Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X3124
Acta Limnologica Brasiliensia
Original Article

The use of biological indices and morphology of diatoms for the environmental assessment of streams

O uso de índices biológicos e da morfologia de diatomáceas na avaliação ambiental de riachos

Ana Paula Tavares Costa; André Ribeiro Martins; Giselle Xavier Perazzo; Fabiana Schneck

Downloads: 0
Views: 47

Abstract

Aim: Our aim was to verify whether morphological diatom metrics performed as effectively as diversity metrics and diatom indices for ecological assessments in streams in the Brazilian Pampa biome.

Methods: We sampled physical and chemical variables along with benthic diatom communities from 15 Pampean streams. These streams are inserted along a gradient of agricultural land use. We calculated species richness, and three common diatom indices used for stream ecological assessment. In addition, we quantified the percentage of deformed valves in the communities and analyzed the shape of Achnanthidium minutissimum s.l. through geometric morphometrics. All biological responses were evaluated in relation to physical and chemical variables summarized through Principal Component Analysis (PCA).

Results: We found that the Pampean Diatom Index was positively related to turbidity and velocity and negatively related to total nitrogen and pH. On the other hand, the percentage of deformed diatom valves and the different shapes of A. minutissimum s.l. were associated with total phosphorus, depth and total dissolved solids.

Conclusions: Our study is one of the first to investigate morphological biomarkers in diatoms for ecological assessments in the Brazilian Pampa biome. We found that morphological diatom metrics were more effective in assessing the effects of the land use gradient is streams compared to taxonomic metrics. However, we highlight the importance of replicating this study with a larger sample size and across lotic environments influenced by diverse impacts. This will improve the understanding of the utility of different metrics for ecological assessments and biomonitoring in streams.

Keywords

diatom index; teratology; Achnanthidium minutissimum; geometric morphometrics; Pampa biome

Resumo

Objetivo: Nosso objetivo foi verificar se as métricas morfológicas de diatomáceas teriam um desempenho tão eficaz quanto as métricas de diversidade e os índices de diatomáceas para avaliações ecológicas em riachos no bioma Pampa brasileiro.

Métodos: Amostramos variáveis ​​físicas e químicas, juntamente com comunidades de diatomáceas bentônicas de 15 riachos do bioma Pampa. Esses riachos estão inseridos ao longo de um gradiente de uso agrícola. Calculamos a riqueza de espécies e três índices de diatomáceas comumente utilizados na avaliação ecológica dos riachos. Além disso, quantificamos a porcentagem de valvas deformadas nas comunidades e analisamos a forma de Achnanthidium minutissimum s.l. por meio de morfometria geométrica. Todas as respostas biológicas foram avaliadas em relação às variáveis ​​físicas e químicas, sumarizadas em uma Análise de Componentes Principais (PCA).

Resultados: Verificamos que o Índice de Diatomáceas Pampeanas apresentou correlação positiva com a turbidez e a velocidade, e negativa com o nitrogênio total e o pH. Por outro lado, a porcentagem de valvas de diatomáceas deformadas e diferentes formas de A. minutissimum s.l. apresentaram associação com o fósforo total, profundidade e sólidos totais dissolvidos.

Conclusões: Nosso estudo é um dos primeiros a investigar biomarcadores morfológicos em diatomáceas para avaliações ecológicas no bioma Pampa brasileiro. Constatamos que as métricas morfológicas para diatomáceas foram mais eficazes na avaliação dos efeitos do gradiente de uso da terra em riachos em comparação com as métricas taxonômicas. No entanto, destacamos a importância de replicar este estudo com uma amostra maior e em ambientes lóticos influenciados por impactos diversos. Isso aumentará a compreensão sobre a utilidade de diferentes métricas para avaliações ecológicas e biomonitoramento em riachos.

Palavras-chave

índice de diatomáceas; teratologia; Achnanthidium minutissimum; morfometria geométrica; bioma Pampa

Referencias

Adams, D.C. & Otárola-Castillo, E., 2013. Geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol., 4(4), 393-399. http://doi.org/10.1111/2041-210X.12035.

Allan, J.D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst., 35(1), 257-284. http://doi.org/10.1146/annurev.ecolsys.35.120202.110122.

Allan, J.D. & Flecker, A.S., 1993. Biodiversity conservation in running waters. Bioscience 43(1), 32-43. http://doi.org/10.2307/1312104.

Allen, S., Grimsha, W.N., Parkinson, J.A. & Quarmby, C., 1974. Chemical analysis of ecological materials. London: Blackwell Scientific Publishers.

Alvares, C.A., Stape, J.L., Sentelhas, P.C., Gonçalves, J.D.M. & Sparovek, G., 2013. Köppen’s climate classification map for Brazil. Meteorol. Z., 22(6), 711-728. http://doi.org/10.1127/0941-2948/2013/0507.

Antonielli, M., Laube, P., Doering, M., Scherelis, V., Wu, S., Hurni, L., Heitzler, M. & Weber, C., 2024. Identifying anthropogenic legacy in freshwater ecosystems. Water 1729. https://doi.org/10.1002/wat2.1729.

Baumgarten, M.G.Z., Rocha, J.M.B. & Niencheski, L.F.H., 1996. Manual de análises em oceanografia química. Rio Grande: Editora da FURG.

Bennett, J.R., Ruhland, K. & Smol, J.P., 2017. No magic number: determining cost-effective sample size and enumeration effort for diatom-based environmental assessment analyses. Can. J. Fish. Aquat. Sci., 74(2), 208-215. http://doi.org/10.1139/cjfas-2016-0066.

Besse-Lototskaya, A., Verdonschot, P.F.M., Coste, M. & van de Vijver, B.V., 2011. Evaluation of European diatom trophic índices. Ecol. Indic. 11(2), 456-467. http://doi.org/10.1016/j.ecolind.2010.06.017.

Biggs, B.J.F., 1996. Patters in benthic algal in streams. In: Stevenson, J., Bothwell, J., & Lowe, R.L., eds. Algal Ecology: freshwater benthic ecosystems. London: Academic Press, 31–56. http://doi.org/10.1016/B978-012668450-6/50031-X.

Blanco, S., Cejudo-Figueiras, C., Tudesque, L., Bécares, E., Hoffmann, L. & Ector, L., 2012. Are diatom diversity indices reliable monitoring metrics? Hydrobiologia 695(1), 199-206. http://doi.org/10.1007/s10750-012-1113-1.

Castro, E., Siqueira, T., Melo, A.S., Bini, L.M., Landeiro, V.L. & Schneck, F., 2023. Reduced enumeration effort, but not coarse taxonomic resolution, is sufficient to represent beta diversity patterns of stream benthic diatoms. Limnologica 102, 126107. http://doi.org/10.1016/j.limno.2023.126107.

Cemagref, A., 1983. Etude des methodes biologiques d’appréciation quantitative de la qualité des eaux. Lyon: Rapport Division Qualité des Eaux Lyon Agence de l’Eua Rhône-Méditerranéan-Corse, 218 p.

Cerisier, A., Vedrenne, J., Lavoie, I. & Morin, S., 2019. Assessing the severity of diatom deformities using geometric morphometry. Bot. Lett., 166(1), 32-40. http://doi.org/10.1080/23818107.2018.1474800.

Chase, J.M. & Leibold, M.A., 2002. Spatial scale dictates the productivity-biodiversity relationship. Nature 416(6879), 427-430. PMid:11919631. http://doi.org/10.1038/416427a.

Costa, A.P.T. & Schneck, F., 2022. Diatom as indicators in running waters: trends of studies on biological assessment and monitoring. Environ. Monit. Assess., 194(10), 695. PMid:35986195. http://doi.org/10.1007/s10661-022-10383-3.

Costa, A.P.T. & Schneck, F., 2024. The use of genus-level determinations and biovolume classes as surrogates to indicate environmental drivers of stream diatom communities in the Brazilian Pampa. An. Acad. Bras. Cienc., 96(3), e20230634. PMid:38985029. http://doi.org/10.1590/0001-3765202420230634.

Costa, A.P.T., Castro, E., Silva, C.F.M. & Schneck, F., 2022. Eutrophication changes community composition and drives nestedness of benthic diatoms from coastal streams. Acta Limnol. Bras., 34, e14. http://doi.org/10.1590/s2179-975x0122.

Dudgeon, D., 2019. Multiple threats imperil freshwater biodiversity in the Anthropocene. Curr. Biol., 29(19), R960-R967. PMid:31593677. http://doi.org/10.1016/j.cub.2019.08.002.

Dziengo-Czaja, M., Koss, J. & Matuszak, A., 2008. Teratological forms of diatoms (Bacillariophyceae) as indicators of water pollution in the western part of Puck Bay (southern Baltic Sea). Oceanol. Hydrobiol. Stud., 37(2), 119-132. http://doi.org/10.2478/v10009-007-0042-1.

Falasco, E., Bona, F., Badino, G., Hoffmann, L. & Ector, L., 2009. Diatom teratological forms and environmental alterations: a review. Hydrobiologia 623(1), 1-35. http://doi.org/10.1007/s10750-008-9687-3.

Friberg, N., Bonada, N., Bradley, D.C., Dunbar, M.J., Edwards, F.K., Grey, J., Hayes, R.B., Hildrew, A.G., Lamouroux, N., Trimmer, M. & Woodward, G., 2011. Biomonitoring of human impacts in freshwater ecosystems: the good, the bad and the ugly. Adv. Ecol. Res., 44, 1-68. http://doi.org/10.1016/B978-0-12-374794-5.00001-8.

Gabel, K.W., Wehr, J.D. & Truhn, K.M., 2012. Assessment of the effectiveness of best management practices for streams draining agricultural landscapes using diatoms and macroinvertebrates. Hydrobiologia 680(1), 247-264. http://doi.org/10.1007/s10750-011-0933-8.

Gelis, M.M.N., Sathicq, M.B., Jupke, J. & Cochero, J., 2022. DiaThor: R packge for computing diatom metrics and biotic indices. Ecol. Modell., 465, 109859. http://doi.org/10.1016/j.ecolmodel.2021.109859.

Gokce, D. & Gulbenk, H., 2019. Assessment of water quality and epilithic algae community structure of Tohma River, Turkey. Fresenius Environ. Bull., 28(2A), 1203-1217. https://doi.org/10.13140/RG.2.2.33469.18408.

Gómez, N. & Licursi, M., 2001. The Pampean Diatom Index (IDP) for assessment of rivers and streams in Argentina. Aquat. Ecol., 35(2), 173-181. http://doi.org/10.1023/A:1011415209445.

He, F., Zarfl, C., Bremerich, V., David, J.N.W., Hogan, Z., Kalinkat, G., Tockner, K. & Jähnig, S.C., 2019. The global decline of freshwater megafauna. Glob. Chang. Biol., 25(11), 3883-3892. PMid:31393076. http://doi.org/10.1111/gcb.14753.

Kelly, M.G. & Whitton, B.A., 1995. The Trophic Diatom Index: a new index for monitoring eutrophication rivers. J. Appl. Phycol., 7(4), 433-444. http://doi.org/10.1007/BF00003802.

Kelly, M.G., 1998. Use of the Trophic Diatom Index to monitor eutrophication in rivers. Water Res., 32(1), 236-242. http://doi.org/10.1016/S0043-1354(97)00157-7.

Landeiro, V.L., Bini, L.M., Costa, F.R.C., Franklin, E., Nogueira, A., Souza, J.L.P., Moraes, J. & Magnusson, W.E., 2012. How far can we go in simplifying biomonitoring assessments? An integrated analysis of taxonomic surrogacy, taxonomic sufficiency and numerical resolution in a megadiverse region. Ecol. Indic., 23, 366-373. http://doi.org/10.1016/j.ecolind.2012.04.023.

Lavoie, I., Hamilton, P.B., Morin, S., Tiam, S.K., Kahlert, M., Gonçalves, S., Falasco, E., Fortin, C., Gontero, B., Heudre, D., Kojadinovic-Sirinelli, M., Manoylov, K., Pandey, L.K. & Taylor, J.C., 2017. Diatom teratologies as biomarkers of contamination: are all deformities ecologically meaningfull? Ecol. Indic., 82, 539-550. http://doi.org/10.1016/j.ecolind.2017.06.048.

Maciel, M.G.R., Taniwaki, R.H., Saito, V.S., Moretti, M.S., Miranda, P.S.C.T., Morilla, M., Penha, L.O., Sartori, M., Almeida, G.S.S., Piggot, J. & Schneck, F., 2025. Multiple stressors in tropical streams: Nitrate, sediment and flow interactions mediate benthic biomass and diatom community responses in experimental streams. Inland Waters 15(1), 2475683. https://doi.org/10.1080/20442041.2025.2475683.

Moreira-Filho, H. & Valente-Moreira, I.M., 1981. Avaliação taxonômica e ecológica das diatomáceas (Bacillariophyceae) epífitas em algas pluricelulares obtidas nos litorais nos estados do Paraná, Santa Catarina e São Paulo. Bol. Mus. Mun., 47, 1-17.

Newton, A., Brito, A.C., Icely, J.D., Derolez, V., Clara, I., Angus, S., Schernewski, G., Inácio, M., Lillebø, A.I., Sousa, A.I., Béjaoui, B., Solidoro, C., Tosic, M., Canedo-Arguelles, M., Yamamuro, M., Reizopoulou, S., Tseng, H.C., Canu, D., Roselli, L., Maanan, M., Cristina, S., Ruiz-Fernández, A.C., Lima, R.F., Kjerfve, B., Rubio-Cisneros, N., Perez-Ruzafa, A., Marcos, C., Pastres, R., Pranovi, F., Snoussi, M., Turpie, J., Tuchkovenko, Y., Dyack, B., Brookes, J., Povilanskas, R. & Khokhlov, V., 2018. Assessing, quantifying, and valuing the ecosystem services of coastal lagoons. J. Nat. Conserv. 44, 50-65. http://doi.org/10.1016/j.jnc.2018.02.009.

Olenici, A., Blanco, S., Borrego-Ramos, M., Momeu, M. & Baciu, C., 2017. Exploring the effects of acid mine drainage on diatom teratology using geometric morphometric. Ecotoxicology 26(8), 1018-1030. Pmid:28699076. http://doi.org/10.1007/s10646-017-1830-3.

Oliveira, T.E., Freitas, D.S., Gianezini, M., Ruviaro, C.F., Zago, D., Mércio, T.Z., Dias, E.A., Lampert, V.N. & Barcellos, J.O.J., 2017. Agricultural land use change in the Brazilian Pampa Biome: the reduction of natural grasslands. Land Use Policy 63, 394-400. http://doi.org/10.1016/j.landusepol.2017.02.010.

Oliveira Junior, S.S., Ortega, J.C.G., Ribas, L.G.S., Lopes, V.G. & Bini, L.M., 2020. Higher taxa are sufficient to represent biodiversity patterns. Ecol. Indic., 111, 105994. http://doi.org/10.1016/j.ecolind.2019.105994.

Overbeck, G.E., Müller, S.C., Fidelis, A., Pfadenhauer, J., Pillar, V.D., Blanco, C.C., Boldrini, I.I., Both, R. & Forneck, E.D., 2007. Brazil’s neglected biome: the southern Brazilian Campos. Perspect. Plant Ecol. Evol. Syst., 9(2), 101-116. http://doi.org/10.1016/j.ppees.2007.07.005.

Pandey, L.K., Kumar, D., Yadav, A., Rai, J. & Gaur, J.P., 2014. Morphological abnormalities in periphytic diatoms as a tool for biomonitoring of heavy metal pollution in a river. Ecol. Indic., 36, 272-279. http://doi.org/10.1016/j.ecolind.2013.08.002.

Pandey, L.K., Lavoie, I., Morin, S., Park, J., Lyu, J., Choi, S., Lee, H. & Han, T., 2018. River water quality assessment based on a multi-descriptor approach including chemistry, diatom assemblage structure, and non-taxonomical diatom metrics. Ecol. Indic., 84, 140-151. http://doi.org/10.1016/j.ecolind.2017.07.043.

Petsch, D.K., Blowes, S.A., Melo, A.S. & Chase, J.M., 2021. A synthesis of land use impacts on stream biodiversity across metrics and scales. Ecology 102(11), e03498. PMid:34314043. http://doi.org/10.1002/ecy.3498.

Pillsbury, R., Stevenson, R.J., Munn, M.D. & Waite, I., 2019. Relationships between diatom metrics based on species nutrient traits and agricultural land use. Environ. Monit. Assess., 191(4), 228. PMid:30888530. http://doi.org/10.1007/s10661-019-7357-8.

R Core Team, 2022. R: a language and environment for statistical computing [software]. Vienna: R Foundation for Statistical Computing.

Reid, A.J., Carlson, A.K., Creed, I.F., Eliason, E.J., Gell, P.A., Johnson, P.T.J., Kidd, K.A., MacCormack, T.J., Olden, J.D., Ormerod, S.J., Smol, J.P., Taylor, W.W., Tockner, K., Vermaire, J.C., Dudgeon, D. & Cooke, S.J., 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. Camb. Philos. Soc., 94(3), 849-873. PMid:30467930. http://doi.org/10.1111/brv.12480.

Rey, P.A., van Rensburg, L. & Vooslo, A., 2008. On the use of diatom-based biological monitoring Part 1: A comparison of the response of diversity and aut-ecological diatom índices to water quality variables in the Marico-Molopo River catchment. Water 34, 53-60.

Rohlf, F.J., 2013. tps Utility program SUNY at stony Brook [software]. Stony Brook, NY: Stony Brook University.

Rohlf, F.J., 2015. The tps series of software. Hystrix. It. J. Mamm., 26(1), 9-12. https://doi.org/10.4404/hystrix-26.1-11264.

Rohlf, F.J. & Slice, D., 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Zool., 39(1), 40-59. http://doi.org/10.2307/2992207.

Simonsen, R., 1974. The diatom plankton of the Indian Ocean Expedition of RV Meteor. Forsch. Ergeb., 19, 1-107.

Soininen, J., Paavola, R. & Muotka, T., 2004. Benthic diatom communities in boreal streams: community structure in relation to environmental and spatial gradients. Ecography 27(3), 330-342. http://doi.org/10.1111/j.0906-7590.2004.03749.x.

Stevenson, R.J., Pan, Y. & van Dam, H., 2010. Assessing environmental conditions in rivers and streams with diatoms. In: Smol, J., & Stoermer, E., eds. The diatoms: applications for the environmental and earth sciences. Cambridge: Cambridge University Press, 57-85. http://doi.org/10.1017/CBO9780511763175.005.

Stoermer, E.F. & Smol, J.P., 1999. The diatoms: applications for the environmental and earth sciences. Cambridge: Cambridge University Press. http://doi.org/10.1017/CBO9780511613005.

Torres-Franco, A.F., Alatrista-Góngora, G.R., Guzmán-Rodríguez, N.P., Calizaya-Anco, J.A., Mota, C.R. & Figueredo, C., 2019. Physicochemical and diatom trophic state indexes: a complementary approach for improving water sustainability in a high Andean urban stream. Ecohydrol. Hydrobiol., 19(4), 577-587. http://doi.org/10.1016/j.ecohyd.2019.01.007.

Valderrama, J.C., 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Mar. Chem., 10(2), 109-112. http://doi.org/10.1016/0304-4203(81)90027-X.

Venables, W.N. & Ripley, B.D., 2002. Modern applied statistics with S (statistics and computing). New York: Springer. http://doi.org/10.1007/978-0-387-21706-2.

Vilmi, A., Karjalainen, S.M., Landeiro, V.L. & Heino, J., 2015. Freshwater diatoms as environmental indicators: evaluating the effects of eutrophication using species morphology and biological indices. Environ. Monit. Assess., 187(5), 243. PMid:25864081. http://doi.org/10.1007/s10661-015-4485-7.

Wetzel, R.G., 1983. Periphyton of freshwater ecosystems: proceedings of the First International Workshop on Periphyton of Freshwater Ecosystems held in Växjö, Sweden, 14–17 September 1982. Dordrecht: Springer. http://doi.org/10.1007/978-94-009-7293-3.

Wickham, H., 2016. ggplot2: Elegant graphics for data analysis. Cham: Springer.
 


Submitted date:
12/04/2024

Accepted date:
22/07/2025

Publication date:
02/10/2025

68ded881a953957f89161256 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections