Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X2821
Acta Limnologica Brasiliensia
Short Research Note

Length-weight relationships of native and non-native fishes in a subtropical coastal river of the Atlantic Rain Forest

Relação peso-comprimento de espécies nativas e não nativas de um rio subtropical da Mata Atlântica

Barbara Maichak de Carvalho; Larissa Faria; Natali Oliva Roman Miiller; Henry Louis Spach; Jean Ricardo Simões Vitule

Downloads: 0
Views: 1318

Abstract

Abstract: Aim: The objective was to describe the LWR of fish species of the Guaraguaçu River, as well as to compare the LWR parameters of the non-native species with the parameters obtained in their native ranges, available in the literature.

Methods: In this study, the LWR of 10 fish species of the Guaraguaçu River, southern Brazil, were analyzed. Fish were sampled semiannually between 2004 and 2007, using different sampling techniques in the Guaraguaçu River.

Results: A total of 673 specimens of 10 species were captured. The LWR demonstrated a prevalence of species (six out of 10) with positive allometric growth (b > 3). The remaining species presented isometric (b = 3, two species) or negative growth (b < 3, two species). Native species exhibited the same LWR from previous studies, except Centropomus parallelus, which presented an isometric growth in this study. The non-native species Clarias gariepinus and Ictalurus punctatus showed significant differences between the LWR parameters in the Guaraguaçu River and in their native distribution, but the same growth pattern. Oreochromis niloticus did not present significant differences in the allometric coefficient from its native range.

Conclusions: These results indicate that different environmental conditions may not influence the growth pattern of non-native species, which explains their invasion success due to high adaptability to new environments.

Keywords

alien species, Atlantic Rain Forest, fisheries, ichthyofauna, length-weight relationships

Resumo

Resumo: Objetivo: O objetivo foi descrever os parâmetros LWR das espécies nativas e não nativas do rio Guaraguaçu e comparar esses parâmetros das espécies não nativas obtidos no rio Guaraguaçu com os parâmetros de LWR dos seus locais de distribuição nativa disponível na literatura.

Métodos: Os exemplares foram coletados semestralmente entre 2004 e 2007, usando diferentes técnicas de amostragens.

Resultados: No total, foram analisados 673 exemplares de 10 espécies. Seis espécies apresentaram alometria positiva (b>3) e três alometria negativa (b<3) e isometria (b=3). Espécies nativas possuem parâmetros de LWR idênticos a estudos prévios, exceto Centropomus parallelus, a qual apresentou isometria neste estudo. As espécies não nativas Clarias gariepinus e Ictalurus punctatus demonstraram diferenças significativas entre os parâmetros de LWR do Guaraguaçu e das suas áreas de distribuição nativa. Oreochromis niloticus não apresentou diferença significativa entre os parâmetros de LWR entre o Guaraguaçu e sua área nativa de distribuição.

Conclusões: O resultado indica que as condições ambientais talvez não influenciem o crescimento das espécies não nativas, o que explicaria o sucesso de invasão destas espécies.
 

Palavras-chave

espécies exóticas, Floresta Atlântica, pesca, ictiofauna, relação peso-comprimento

References

Abell, R., Thieme, M.L., Revenga, C., Bryer, M., Kottelat, M., Bogutskaya, N., Coad, B., Mandrak, N., Balderas, S.C., Bussing, W., Stiassny, M.L.J., Skelton, P., Allen, G.R., Unmack, P., Naseka, A., Ng, R., Sindorf, N., Robertson, J., Armijo, E., Higgins, J.V., Heibel, T.J., Wikramanayake, E., Olson, D., López, H.L., Reis, R.E., Lundberg, J.G., Sabaj Pérez, M.H., & Petry, P., 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience 58(5), 403-414. http://dx.doi.org/10.1641/B580507.

Abilhoa, V., Braga, R.R., Bornatowski, H., & Vitule, J.R.S., 2011. Fishes of the Atlantic rain forest streams: ecological patterns and conservation. In: Grillo, O., & Venora, G., eds. Changing diversity in changing environment. Rijeka: InTech, 259-282. http://dx.doi.org/10.5772/24540.

Best, J., 2019. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12(1), 7-21. http://dx.doi.org/10.1038/s41561-018-0262-x.

Carvalho, B.M., Barradas, J.R.S., Fontoura, N.F., & Spach, H.L., 2017. Growth of the silverside Atherinella brasiliensis in a subtropical estuary with some insights concerning the weight-length relationship. An. Acad. Bras. Cienc. 89(3, Suppl.), 2261-2272. PMid:28746552. http://dx.doi.org/10.1590/0001-3765201720160784.

Costa, M.R., Pereira, H.H., Neves, L.M., & Araujo, F.G., 2014. Length-weight relationships of 23 fish species from Southeastern Brazil. J. Appl. Ichthyology 30(1), 230-232. http://dx.doi.org/10.1111/jai.12275.

De Graaf, G., & Janssen, H., 1996. Artificial reproduction and pond rearing of the african catfish Clarias gariepinus in Sub-Saharan Africa: a hanbook. Rome: FAO. FAO Fisheries Technical Paper.

Faria, L., Frehse, F.A., Occhi, T.V.T., Carvalho, B.M., Pupo, D.V., Disaró, S.T., & Vitule, J.R.S., 2021. Occurrence of non-native species in a subtropical coastal River, in Southern Brazil. Acta Limnol. Bras. 33, 1-6. http://dx.doi.org/10.1590/s2179-975x2320.

Froese, R., 2006. Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. J. Appl. Ichthyology 22(4), 241-253. http://dx.doi.org/10.1111/j.1439-0426.2006.00805.x.

Gubiani, E.A., Ruaro, R., Ribeiro, V.R., & Fé, Ú.M.G.D.S., 2020. Relative condition factor: le Cren’s legacy for fisheries science. Acta Limnol. Bras. 32(3), 1-9. http://dx.doi.org/10.1590/s2179-975x13017.

Haimovici, M., & Canziani, G.V., 2000. Length-weight relationship of marine fishes from Southern Brazil. Naga 23(1), 19-23.

Hilling, C.D., 2015. Evaluation of Age, Growth and Diet of Channel Catfish (Ictalurus punctatus) in Cheat Lake, West Virginia [Thesis]. West Virginia: Graduate West Virginia, West Virginia University.

Huxley, J.S., 1924. Constant differential growth-ratios and their significance. Nature 114(2877), 895-896. http://dx.doi.org/10.1038/114895a0.

Irons, K.S., Sass, G.G., McClelland, M.A., & Stafford, J.D., 2007. Reduced condition factor of two native fish species coincident with invasion of non‐native Asian carps in the Illinois River, USA Is this evidence for competition and reduced fitness? J. Fish Biol. 71, 258-273. http://dx.doi.org/10.1111/j.1095-8649.2007.01670.x.

Kaushal, S.S., Likens, G.E., Jaworski, N.A., Pace, M.L., Sides, A.M., Seekell, D., Belt, T.K., Secor, D.H., & Wingate, R.L., 2010. Rising stream and river temperatures in the United States. Front. Ecol. Environ. 8(9), 461-466. http://dx.doi.org/10.1890/090037.

Kosai, P., Sathavorasmith, P., Jiraungkoorsku, L.K., & Jiraungkoorskul, W., 2014. Morphometric characters of Nile tilapia (Oreochromis niloticus) in Thailand. WSTJ 11(10), 857-863. https://doi.org/10.2004/wjst.v11i9.909.

Laurance, W.F., 2009. Conserving the hottest of the hotspots. Biol. Conserv. 142(6), 1137. http://dx.doi.org/10.1016/j.biocon.2008.10.011.

Lawson, E.O., 2011. Physico-chemical parameters and heavy metal contents of water from the Mangrove Swamps of Lagos Lagoon, Lagos, Nigeria. Adv. Biol. Resear. 5(1), 8-21.

Le Cren, E.D., 1951. The lenght-weight relationship and seasonal cycle in gonad weight and conditions in the perch Perca fluviatilis. J. Anim. Ecol. 20(2), 201-211. http://dx.doi.org/10.2307/1540.

Lederoun, D., Lalèyè, P.A., Vreven, E.J. & Vandewalle, P. Length-weight and length-length relationships and condition factors of 30 actinopterygian fish from the Mono basin (Benin and Togo, West Africa). 2016. Cybium, 40 (4): 267-274.

Myers, N., Mittermeier, R.A., Mittermeier, C.G., Fonseca, G.A., & Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403(6772), 853-858. PMid:10706275. http://dx.doi.org/10.1038/35002501.

Naeem, M., Salam, A., Gillani, Q., & Ishtiaq, A., 2010. Length‐weight relationships of Notopterus notopterus and introduced Oreochromis niloticus from the Indus River, southern Punjab, Pakistan. J. Appl. Ichthyology 26(4), 620-620. http://dx.doi.org/10.1111/j.1439-0426.2010.01480.x.

Possamai, B., Passos, A.C., & Carvalho, B.M., 2020. Length-Weight relationships comparison between juveniles and adults of fish species from the mangrove of south Brazil. Acta Sci. Biol. Sci. 42(1), 1-7. http://dx.doi.org/10.4025/actascibiolsci.v42i1.51310.

R Core Team, 2015. R: a language and environment for statistical computing (Online). Vienna: R Foundation for Statistical Computing. Retrieved in 2021, February 10, from https://www.r-project.org/

Reis, R.E., Albert, J.S., Di Dario, F., Mincarone, M.M., Petry, P., & Rocha, L.A., 2016. Fish biodiversity and conservation in South America. J. Fish Biol. 89(1), 12-47. PMid:27312713. http://dx.doi.org/10.1111/jfb.13016.

Ribeiro, M.C., Metzger, J.P., Martensen, A.C., Ponzoni, F.J., & Hirota, M.M., 2009. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 142(6), 1141-1153. http://dx.doi.org/10.1016/j.biocon.2009.02.021.

Sánchez-González, J.R., Arbonés, A., & Casals, F., 2020. Variation over time of length–weight relationships and condition factors for four exotic fish species from a restored shallow lake in NE Iberian Peninsula. Fishes 5(1), 7. http://dx.doi.org/10.3390/fishes5010007.

Shalloof, K.A.S., & El-Far, A.M., 2017. Length-weight relationship and condition factor of some fishes from the River Nile in Egypt with special reference to four tilapia species. Egypt. J. Aquat. Biol. Fish. 21(2), 33-46. http://dx.doi.org/10.21608/ejabf.2017.3296.

Silveira, E.L., & Vaz‐dos‐Santos, A.M., 2015. Length‐weight relationships for 22 neotropical freshwater fishes from a subtropical river basin. J. Appl. Ichthyology 31(3), 552-554. http://dx.doi.org/10.1111/jai.12699.

Teixeira‐de-Mello, F., Gonzalez‐Bergonzoni, I., Viana, F., & Saizar, C., 2011. Length-weight relationships of 26 fish species from the middle section of the Negro River (Tacuarembó‐Durazno, Uruguay). J. Appl. Ichthyology 27(6), 1413-1415. http://dx.doi.org/10.1111/j.1439-0426.2011.01810.x.

Tyus, H.M., & Nikirk, N.J., 1990. Abundance, growth, and diet of channel catfish, Ictalurus punctatus, in the Green and Yampa rivers, Colorado and Utah. Southwest. Nat. 35(2), 188-198. http://dx.doi.org/10.2307/3671541.

Vaz-dos-Santos, A.M., & Gris, B., 2016. Length-weight relationships of the ichthyofauna from a coastal subtropical system: a tool for biomass estimates and ecosystem modelling. Biota Neotrop. 16(3), e20160192. http://dx.doi.org/10.1590/1676-0611-BN-2016-0192.

Vitule, J.R.S., Umbria, S.C., & Aranha, J.M.R., 2006. Introduction of the African catfish Clarias gariepinus (Burchell, 1822) into Southern Brazil. Biol. Invas. 8(4), 677-681. http://dx.doi.org/10.1007/s10530-005-2535-8.

Vitule, J.R.S., Occhi, T.V.T., Kang, B., Matsuzaki, S.-I., Bezerra, L.A., Daga, V.S., Faria, L., Frehse, F.A., Walter, F., & Padial, A.A., 2019. Intra-country introductions unraveling global hotspots of alien fish species. Biodivers. Conserv. 28(11), 3037-3043. http://dx.doi.org/10.1007/s10531-019-01815-7.

Weyl, O.L.F., Daga, V.S., Ellender, B.R., & Vitule, J.R.S., 2016. A review of Clarias gariepinus invasions in Brazil and South Africa. J. Fish Biol. 89(1), 386-402. PMid:27094809. http://dx.doi.org/10.1111/jfb.12958.
 


Submitted date:
04/10/2021

Accepted date:
02/10/2022

Publication date:
04/28/2022

626a9183a9539537e44046b4 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections