06OCT

News on Acta Limnologica Brasiliensia to our fellow Limnologists

Fellow Limnologist! Click here to access the latest report from the editorial board of Acta Limnologica Brasiliensia.

Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X2921
Acta Limnologica Brasiliensia
Original Article

Can people detect the loss of water quality? A field experiment to evaluate the correlation between visual perception and water eutrophication degree

As pessoas podem detectar a perda de qualidade da água? Um experimento de campo para avaliar a correlação entre a percepção visual e o grau de eutrofização da água

João Carlos Nabout; Ana Clara Maciel David; Jéssica Fagundes Felipe; Karine Borges Machado; Laurence Carvalho; Hélida Ferreira da Cunha

Downloads: 0
Views: 244

Abstract

Abstract:

Aim: The quantity and quality of water are essential to many ecosystem services, biodiversity and human well-being. In the present paper, we used a field experiment to evaluate the visual perception of the public regarding the loss of water quality associated with eutrophication and greening of water. We hypothesized that with an increase in eutrophication (i.e. greening of water due to increased Chlorophyll-a), people can detect a loss of water quality and threats to ecosystem services.

Methods: We used an experimental area composed of six mesocosms (500L water tanks) with a gradient of chlorophyll-a varying from clear water (without chlorophyll-a) up to eutrophic mesocosms (very green water). A total of 100 people visited the experimental area in-situ, and 83 people visualized pictures of the mesocosms.

Results: Our results indicated that people were able to detect the loss of water quality associated with increased concentrations of chlorophyll-a, and recognized that these were less suitable for recreational activity and consumption. Moreover, this perception did not vary by gender, formal education, or frequency of visits to aquatic ecosystems.

Conclusions: The results highlight the clear potential of visual public perception to be used as a simple, rapid, early-warning strategy for monitoring programs of water quality and also an approach that strengthens the link between science and society.
 

Keywords

Chlorophyll-a, mesocosm, tropical, pictures, interview, citizen science

Resumo

Resumo:

Objetivo: A quantidade e a qualidade da água são essenciais para manutenção de muitos serviços ecossistêmicos, biodiversidade e bem-estar humano. No presente trabalho, utilizamos um experimento de campo para avaliar a percepção visual do público em relação à perda de qualidade da água associada à eutrofização e esverdeamento da água. Nós hipotetizamos que, com um aumento na eutrofização (ou seja, esverdeamento da água devido ao aumento da clorofila-a), as pessoas podem detectar uma perda de qualidade da água e ameaças aos serviços ecossistêmicos.

Métodos: Nós utilizamos uma área experimental composta por seis mesocosmos (caixas d'água de 500L) com gradiente de clorofila-a variando de águas claras (sem clorofila-a) até mesocosmos eutróficos (águas muito verdes). Um total de 100 pessoas visitaram a área experimental in-situ, e 83 pessoas visualizaram imagens dos mesocosmos.

Resultados: Nossos resultados indicaram que as pessoas foram capazes de detectar a perda de qualidade da água associada ao aumento das concentrações de clorofila-a, e reconheceram que estas eram menos adequadas para atividade recreativa e consumo. Além disso, essa percepção não variou por gênero, educação formal ou frequência de visitas aos ecossistemas aquáticos.

Conclusões: Os resultados evidenciam potencial da percepção visual do público como uma estratégia simples, rápida e de alerta precoce para programas de monitoramento da qualidade da água e também uma abordagem que fortalece o vínculo entre ciência e sociedade.
 

Palavras-chave

Clorofila-a, mesocosmo, tropical, fotografias, entrevista, ciência cidadã

References

Anderson, M.J., 2014. Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online, 1-15. https://doi.org/10.1002/9781118445112.stat07841.

Anderson, M.J., Ellingsen, K.E., & McArdle, B.H., 2006. Multivariate dispersion as measure of beta diversity. Ecol. Lett. 9(6), 683-693. http://dx.doi.org/10.1111/j.1461-0248.2006.00926.x.

Angradi, T.R., Ringold, P.L., & Hall, K., 2018. Water clarity measures as indicators of recreational benefits provided by US lakes: swimming and aesthetics. Ecol. Indic. 93, 1005-1019. http://dx.doi.org/10.1016/j.ecolind.2018.06.001.

Bashir, I., Lone, F.A., Bhat, R.A., Mir, S.A., Dar, Z.A., & Dar, A.S., 2020. Concerns and threats of contamination of aquatic ecosystems. In: Hankeen, K. R., Bhat, R. A., Quadri, H., eds. Bioremediation and biotechnology. Cham: Springer. http://dx.doi.org/10.1007/978-3-030-35691-0_1.

Behmel, S., Damour, M., Ludwig, R., & Rodriguez, M.J., 2016. Water quality monitoring strategies – A review and future perspectives. Sci. Total Environ. 57, 1312-1329. http://dx.doi.org/10.1016/j.scitotenv.2016.06.235.

Brasil. Conselho Nacional do Meio Ambiente – CONAMA, 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências (Resolução Conama n° 357 de 17 de março de 2005). Diário Oficial da União [da] República Federativa do Brasil, Poder Executivo, Brasília, DF.

Carlson, R.E., 1977. A trophic state index for lakes. Limnol. Oceanogr. 22(2), 361-369. http://dx.doi.org/10.4319/lo.1977.22.2.0361.

Castilla, E.P., Cunha, D.G.F., Lee, F.W.F., Loiselle, S., Ho, K.C., & Hall, C., 2015. Quantification of phytoplankton bloom dynamics by citizen scientists in urban and peri-urban environments. Environ. Monit. Assess. 187(11), 690. http://dx.doi.org/10.1007/s10661-015-4912-9.

Chaplin, M.F., 2001. Water: its importance to life. Biochem. Mol. Biol. Educ. 29(2), 54-59. http://dx.doi.org/10.1111/j.1539-3429.2001.tb00070.x.

Codd, G.A., 2000. Cyanobacterial toxins, the perception of water quality, and the prioritisation of eutrophication control. Ecol. Eng. 16(1), 51-60. http://dx.doi.org/10.1016/S0925-8574(00)00089-6.

Coertjens, L., Boeve-de Pauw, J., De Maeyer, S., & Van Petegem, P., 2010. Do Schools make a difference in their students’ attitudes and awareness? Evidence from PISA 2006. Int. J. Sci. Math. Educ. 3(3), 497-522. http://dx.doi.org/10.1007/s10763-010-9200-0.

Culhane, F., Teixeira, H., Nogueira, A.J.A., Borgwardt, F., Trauner, D., Lillebø, A., Piet, G.J., Kuemmerlen, M., McDonald, H., O’Higgins, T., Barbosa, A.L., van der Wal, J.T., Iglesias-Campos, A., Arevalo-Torres, J., Barbière, J., & Robinson, L.A., 2019. Risk to the supply of ecosystem services across aquatic ecosystem. Sci. Total Environ. 660, 611-621. http://dx.doi.org/10.1016/j.scitotenv.2018.12.346.

Davies, J.L., & Shaw, G., 2010. Impacts of eutrophication on the safety of drinking and recreational water. In: UNESCO. Desalination and water resources. Paris: UNESCO, Water Health, Encyclopedia of Life Support Systems, vol. 2.

Delpla, I., Legay, C., Proulx, F., & Rodriguez, M.J., 2020. Perception of tap water quality: assessment of the factors modifying the links between satisfaction and water consumption behavior. Sci. Total Environ. 722, 137786. http://dx.doi.org/10.1016/j.scitotenv.2020.137786.

Doria, M.F., 2010. Factors influencing public perception of drinking water quality. Water Policy 12(1), 1-19. http://dx.doi.org/10.2166/wp.2009.051.

Doria, M.F., Pidgeon, N., & Hunter, P.R., 2009. Perceptions of drinking water quality and risk and its effect on behaviour: a cross national study. Sci. Total Environ. 407(21), 5455-5464. http://dx.doi.org/10.1016/j.scitotenv.2009.06.031.

Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z.I., Knowler, D.J., Lévêque, C., Naiman, R.J., Prieur-Richard, A.H., Soto, D., Stiassny, M.L.J., & Sullivan, C.A., 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81(02), 163-182. http://dx.doi.org/10.1017/S1464793105006950.

Eitzel, M.V., Cappadonna, J.L., Santos‐Lang, C., Duerr, R.E., Virapongse, A., West, S.E., Kyba, C., Bowser, A., Cooper, C.B., Sforzi, A., Metcalfe, A.N., Harris, E.S., Thiel, M., Haklay, M., Ponciano, L., Roche, J., Ceccaroni, L., Shilling, F.M., Dörler, D., Heigl, F., Kiessling, T., Davis, B.Y., & Jiang, Q., 2017. Citizen Science Terminology Matters: Exploring Key Terms. Citiz. Sci. Theory Pract. 2(1), 1. http://dx.doi.org/10.5334/cstp.96.

Flotemersch, J., & Aho, K., 2021. Factors influencing perceptions of aquatic ecosystems. Ambio 50(2), 425-435. http://dx.doi.org/10.1007/s13280-020-01358-0.

Gholson, G.M., Boellstorff, D.E., Cummings, S.R., Wagner, K.L., & Dozier, M.C., 2019. A survey of public perceptions and attitudes about water availability following exceptional drought in Texas. J. Contemp. Water Res. Educ. 166(1), 1-11. http://dx.doi.org/10.1111/j.1936-704X.2019.03297.x.

Gifford, R., & Nilsson, A., 2014. Personal and social factors that influence pro-environmental concern and behaviour: a review. Int. J. Psychol. 49, 141-157. http://dx.doi.org/10.1002/ijop.12034.

Gomes, M.A.A., Gonçalves, T.V., Teresa, F.B., da Cunha, H.F., Lima, F.P., & Nabout, J.C., 2019. High school students’ knowledge of endangered fauna in the Brazilian Cerrado: a cross-species and spatial analysis. PLoS One 14(4), e0215959. http://dx.doi.org/10.1371/journal.pone.0215959.

Golterman, H.L., Clymo, R.S., & Ohnstad, M.A.M., 1978. Methods for Physical and Chemical Analysis of Fresh Waters (IBP Handbook, no. 8). Oxford, UK: Blackwell Sci Publ, 213 p.

Green, P.A., Vörösmarty, C.J., Harrison, I., Farrell, T., Sáenz, L., & Fekete, B.M., 2015. Freshwater ecosystem services supporting humans: pivoting from water crisis to water solutions. Glob. Environ. Change 34, 108-118. http://dx.doi.org/10.1016/j.gloenvcha.2015.06.007.

Greenley, D.A., Walsh, R.G., & Young, R.A., 2020. Economic benefits of improved water quality: public perceptions of option and preservation values. New York: Routledge. http://dx.doi.org/10.4324/9780429049279.

Grizzetti, B., Lanzanova, D., Liquete, C., Reynaud, A., & Cardoso, A.C., 2016. Assessing water ecosystem services for water resource management. Environ. Sci. Policy 61, 194-203. http://dx.doi.org/10.1016/j.envsci.2016.04.008.

House, M.A., 1996. Public perception and water quality management. Water Sci. Technol. 34(12), 25-32. http://dx.doi.org/10.2166/wst.1996.0295.

Instituto Brasileiro de Geografia e Estatística – IBGE, 2010. Censo 2010. Retrieved in 2020, June 20, from https://censo2010.ibge.gov.br/

Ioana-Toroimac, G., Zaharia, L., Neculau, G., Constantin, D.M., & Stan, F.I., 2020. Translating a river’s ecological quality in ecosystem services: an example of public perception in Romania. Ecohydrol. Hydrobiol. 20(1), 31-37. http://dx.doi.org/10.1016/j.ecohyd.2019.10.005.

Jeppesen, E., Moss, B., Bennion, H., Carvalho, L., DeMeester, L., Feuchtmayr, H., Friberg, N., Gessner, M.O., Hefting, M., Lauridsen, T.L., Liboriussen, L., Malmquist, H.J., May, L., Meerhoff, M., Olafsson, J.S., Soons, M.B., & Verhoeven, J.T.A., 2010. Interaction of climate change and eutrophication. In: Kernan, M., Battarbee, R.W., Moss, B., eds. Climate change impacts on freshwater ecosystems. New Jersey: Hoboken Blackwell Publishing. http://dx.doi.org/10.1002/9781444327397.ch6.

Jöborn, A., Danielsson, I., Arheimer, A., Jonsson, A., Larsson, M.H., Lundqvist, L.J., Löwgren, M., & Tonderski, K., 2005. Integrated water management for eutrophication control: public participation, pricing police, and catchment modeling. Ambio 34(7), 482-488. http://dx.doi.org/10.1579/0044-7447-34.7.482.

Johnson, B.B., 2003. Do reports of drinking water quality affect customers’ concerns? Experiments in reports content. Risk Anal. 23(5), 985-988. http://dx.doi.org/10.1111/1539-6924.00375.

Johnson, M.K.F., Hannah, C., Acton, L., Popovici, R., Karanth, K.K., & Weinthal, E., 2014. Network environmentalism: citizen scientists as agents for environmental advocacy. Glob. Environ. Change 29, 235-245. http://dx.doi.org/10.1016/j.gloenvcha.2014.10.006.

Jollymore, A., Haines, M.J., Satterfield, F., & Johnson, M.S., 2017. Citizen science for water quality monitoring: data implications of citizen perspectives. J. Environ. Manage. 200, 456-467. http://dx.doi.org/10.1016/j.jenvman.2017.05.083.

Jones, A.Q., Dewey, C.E., Doré, K., Majowicz, S.E., McEwen, S.A., David, W.T., Eric, M., Carr, D.J., & Henson, S.J., 2006. Public perceptions of drinking water: a postal survey of residents with private water supplies. BMC Public Health 6(1), 94. http://dx.doi.org/10.1186/1471-2458-6-94.

Keeler, B.L., Polasky, S., Brauman, K.A., Johnson, K.A., Finlay, J.C., O’Neill, A., Kovacs, K., & Dalzell, B., 2012. Linking water quality and well-being for improved assessment and valuation of ecosystem services. Proc. Natl. Acad. Sci. USA 109(45), 18619-18624. http://dx.doi.org/10.1073/pnas.1215991109.

Kirschke, S., Avellán, T., Bärlund, I., Bogardi, J., Carvalho, L., Chapman, D., Dickens, C.W.S., Irvine, K., Lee, S.B., Mehner, T., & Warner, S., 2020. Capacity challenges in water quality monitoring: understanding the role of human development. Environ. Monit. Assess. 192(5), 298. http://dx.doi.org/10.1007/s10661-020-8224-3.

Kotovirta, V., Toivanen, T., Järvinen, M., Lindholm, M., & Kallio, K., 2014. Participatory surface algal bloom monitoring in Finland in 2011–2013. Environ. Syst. Res. 3(1), 24. http://dx.doi.org/10.1186/s40068-014-0024-8.

Lamparelli, M.C., 2004. Grau de trofia em corpos d’água do Estado de São Paulo: avaliação dos métodos de monitoramento. Instituto de Biociências, Universidade de São Paulo, São Paulo. Retrieved in 2020, June 11, from https://www.teses.usp.br/teses/disponiveis/41/41134/tde-20032006-075813/pt-br.php

Larson, K.L., Ibes, D.C., & White, D.D., 2011. Gendered perspectives about water risks and policy strategies: A tripartite conceptual approach. Environ. Behav. 43(3), 415-438. http://dx.doi.org/10.1177/0013916510365253.

Lee, L.H., 2017. Appearance’s aesthetic appreciation to inform water quality management of waterscapes. J. Water Resource Prot. 9(13), 1645-1659. http://dx.doi.org/10.4236/jwarp.2017.913103.

Machado, K.B., Vieira, L.C.G., & Nabout, J.C., 2019. Predicting the dynamics of taxonomic and functional phytoplankton compositions in different global warming scenarios. Hydrobiologia 830(1), 115-134. http://dx.doi.org/10.1007/s10750-018-3858-7.

McKinley, D.C., Miller-Rushing, A.J., Ballard, H.L., Bonney, R., Brown, H., Cook-Patton, S.C., Evans, D.M., French, R.A., Parrish, J.K., Phillips, T.B., Ryan, S.F., Shanley, L.A., Shirk, J.L., Stepenuck, K.F., Weltzin, J.F., Wiggins, A., Boyle, O.D., Briggs, R.D., Chapin 3rd, S.F., Hewitt, D.A., Preuss, P.W., & Soukup, M.A..2017. Citizen science can improve conservation science, natural resource management, and environmental protection. Biol. Conserv. 208, 15-28. http://dx.doi.org/10.1016/j.biocon.2016.05.015.

Mesocosm, 2022. Tropical Aquatic Ecology Mesocosm [online]. Retrieved in 2021, February 20, from http://mesocosm.org/mesocosm/tropical-aquatic-ecology-mesocosm/.

Niinioja, R., Holopainen, A.L., Lepistö, L., Rämö, A., & Turkka, J., 2004. Public participation in monitoring programmes as a tool for lakeshore monitoring: the example of Lake Pyhäjärvi, Karelia, Eastern Finland. Limnologica 34(1-2), 154-159. http://dx.doi.org/10.1016/S0075-9511(04)80035-5.

Ochoo, B., Valcour, J., & Sarkar, A., 2017. Association between perceptions of public drinking water quality and actual drinking water quality: a community based explanatory study in Newfoundland (Canada). Environ. Res. 159, 435-443. http://dx.doi.org/10.1016/j.envres.2017.08.019.

Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’hara, R.B., Simpson, G.L., Solymons, P., Stevens, M.H.H., Szoecs, E., & Wagner, H., 2019. Vegan: Community Ecology Package. R Package Version 2.5-6. Retrieved in 2020, May 15, from http://CRAN.R-project.org/package=vegan

Okumah, M., Yeboah, A.S., & Bonyah, S.K., 2020. What matters most? Stakeholders’ perceptions of river water quality. Land Use Policy 99, 104824. http://dx.doi.org/10.1016/j.landusepol.2020.104824.

Paerl, H.W., & Otten, T.G., 2013. Harmful cyanobacterial blooms: causes, consequences and controls. Microb. Ecol. 65(4), 995-1010. http://dx.doi.org/10.1007/s00248-012-0159-y.

R Core Team, 2020. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved in 2020, May 15, from https://www.R-project.org/

Rojas, L.F.R., & Megerle, A., 2013. Perception of water quality and health risks in the rural area of Medellín. Am. J. Rural Dev. 1, 106-115. https://doi.org/10.12691/ajrd-1-5-2.

Smith, D.G., & Davies-Colley, R.J., 1992. Perception of water clarity and colour in terms of suitability for recreational use. J. Environ. Manage. 36(3), 225-235. http://dx.doi.org/10.1016/S0301-4797(05)80136-7.

Smith, D.G., Cragg, A.M., & Croker, G.F., 1991. Water clarity criteria for bathing waters based on user perception. J. Environ. Manage. 33(3), 285-299. http://dx.doi.org/10.1016/S0301-4797(91)80030-9.

Smith, D.G., Croker, G.F., & McFarlane, K., 1995. Human perception of water appearance. N. Z. J. Mar. Freshw. Res. 29(1), 29-43. http://dx.doi.org/10.1080/00288330.1995.9516637.

Smith, V.H., Joye, S.B., & Howarth, R.W., 2006. Eutrophication of freshwater and marine ecosystems. Limnol. Oceanogr. 51(1 Pt 2), 351-355. http://dx.doi.org/10.4319/lo.2006.51.1_part_2.0351.

Steen, V.A., Elphick, C.S., & Tingley, M.W., 2019. An evaluation of stringent filtering to improve species distribution models from citizen science data. Divers. Distrib. 25(12), 1857-1869. http://dx.doi.org/10.1111/ddi.12985.

Suplee, M.W., Watson, V., Teply, M., & McKee, H., 2009. How green is to green? Public opinion of what constitutes undesirable algae levels in streams. J. Am. Water Resour. Assoc. 45(1), 123-140. http://dx.doi.org/10.1111/j.1752-1688.2008.00265.x.

Tang, Y., Horikoshi, M., & Li, W., 2016. ggfortify: unified interface to visualize statistical result of popular r packages. R J. 8(2), 478-489. http://dx.doi.org/10.32614/RJ-2016-060.

UK Centre for Ecology & Hydrology – UKCEH, 2022. Bloomin’ Algae [online]. Retrieved in 2022, March 7, from https://www.ceh.ac.uk/algal-blooms/bloomin-algae.

Vaughn, C.C., 2010. Biodiversity loss and ecosystem function in freshwaters: emerging conclusion and research directions. Bioscience 60(1), 25-35. http://dx.doi.org/10.1525/bio.2010.60.1.7.

Weiss, N.A., 2015. wPerm: Permutation Tests. R package version 1.0.1. Retrieved in 2020, May 15, from https://CRAN.R-project.org/package=wPerm

Wickham, H., 2016. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag.

Wilkinson, G.M., Carpenter, S.R., Cole, J.J., Pace, M.L., Batt, R.D., Buelo, C.D., & Kurtzweil, J.T., 2018. Early warning signals precede cyanobacterial blooms in multiple whole-lake experiments. Ecol. Monogr. 88(2), 188-203. http://dx.doi.org/10.1002/ecm.1286.

World Health Organization – WHO, 1997. Guidelines for drinking water quality. Geneva: WHO, 2nd ed., Surveillance and control of communities supplies, vol. 3.

World Health Organization – WHO, 2017. Guidelines for drinking water quality: fourth edition incorporating the first addendum. Geneva: WHO.
 


Submitted date:
04/20/2021

Accepted date:
02/02/2022

Publication date:
04/28/2022

626a91cba9539538bc769a22 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections