and the seasonal flushing out into the coastal ecosystem. Environ. Chem. Lett. 15(4), 703-708. http://dx.doi.org/10.1007/s10311-017-0641-3.

Duarte, R.M., & Val, A.L., 2020. Water-related problem with special reference to global climate change in Brazil. In: Singh, P., Milishna, Y., Tian, K., Gusain, D., & Bassin, J.P., eds. Water conservation and wastewater treatment in BRICS Nations: technologies, challenges, strategies and policies. Amsterdam: Elsevier, 3-21. http://dx.doi.org/10.1016/B978-0-12-818339-7.00001-1.

Edokpayi, J.N., Odiyo, J.O., & Durowoju, O.S., 2017. Impact of wastewater on surface water quality in developing countries: a case study of South Africa. Water Qual. 10(66561), 10-57. http://dx.doi.org/10.5772/66561.

Fattore, E., Benfenati, E., Marelli, R., Cools, E., & Fanelli, R., 1996. Sterols in sediment samples from Venice Lagoon, Italy. Chemosphere. 33(12), 2383-2393. http://dx.doi.org/10.1016/S0045-6535(96)00340-2.

Frena, M., Bataglion, G.A., Tonietto, A.E., Eberlin, M.N., Alexandre, M.R., & Madureira, L.A.S., 2016. Assessment of anthropogenic contamination with sterol markers in surface sediments of a tropical estuary (Itajaí-Açu), Brazil. Sci. Total Environ. 544, 432-438. PMid:26657388. http://dx.doi.org/10.1016/j.scitotenv.2015.11.137.

Frena, M., Santos, A.P.S., Santos, E., Silva, R.P., Souza, M.R.R., Madureira, L.A.S., & Alexandre, M.R., 2016b. Distribution and sources of sterol biomarkers in sediments collected from a tropical estuary in Northeast Brazil. Environ. Sci. Pollut. Res. Int. 23(22), 23291-23299. PMid:27696200. http://dx.doi.org/10.1007/s11356-016-7744-4.

Frena, M., Santos, A.P.S., Souza, M.R.R., Carvalho, S.S., Madureira, L.A.S., & Alexandre, M.R., 2019. Sterol biomarkers and fecal coliforms in a tropical estuary: seasonal distribution and sources. Mar. Pollut. Bull. 139, 111-116. PMid:30686407. http://dx.doi.org/10.1016/j.marpolbul.2018.12.007.

Froehner, S., Martins, R.F., & Errera, M.R., 2009. Assessment of fecal sterols in Barigui River sediments in Curitiba, Brazil. Environ. Monit. Assess. 157(1-4), 591-600. PMid:18841487. http://dx.doi.org/10.1007/s10661-008-0559-0.

Garcia Junior, M.D.N., Damasceno, M.T.S., Vilela, D.S., & Souto, R.N.P., 2022. The Brazilian Legal Amazon Odonatofauna: a perspective of diversity and knowledge gaps. EntomoBrasilis 15, e977. http://dx.doi.org/10.12741/ebrasilis.v15.e977.

Grimalt, J.O., Fernandez, P., Bayona, J.M., & Albaiges, J., 1990. Assessment of fecal sterols and ketones as indicators of urban sewage inputs to coastal waters. Environ. Sci. Technol. 24(3), 357-363. http://dx.doi.org/10.1021/es00073a011.

Häder, D., Banaszak, A.T., Villafañe, V.E., Narvarte, M.A., González, R.A., & Helbling, E.W., 2020. Anthropogenic pollution of aquatic ecosystems: emerging problems with global implications. Sci. Total Environ. 713, 136586. PMid:31955090. http://dx.doi.org/10.1016/j.scitotenv.2020.136586.

Hadlich, H.L., Venturini, N., Martins, C.C., Hatje, V., Tinelli, P., Gomes, L.E.O., & Bernardino, A.F., 2018. Multiple biogeochemical indicators of environmental quality in tropical estuaries reveal contrasting conservation opportunities. Ecol. Indic. 95, 21-31. http://dx.doi.org/10.1016/j.ecolind.2018.07.027.

He, D., Zhang, K., Tang, J., Cui, X., & Sun, Y., 2018. Using fecal sterols to assess dynamics of sewage input in sediments along a human-impacted river-estuary system in eastern China. Sci. Total Environ. 636, 787-797. PMid:29727845. http://dx.doi.org/10.1016/j.scitotenv.2018.04.314.

Instituto Brasileiro de Geografia e Estatística - IBGE, 2020. Legal Amazon. Retrieved in 2022, May 25, from https://www.ibge.gov.br/en/geosciences/environmental-information/vegetation/17927-legalamazon.html?=&t=acesso-ao-produto

Leeming, R., Ball, A., Ashbolt, N., & Nichols, P., 1996. Using faecal sterols from humans and animals to distinguish faecal pollution in receiving waters. Water Res. 30(12), 2893-2900. http://dx.doi.org/10.1016/S0043-1354(96)00011-5.

Leeming, R., Bate, N., Hewlett, R., & Nichols, P., 1998. Discriminating faecal pollution: a case study of stormwater entering Port Phillip Bay, Australia. Water Sci. Technol. 38(10), 15-22. http://dx.doi.org/10.2166/wst.1998.0369.

Machado, K.S., Froehner, S., Sánez, J., Figueira, R.C.L., & Ferreira, P.A.L., 2014. Assessment of historical fecal contamination in Curitiba, Brazil, in the last 400 years using fecal sterols. Sci. Total Environ. 493, 1065-1072. PMid:25016471. http://dx.doi.org/10.1016/j.scitotenv.2014.06.104.

Martins, C.C., Cabral, A.C., Barbosa-Cintra, S.C.T., Dauner, A.L.L., & Souza, F.M., 2014. An integrated evaluation of molecular marker indices and linear alkylbenzenes (LABs) to measure sewage input in a subtropical estuary (Babitonga Bay, Brazil. Environ. Pollut. 188, 71-80. PMid:24556228. http://dx.doi.org/10.1016/j.envpol.2014.01.022.

Martins, C.D.C., Fillmann, G., & Montone, R.C., 2007. Natural and anthropogenic sterols inputs in surface sediments of Patos Lagoon, Brazil. J. Braz. Chem. Soc. 18(1), 106-115. http://dx.doi.org/10.1590/S0103-50532007000100012.

Martins, C.D.C., Gomes, F.B.A., Ferreira, J.A., & Montone, R.C., 2008. Marcadores orgânicos de contaminação por esgotos sanitários em sedimentos superficiais da Baía de Santos, São Paulo. Quim. Nova 31(5), 1008-1014. http://dx.doi.org/10.1590/S0100-40422008000500012.

Melo, M.G., Anjos, C.O., Nunes, A.P., Farias, M.A.S., Val, A.L., Chaar, J.S., & Bataglion, G.A., 2023. Correlation between caffeine and coprostanol in contrasting Amazonian water bodies. Chemosphere 326, 138365. PMid:36906004. http://dx.doi.org/10.1016/j.chemosphere.2023.138365.

Melo, M.G., Silva, B.A., Costa, G.S., Silva Neto, J.C.A., Soares, P.K., Val, A.L., Chaar, J.S., Koolen, H.H.F., & Bataglion, G.A., 2019. Sewage contamination of Amazon streams crossing Manaus (Brazil) by sterol biomarkers. Environ. Pollut. 244, 818-826. PMid:30390455. http://dx.doi.org/10.1016/j.envpol.2018.10.055.

Muniz, P., Pires-Vanin, A.M.S., Martins, C.C., Montone, R.C., & Bícego, M.C., 2006. Trace metals and organic compounds in the benthic environment of a subtropical embayment (Ubatuba Bay, Brazil. Mar. Pollut. Bull. 52(9), 1098-1105. PMid:16824551. http://dx.doi.org/10.1016/j.marpolbul.2006.05.014.

Murtaugh, J.J., & Bunch, R., 1967. Sterols as a measure of fecal pollution. J. Water Pollut. Control Fed. 39(3), 404-409. PMid:6021836.

Nishimura, M., & Koyama, T., 1976. Stenols and stanols in lake sediments and diatoms. Chem. Geol. 17(C), 229-239. http://dx.doi.org/10.1016/0009-2541(76)90037-1.

Oliveira, A.F.B., Gomes, B.R.S., França, R.S., Moraes, A.S., Bataglion, G.A., & Santos, J.M., 2022. Assessment of urban contamination by sewage in sediments from Ipojuca river in Caruaru City, Pernambuco, Brazil. J. Braz. Chem. Soc. 33(2), 163-172. http://dx.doi.org/10.21577/0103-5053.20210133.

Oliveira, R.S., Kiyatake, D.M., Harada, M.L., & Ribeiro, K.T., 2013. Sanitary quality of the public groundwater supply for the municipality of Belém in Northern Brazil. Cad. Saude Colet. 21(4), 377-383. http://dx.doi.org/10.1590/S1414-462X2013000400004.

Ranney, R.W., 1969. Organic carbon-organic matter conversion equation for Pennsylvania surface soils. Soil Sci. Soc. Am 33(5), 809-811. http://dx.doi.org/10.2136/sssaj1969.03615995003300050049x.

Reeves, A.D., & Patton, D., 2005. Faecal sterols as indicators of sewage contamination in estuarine sediments of the Tay Estuary, Scotland: an extended baseline survey. Hydrol. Earth Syst. Sci. 9(1-2), 81-94. http://dx.doi.org/10.5194/hess-9-81-2005.

Reichwaldt, E.S., Ho, W.Y., Zhou, W., & Ghadouani, A., 2017. Sterols indicate water quality and wastewater treatment efficiency. Water Res. 108, 401-411. PMid:27839832. http://dx.doi.org/10.1016/j.watres.2016.11.029.

Ribani, M., Bottoli, C.B.G., Collins, C.H., Jardim, I.C.S.F., & Melo, L.F.C., 2004. Validação em métodos cromatográficos e eletroforéticos. Quim Nova. 27(5), 771-780. http://dx.doi.org/10.1590/S0100-40422004000500017.

Rodrigues, C.C. dos S., Santos, E., Ramos, B.S., Damasceno, F.C., & Correa, J.A.M., 2018. PAH baselines for Amazonic surficial sediments: a case of study in Guajará Bay and Guamá River (Northern Brazil). Bull. Environ. Contam. Toxicol. 100(6), 786-791. PMid:29721595. http://dx.doi.org/10.1007/s00128-018-2343-3.

Siqueira, G., Aprile, F., Darwich, A., Santos, V., & Menezes, B., 2016. Environmental diagnostic of the Aurá River Basin (Pará, Brazil): water pollution by uncontrolled landfill waste. Arch. Curr. Res. Int. 5(2), 1-13. http://dx.doi.org/10.9734/ACRI/2016/28249.

Siqueira, G.W., & Aprile, F., 2013. Avaliação de risco ambiental por contaminação metálica e material orgânico em sedimentos da bacia do Rio Aurá, Região Metropolitana de Belém-PA. Acta Amazon. 43(1), 51-62. http://dx.doi.org/10.1590/S0044-59672013000100007.

Sojinu, S.O., Sonibare, O.O., Ekundayo, O., & Zeng, E.Y., 2012. Assessing anthropogenic contamination in surface sediments of Niger Delta, Nigeria with fecal sterols and n-alkanes as indicators. Sci. Total Environ. 441, 89-96. PMid:23137973. http://dx.doi.org/10.1016/j.scitotenv.2012.09.015.

Souza, M.R.R., Santos, E., Suzarte, J.S., Carmo, L.O., Soares, L.S., Santos, L.G.G.V., Vilela Júnior, A.R., Krause, L.C., Frena, M., Damasceno, F.C., Huang, Y., & Alexandre, M.R., 2020. The impact of anthropogenic activity at the tropical Sergipe-Poxim estuarine system, Northeast Brazil: fecal indicators. Mar. Pollut. Bull. 154, 111067. PMid:32319900. http://dx.doi.org/10.1016/j.marpolbul.2020.111067.

Suguio, T., 1973. Introdução a sedimentologia. São Paulo: EDUSP.

Takada, H., Farrington, J.W., Bothner, M.H., Johnson, C.G., & Tripp, B.W., 1994. Transport of sludge-derived organic pollutants to deep-sea sediments at deep water dump site 106. Environ. Sci. Technol. 28(6), 1062-1072. PMid:22176231. http://dx.doi.org/10.1021/es00055a015.

Thomes, M.W., Vaezzadeh, V., Zakaria, M.P., & Bong, C.W., 2019. Use of sterols and linear alkylbenzenes as molecular markers of sewage pollution in Southeast Asia. Environ. Sci. Pollut. Res. Int. 26(31), 31555-31580. PMid:31440968. http://dx.doi.org/10.1007/s11356-019-05936-y.

Volkman, J.K. 2006. Lipid Markers for Marine Organic Matter. In J.K. Volkman, ed. Marine organic matter: biomarkers, isotopes and DNA. New York: Springer, 27-70. http://dx.doi.org/10.1007/698_2_002.

Volkman, J.K., 1986. A review of sterol markers for marine and terrigenous organic matter. Org. Geochem. 9(2), 83-99. http://dx.doi.org/10.1016/0146-6380(86)90089-6.

Volkman, J.K., 2005. Sterols and other triterpenoids: source specificity and evolution of biosynthetic pathways. Org. Geochem. 36(2), 139-159. http://dx.doi.org/10.1016/j.orggeochem.2004.06.013.

Wen, X., Bai, Y., Zhang, S., Ding, A., Zheng, L., & Li, J., 2020. Distributions and sources of sedimentary sterols as well as their indications of sewage contamination in the Guanting Reservoir, Beijing. J. Chem. 2020, 1-11. http://dx.doi.org/10.1155/2020/3050687.

Writer, J.H., Leenheer, J.A., Barber, L.B., Amy, G.L., & Chapra, S.C., 1995. Sewage contamination in the upper Mississippi River as measured by the fecal sterol, Coprostanol. Water Res. 29(6), 1427-1436. http://dx.doi.org/10.1016/0043-1354(94)00304-P.

Yao, X., Lu, J., Liu, Z., Ran, D., & Huang, Y., 2013. Distribution of sterols and the sources of pollution in surface sediments of Ulungur lake, Xinjiang. Water Sci. Technol. 67(10), 2342-2349. PMid:23676408. http://dx.doi.org/10.2166/wst.2013.107.

Zhang, C., Wang, Y., & Qi, S., 2008. Identification and significance of sterols in MSW landfill leachate. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 874(1-2), 1-6. PMid:18818129. http://dx.doi.org/10.1016/j.jchromb.2008.08.014.
 


Submitted date:
04/13/2023

Accepted date:
07/11/2023

Publication date:
08/30/2023

64ef95dea9539553b07ca184 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections