Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X3023
Acta Limnologica Brasiliensia
Original Article

Environmental variables as predictors of fish community composition in semiarid aquatic systems

Variáveis ambientais como preditoras da assembleia de peixes em sistemas aquáticos semiáridos

Elvio Sergio Figueredo Medeiros; Marcio Joaquim da Silva; Telton Pedro Anselmo Ramos; Robson Tamar Costa Ramos

Downloads: 1
Views: 886

Abstract

Aim: To understand the distribution of fish species and their use of habitat, a range of environmental variables were evaluated as predictors of fish assemblage composition and richness in tropical semiarid aquatic systems.

Methods: We surveyed the species composition of fish assemblages in semiarid aquatic systems and established their degree of association with the structure of the aquatic habitat. Sites consisted of stream reaches with surface water flow, isolated temporary pools, and man-made reservoirs. Fish sampling was conducted on four occasions during the wet (April and June 2006) and dry seasons (September and December 2006). The correlation between richness and abundance with the habitat structure was evaluated using stepwise multiple regression. Patterns of variation in fish assemblage composition across sites were evaluated using Nonmetric Multidimensional Scaling, and the Indicator Species Analysis was used to determine which species were significant indicators of sites. To establish multivariate correlations and test the hypothesis of local fish composition being associated with the environmental variables we used a Canonical Correspondence Analysis.

Results: Morphometric variables, stream reach width, stream length and elevation explained 75.6% of the variation in fish richness. Macrophyte cover and overhanging vegetation added to the predictive power of the model equation, where the final model explained 86.9% of the variation in fish richness. Canonical Correspondence Analysis showed a significant relationship between fish composition data and site morphology (altitude, bank slope and littoral depth). Among the water quality, habitat composition and substrate variables, temperature, sand, and gravel showed higher correlation with the CCA axes.

Conclusions: These results indicated that fish communities assume different structures and compositions across different habitat types following the environmental heterogeneity in dryland aquatic systems.

Keywords

intermittent streams, reservoirs, conservation, substrate composition

Resumo

Objetivo: Para entender a distribuição das espécies de peixes e seu uso do habitat, uma série de variáveis ambientais foi avaliada como preditoras da composição e riqueza de assembleias de peixes em sistemas aquáticos semiáridos tropicais.

Métodos: Nós avaliamos a composição de espécies de peixes em sistemas aquáticos semiáridos e estabelecemos seu grau de associação com a estrutura do habitat aquático. Os locais amostrados consistiram em trechos de riachos temporários com fluxo de água superficial, poças temporárias isoladas e reservatórios artificiais. A amostragem de peixes foi realizada em quatro ocasiões durante as estações úmida (abril e junho de 2006) e seca (setembro e dezembro de 2006). A correlação entre riqueza e abundância com a estrutura do habitat foi avaliada utilizando regressão múltipla. Os padrões de variação na composição da comunidade de peixes entre os locais foram avaliados utilizando Escalonamento Multidimensional Não-Métrico, e a Análise de Espécies Indicadoras foi utilizada para determinar quais espécies eram indicadoras significativas dos locais. Para estabelecer correlações multivariadas e testar a hipótese de que a composição local de peixes está associada às variáveis ambientais, utilizamos uma Análise de Correspondência Canônica.

Resultados: A regressão múltipla mostrou que as variáveis morfométricas, largura do trecho do riacho, comprimento do riacho e elevação explicaram 75,6% da variação na riqueza de peixes. A cobertura de macrófitas e a vegetação marginal adicionaram ao poder preditivo do modelo da equação, onde o modelo final explicou 86,9% da variação na riqueza de peixes. A Análise de Correspondência Canônica mostrou uma relação significativa entre os dados de composição de peixes e a morfologia dos locais amostrados (altitude, inclinação da margem e profundidade litorânea). Dentre as variáveis de qualidade da água, composição do habitat e substrato, a temperatura, areia e cascalho apresentaram maior correlação com os eixos da CCA.

Conclusões: Esses resultados indicaram que as comunidades de peixes assumiram diferentes estruturas e composições nos diferentes tipos de habitat de acordo com a heterogeneidade ambiental em sistemas aquáticos de regiões secas.

Palavras-chave

rios intermitentes, estrutura do habitat, conservação, composição do substrato

References

Adler, P.B., Hillerislambers, J., & Levine, J.M., 2007. A niche for neutrality. Ecol. Lett. 10(2), 95-104. PMid:17257097. http://dx.doi.org/10.1111/j.1461-0248.2006.00996.x.

Biondini, M.E., Bonham, C.D., & Redente, E.F., 1985. Secondary successional patterns in a sagebrush (Artemisia tridentata) community as they relate to soil disturbance and soil biological activity. Vegetatio 60(1), 25-36. http://dx.doi.org/10.1007/BF00053909.

Boys, C.A., & Thoms, M.C., 2006. A large-scale, hierarchical approach for assessing habitat associations of fish assemblages in large dryland rivers. Hydrobiologia 572(1), 11-31. http://dx.doi.org/10.1007/s10750-005-0004-0.

Bunn, S.E., & Arthington, A.H., 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manage. 30(4), 492-507. PMid:12481916. http://dx.doi.org/10.1007/s00267-002-2737-0.

Casatti, L., Teresa, F.B., Gonçalves-Souza, T., Bessa, E., Manzotti, A.R., Gonçalves, C.S., & Zeni, J.O., 2012. From forests to cattail: how does the riparian zone influence stream fish? Neotrop. Ichthyol. 10(1), 205-214. http://dx.doi.org/10.1590/S1679-62252012000100020.

Clarke, K.R., & Gorley, R.N., 2001. PRIMER v5: user manual/tutorial. Plymouth: PRIMER-E.

Corrêa, C.E., Albrecht, M.P., & Hahn, N.S., 2011. Patterns of niche breadth and feeding overlap of the fish fauna in the seasonal Brazilian Pantanal, Cuiabá River basin. Neotrop. Ichthyol. 9(3), 637-646. http://dx.doi.org/10.1590/S1679-62252011000300017.

Cucherousset, J., Carpentier, A., & Paillisson, J., 2007. How do fish exploit temporary waters throughout a flooding episode? Fish. Manag. Ecol. 14(4), 269-276. http://dx.doi.org/10.1111/j.1365-2400.2007.00555.x.

Davies, N.M., Norris, R.H., & Thoms, M.C., 2000. Prediction and assessment of local stream habitat features using large-scale catchment characteristics. Freshw. Biol. 45(3), 343-369. http://dx.doi.org/10.1111/j.1365-2427.2000.00625.x.

Dufrene, M., & Legendre, P., 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67(3), 345-366. http://dx.doi.org/10.2307/2963459.

Farias, R.L., Carvalho, L.K., & Medeiros, E.S.F., 2012. Distribution of Chironomidae in a semiarid intermittent river of Brazil. Neotrop. Entomol. 41(6), 450-460. PMid:23949669. http://dx.doi.org/10.1007/s13744-012-0070-8.

Frissell, C.A., Liss, W.J., Warren, C.E., & Hurley, M.D., 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environ. Manage. 10(2), 199-214. http://dx.doi.org/10.1007/BF01867358.

Gravel, D., Canham, C.D., Beaudet, M., & Messier, C., 2006. Reconciling niche and neutrality: the continuum hypothesis. Ecol. Lett. 9(4), 399-409. PMid:16623725. http://dx.doi.org/10.1111/j.1461-0248.2006.00884.x.

Gregory, S.V., Swanson, F.J., McKee, W.A., & Cummins, K.W., 1991. An ecosystem perspective of riparian zones. Bioscience 41(8), 540-551. http://dx.doi.org/10.2307/1311607.

Hall Junior, L.W., Morgan II, R.P., Perry, E.S., & Waltz, A., 2002. Development of a provisional physical habitat index for Maryland freshwater streams. Environ. Monit. Assess. 77(3), 265-291. PMid:12194416. http://dx.doi.org/10.1023/A:1016084507654.

Hodges, S.W., & Magoulick, D.D., 2011. Refuge habitats for fishes during seasonal drying in an intermittent stream: movement, survival and abundance of three minnow species. Aquat. Sci. 73(4), 513-522. http://dx.doi.org/10.1007/s00027-011-0206-7.

Hutchinson, G.E., 1957. Concluding remarks. Population studies: animal ecology and demography. Cold Spring Harb. Symp. Quant. Biol. 22(0), 415-427. http://dx.doi.org/10.1101/SQB.1957.022.01.039.

Jeffres, C.A., Opperman, J.J., & Moyle, P.B., 2008. Ephemeral floodplain habitats provide best growth conditions for juvenile Chinook salmon in a California river. Environ. Biol. Fishes 83(4), 449-458. http://dx.doi.org/10.1007/s10641-008-9367-1.

Junqueira, N.T., Macedo, D.R., Souza, R.C.R., Hughes, R.M., Callisto, M., & Pompeu, P.S., 2016. Influence of environmental variables on stream fish fauna at multiple spatial scales. Neotrop. Ichthyol. 14(3), e150116. http://dx.doi.org/10.1590/1982-0224-20150116.

Lanés, L.E.K., Reichard, M., Moura, R.G., Godoy, R.S., & Maltchik, L., 2018. Environmental predictors for annual fish assemblages in subtropical grasslands of South America: the role of landscape and habitat characteristics. Environ. Biol. Fishes 101(6), 963-977. http://dx.doi.org/10.1007/s10641-018-0751-1.

Leal, I.R., Silva, J.M.C., Tabarelli, M., & Lacher Junior, T.E., 2005. Changing the course of biodiversity conservation in the Caatinga of northeastern Brazil. Conserv. Biol. 19(3), 701-706. http://dx.doi.org/10.1111/j.1523-1739.2005.00703.x.

Lima, L.B., Marco Júnior, P.D., & Lima-Junior, D.P., 2021. Trends and gaps in studies of stream-dwelling fish in Brazil. Hydrobiologia. 848, 3955-3968. https://doi.org/10.1007/s10750-021-04616-8.

Maitland, P.S., 1990. Field studies: sampling in freshwaters. In: Maitland, P.S., ed. Biology of fresh waters (2nd ed.). Glasgow: Blackie, 123-148.

Malabarba, L.R., & Reis, R.E., 1987. Manual de Técnicas para a preparação de Coleções Zoológicas. Campinas: Sociedade Brasileira de Zoologia.

Maltchik, L., & Florin, M., 2002. Perspectives of hydrological disturbance as the driving force of Brazilian semiarid stream ecosystems. Acta Limnol. Bras. 14(3), 35-41. https://doi.org/10.4322/actalb.

Maltchik, L., & Medeiros, E.S.F., 2006. Conservation importance of semi-arid streams in north-eastern Brazil: implications of hydrological disturbance and species diversity. Aquat. Conserv. Mar. Freshwat. Ecos. 16(7), 665-677. http://dx.doi.org/10.1002/aqc.805.

Maltchik, L., Lanés, L.E.K., Stenert, C., & Medeiros, E.S.F., 2010. Species-area relationship and environmental predictors of fish communities in coastal freshwater wetlands of southern Brazil. Environ. Biol. Fishes 88(1), 25-35. http://dx.doi.org/10.1007/s10641-010-9614-0.

McCune, B., & Grace, J.B., 2002. Analysis of ecological communities. Gleneden Beach: MjM Software Design.

McCune, B., & Mefford, M.J., 1999. PC-ORD - Multivariate Analysis of Ecological Data (Version 4.27 ed.). Gleneden Beach, Oregon: MjM Software Design.

Medeiros, E.S.F., & Arthington, A.H., 2008. The importance of zooplankton in the diets of three native fish species in floodplain waterholes of a dryland river, the Macintyre River, Australia. Hydrobiologia 614(1), 19-31. http://dx.doi.org/10.1007/s10750-008-9533-7.

Medeiros, E.S.F., & Arthington, A.H., 2011. Flood inundation and the temporal dynamics of floodplain waterholes in an Australian dryland river. In: Álvarez, M.A., ed. Floodplains: physical geography, ecology and societal interactions. New York: Nova Science Publishers, 127-177.

Medeiros, E.S.F., & Maltchik, L., 2000. Influence of hydrological disturbance on reproduction of a fish community in an intermittent stream from Brazilian semiarid region. Verh. Inter. Verein. Limnol. 27(2), 906-911. http://dx.doi.org/10.1080/03680770.1998.11901370.

Medeiros, E.S.F., & Maltchik, L., 2001a. Diversity and stability of fishes (Teleostei) in a temporary river of the Brazilian semiarid region. Iheringia Ser. Zool. 90(90), 157-166. http://dx.doi.org/10.1590/S0073-47212001000100016.

Medeiros, E.S.F., & Maltchik, L., 2001b. Fish assemblage stability in an intermittently flowing stream from the Brazilian semiarid region. Austral Ecol. 26(2), 156-164. http://dx.doi.org/10.1046/j.1442-9993.2001.01099.x.

Medeiros, E.S.F., Ramos, R.T.C., Ramos, T.P.A., & Silva, M.J., 2006. Spatial variation in reservoir fish assemblages along a semi-arid intermittent river, Curimataú River, northeastern Brazil. Rev. Biol. Ciênc. Terra 1, 29-39.

Medeiros, E.S.F., Silva, M.J., & Ramos, R.T.C., 2008. Application of catchment- and local-scale variables for aquatic habitat characterization and assessment in the Brazilian semi-arid region. Neotr. Biol. Conserv. 3(1), 13-20.

Medeiros, E.S.F., Silva, M.J., Figueiredo, B.R.S., Ramos, T.P.A., & Ramos, R.T.C., 2010. Effects of fishing technique on assessing species composition in aquatic systems in semi-arid Brazil. Braz. J. Biol. 70(2), 255-262. PMid:20549058. http://dx.doi.org/10.1590/S1519-69842010000200004.

Minshall, G.W., 1988. Stream ecosystem theory: a global perspective. J. N. Am. Benthol. Soc. 7(4), 263-288. http://dx.doi.org/10.2307/1467294.

Mugodo, J., Kennard, M.J., Liston, P., Nichols, S., Linke, S., Norris, R.H., & Lintermans, M., 2006. Local stream habitat variables predicted from catchment scale characteristics are useful for predicting fish distribution. Hydrobiologia 572(1), 59-70. http://dx.doi.org/10.1007/s10750-006-0252-7.

Poff, N.L., & Ward, J.V., 1989. Implications of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns. Can. J. Fish. Aquat. Sci. 46(10), 1805-1818. http://dx.doi.org/10.1139/f89-228.

Pusey, B., Kennard, M.J., & Arthington, A., 2004. Study area, data collection, analysis and presentation. In: Pusey, B., Kennard, M.J., & Arthington, A., eds. Freshwater fishes of north-eastern Australia. Collingwood: CSIRO Publishing, 26-48. http://dx.doi.org/10.1071/9780643092082.

Pusey, B.J., & Arthington, A.H., 2003. Importance of the riparian zone to the conservation and management of freshwater fish: a review. Mar. Freshw. Res. 54(1), 1-16. http://dx.doi.org/10.1071/MF02041.

Rosa, R.S., Menezes, N.A., Britski, H.A., Costa, W.J.E.M., & Groth, F., 2003. Diversidade, padrões de distribuição e conservação dos peixes da Caatinga. In: Leal, I.R., Silva, J.M.C., & Tabarelli, M., eds. Ecologia e conservação da Caatinga. Recife: EDUFPE, 135-181.

Sheridan, J.C., & Lyndall, G.S., 2001. SPSS: analysis without anguish. Version 10.0 for Windows. Brisbane, Australia: John Wiley & Sons Australia.

Silva, J.M.C., Barbosa, L.C.F., Leal, I.R., & Tabarelli, M., 2017. The Caatinga: understanding the challenges. In: Silva, J.M., Leal, I., & Tabarelli, M., eds. Caatinga: the largest tropical dry forest region in South America. Cham: Springer, 3-19. http://dx.doi.org/10.1007/978-3-319-68339-3_1.

Silva, M.J., 2012. Ecologia trófica da assembleia de peixes em um rio intermitente do semiárido [Master’s dissertation in Ecology and Conservation]. Campina Grande: Universidade Estadual da Paraíba.

Silva, M.J., Figueiredo, B.R.S., Ramos, R.T.C., & Medeiros, E.S.F., 2010. Food resources used by three species of fish in the semi-arid region of Brazil. Neotrop. Ichthyol. 8(4), 825-833. http://dx.doi.org/10.1590/S1679-62252010005000010.

Sokal, R.R., & Rohlf, F.J., 1995. Biometry: the principles and practice of statistics in biological research (3rd ed.). New York: W.H. Freeman and Company.

Southwood, T.R.E., 1977. Habitat, the templet for ecological strategies? J. Anim. Ecol. 46(2), 337-365. http://dx.doi.org/10.2307/3817.

Stewart-Koster, B., Kennard, M.J., Harch, B., Sheldon, F., Arthington, A.H., & Pusey, B.J., 2007. Partitioning the variation in stream fish assemblages within a spatio-temporal hierarchy. Mar. Freshw. Res. 58(7), 675-686. http://dx.doi.org/10.1071/MF06183.

Thompson, P.L., Guzman, L.M., Meester, L.D., Horváth, Z., Ptacnik, R., Vanschoenwinkel, B., Viana, D.S., & Chase, J.M., 2020. A process-based metacommunity framework linking local and regional scale community ecology. Ecol. Lett. 23(9), 1314-1329. PMid:32672410. http://dx.doi.org/10.1111/ele.13568.

Vono, V., & Barbosa, F.A.R., 2001. Habitats and littoral zone fish community structure of two natural lakes in southeast Brazil. Environ. Biol. Fishes 61(4), 371-379. http://dx.doi.org/10.1023/A:1011628102125.

Wennekes, P.L., Rosindell, J., & Etienne, R.S., 2012. The Neutral-Niche debate: a philosophical perspective. Acta Biotheor. 60(3), 257-271. PMid:22302362. http://dx.doi.org/10.1007/s10441-012-9144-6.

Xie, S., Cui, Y., & Li, Z., 2001. Small fish communities in two regions of the Liangzi Lake, China, with or without submersed macrophytes. J. Appl. Ichthyology 17(2), 89-92. http://dx.doi.org/10.1046/j.1439-0426.2001.00248.x.

Zar, J.H., 1999. Biostatistical analysis (4th ed.). Englewood Cliffs: Prentice Hall.
 


Submitted date:
04/10/2023

Accepted date:
12/05/2023

Publication date:
12/29/2023

658ee7c8a9539523751f6f15 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections