Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X2721
Acta Limnologica Brasiliensia
Thematic Section: Methods

Simple methodological approach for assessing microbial mineralization rates in an aqueous anaerobic medium

Abordagem metodológica simples para avaliação das taxas de mineralização microbiana em meio aquoso anaeróbio

Marcela Bianchessi da Cunha-Santino; Irineu Bianchini Junior

Downloads: 0
Views: 930

Abstract

Abstract:: The aim of this study was to propose and discuss a simple manometric method to quantify the emission rates of gases resulting from the microbial anaerobic mineralization of organic resources, as leaves, thin branches, and macrophyte detritus. The proposed method can be used under laboratory conditions. The method consists of using a water pressure gauge attached to the reaction flask. The incubations were prepared with samples of water from Paranapanema River and Typha domingensis, the experiment lasted 9.8 months. The procedures for preparing the incubations are presented in detail, as well as the calculations for the conversion of the volumetric measurement into carbon mass (i.e., daily rate of carbon gas emissions). According to the results obtained from T. domingensis mineralization assays it was possible to demonstrate that, numerous events related to mineralization could be adequately addressed (e.g., the heterogeneous detritus composition). The results of this method were quite convergent with those obtained in kinetic experiments (used as a reference) after the 30th mineralization day, suggesting the use of this method mainly for medium- and long-term experiments. As exemplified by T. domingensis incubations, this method is particularly valuable for the systemic comparison of the several organic resources mineralization and for the primary measurement of the main parameters involved (e.g., reaction rates constants). This method combined with other short-term experiments can greatly improve the understanding of the cycling of organic resources in aquatic environments.

Keywords

water pressure gauge, decomposition, carbon cycling, aquatic environment, greenhouse gases

Resumo

Resumo:: O objetivo deste estudo foi propor e discutir um método manométrico simples para quantificar as taxas de emissão de gases resultantes da mineralização anaeróbia microbiana de recursos orgânicos, como folhas, galhos finos e detritos de macrófitas. O método proposto pode ser usado em condições de laboratório. O método consiste na utilização de um manômetro de água acoplado ao frasco de reação. As incubações foram preparadas com amostras de água do rio Paranapanema e Typha domingensis, o experimento durou 9,8 meses. Os procedimentos para a preparação das incubações são apresentados em detalhes, bem como os cálculos para a conversão da medição volumétrica em massa de carbono (ou seja, taxa diária de emissões de gás de carbono). De acordo com os resultados obtidos da mineralização de T. domingensis foi possível demonstrar que, inúmeros eventos relacionados à mineralização podem ser adequadamente tratados (por exemplo, a composição heterogênea dos detritos). Os resultados deste método foram bastante convergentes com os obtidos em experimentos cinéticos (usado como referência) após o 30º dia de mineralização, sugerindo a utilização deste método principalmente para experimentos de médio e longo prazo. Como exemplificado com incubações de T. domingensis, este método é particularmente valioso para a comparação sistêmica da mineralização de vários recursos orgânicos e para a medição primária dos principais parâmetros envolvidos (por exemplo, constantes de reação). Este método combinado com outros experimentos de curto prazo pode melhorar muito a compreensão da ciclagem de recursos orgânicos em ambientes aquáticos.
 

Palavras-chave

método manométrico, decomposição, ciclo do carbono, ambiente aquático, gases de efeito estufa

Referencias

ANTONIO, R.M. and BIANCHINI JÚNIOR, I. Fatores ambientais e formação de gases dos sedimentos da lagoa do Infernão. In: J.E. SANTOS and J.S.R. PIRES, eds. Estudos integrados em ecossistemas - estação ecológica de jataí. São Carlos: Rima, 2000, pp. 695-706, vol. 2.

BÄRLOCHER, F. Leaching. In: M.A.S. GRAÇA, F. BÄRLOCHER and M. GESSNER, eds. Methods to study litter decomposition: a practical guide. Dordrecht: Springer, 2005b, pp. 33-36. http://dx.doi.org/10.1007/1-4020-3466-0_5.

BÄRLOCHER, F. Leaf mass loss estimated by litter bag technique. In: M.A.S. GRAÇA, F. BÄRLOCHER and M. GESSNER, eds. Methods to study litter decomposition: a practical guide. Dordrecht: Springer, 2005a, pp. 37-42. http://dx.doi.org/10.1007/1-4020-3466-0_6.

BÄRLOCHER, F. Pitfalls of traditional techniques when studying decomposition of vascular plant remains in aquatic habitats. Limnetica, 1997, 13, 1-11.

BASHKIN, V.N. Modern biogeochemistry. Dordrecht: Kluwer Academic Publishers, 2002.

BIANCHINI JÚNIOR, I. and ANTONIO, R.M. Formação anaeróbia de gases dos sedimentos da lagoa do Infernão e do reservatório do Monjolinho. In: J.E. SANTOS and J.S.R. PIRES, eds. Estudos integrados em ecossistemas - estação ecológica de jataí. São Carlos: Rima, 2000, pp. 685-694.

BIANCHINI JÚNIOR, I. and CUNHA-SANTINO, M.B. Model parameterization for aerobic decomposition of plant resources drowned during man-made lakes formation. Ecologcal Modelling, 2011, 222(7), 1263-1271.

BIANCHINI JÚNIOR, I. and CUNHA-SANTINO, M.B. The effect of the size of particles on mineralization of Oxycaryum cubense (Poepp. & Kunth) Lye. Brazilian Journal of Biology = Revista Brasileira de Biologia, 2006, 66(2b), 641-650.

BIANCHINI JÚNIOR, I. Modelos de crescimento e decomposição de macrófitas aquáticas. In: S.M. TOMAZ and L.M. BINI, eds. Ecologia e Manejo de Macrófitas Aquáticas. Maringá: EdUEM, 2003, pp. 85-126.

BIANCHINI JÚNIOR, I., ANTONIO, R.M. and MOURA, L.F. On the manometric method for estimating the anaerobic mineralization in aquatic ecosystems: kinetic and methodological aspects. Brazilian Journal of Microbiology, 1997, 28, 83-90, Supplement 1.

BOWIE, G.L., MILLS, W.B., PORCELLA, D.B., CAMPBELL, C.L., PAGENKOPF, J.R., RUPP, G.L., JOHNSON, K.M., CHAN, P.W.H., GHERINI, S.A. and CHAMBERLIN, C.E. Rates, constants, and kinetics formulations in surface water quality modeling - EPA/600/3–85/040. 2nd ed. Washington, DC: US Environmental Protection Agency, 1985.

CHAPMAN, S.K., HAYES, M.A., KELLY, B. and LANGLEY, J.A. Exploring the oxygen sensitivity of wetland soil carbon mineralization. Biology Letters, 2019, 15(1), 20180407. http://dx.doi.org/10.1098/rsbl.2018.0407. PMid:30958210.

CUNHA-SANTINO, M.B. and BIANCHINI JÚNIOR, I. Effects of detritus chemical composition on the anaerobic mineralization of Salvinia auriculata and Utricularia breviscapa. Acta Limnologica Brasiliensia, 2015, 27(2), 202-212. http://dx.doi.org/10.1590/S2179-975X2913.

CUNHA-SANTINO, M.B. and BIANCHINI JÚNIOR, I. The aerobic and anaerobic decomposition of Typha domingensis Pers. Acta Limnologica Brasiliensia, 2006, 18(3), 321-334.

CUNHA-SANTINO, M.B., BITAR, A.L. and BIANCHINI JÚNIOR, I. Gas emission from anaerobic decomposition of plant resources. Acta Limnologica Brasiliensia, 2016, 28(0), e30. http://dx.doi.org/10.1590/s2179-975x1616.

CUNHA-SANTINO, M.B., PACOBAHYBA, L.D. and BIANCHINI JÚNIOR, I. Decomposition of aquatic macrophytes from Cantá Stream (Roraima, Brazil): kinetics approach. Acta Limnologica Brasiliensia, 2010, 22(2), 237-246. http://dx.doi.org/10.1590/S2179-975X2010000200012.

DALMAGRO, H.J., JOHNSON, M.S., MUSIS, C.R., LATHUILLIÈRE, M.J., GRAESSER, J., PINTO-JÚNIOR, O.B. and COUTO, E.G. Spatial patterns of DOC concentration and DOM optical properties in a Brazilian tropical river-wetland system. Journal of Geophysical Research. Biogeosciences, 2017, 122(8), 1883-1902. http://dx.doi.org/10.1002/2017JG003797.

FONSECA, A.L.S., BIANCHINI JÚNIOR, I., PIMENTA, C.M.M., MANGIAVACCHI, N. and SOARES, C.B.P. Kinetics of aerobic decomposition in the leaching phase of allochthonous plant detritus. Acta Limnologica Brasiliensia, 2014, 26(1), 89-97. http://dx.doi.org/10.1590/S2179-975X2014000100010.

GREEN, S.J., PRAKASH, O., GIHRING, T.M., AKOB, D.M., JASROTIA, P., JARDINE, P.M., WATSON, D.B., BROWN, S.D., PALUMBO, A.V. and KOSTKA, J.E. Denitrifying bacteria isolated from terrestrial subsurface sediments exposed to mixed-waste contamination. Applied and Environmental Microbiology, 2010, 76(10), 3244-3254. http://dx.doi.org/10.1128/AEM.03069-09. PMid:20305024.

HEITKAMP, F., JACOBS, A., JUNGKUNST, H.F., HEINZE, S., WENDLAND, M. and KUZYAKOV, Y. Processes of soil carbon dynamics and ecosystem carbon cycling in a changing world. In: R. LAL, K. LORENZ, R.F. HÜTTL, B.U. SCHNEIDER and J. VON BRAUN, eds. Recarbonization of the biosphere: ecosystems and the global carbon cycle. Dordrecht: Springer, 2012, pp. 395-428. http://dx.doi.org/10.1007/978-94-007-4159-1_18

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE – IPCC. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. Switzerland: IPCC, 2014.

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE – IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Switzerland: IPCC, 2019.

JENNY, H., GESSEL, S.P. and BINGHAM, F.T. Comparative study of decomposition rates of organic matter in temperate and tropical regions. Soil Science, 1949, 68(6), 419-432. http://dx.doi.org/10.1097/00010694-194912000-00001.

LANGMUIR, D. Aqueous environmental geochemistry. Upper Saddle River: Prentice Hall, 1997.

LITTLE, E.C.S. Handbook of utilization of aquatic plants - Fisheries Technical Paper No. 187 (FIRI/T187). Rome: FAO, 1979.

MEGONIGAL, J.P., HINES, M.E. and VISSCHER, P.T. Anaerobic metabolism: linkages to trace gases and aerobic processes. In: W.H. SCHLESINGER, ed. Biogeochemistry. Oxford: Elsevier-Pergamon, 2004, pp. 317-424.

OHLE, W. Measuring the evolution rate of gases in bottom sediment. In: Y.I. SOROKIN and H. KADOTA, eds. Techniques for the assessment of microbial production and decomposition in fresh water IBP nº 23. Oxford: Blackwell, 1972, pp. 29-33.

PASSERINI, M.D., CUNHA-SANTINO, M.B. and BIANCHINI JÚNIOR, I. Oxygen availability and temperature as driving forces for decomposition of aquatic macrophytes. Aquatic Botany, 2016, 130, 1-10. http://dx.doi.org/10.1016/j.aquabot.2015.12.003.

PHILBEN, M., ZHANG, L., YANG, Z., TAŞ, N., WULLSCHLEGER, S.D., GRAHAM, D.E. and GU, B. Anaerobic respiration pathways and response to increased substrate availability of Arctic wetland soils. Environmental Science: Processes & Impacts, 2020, 22(10), 2070-2083. http://dx.doi.org/10.1039/D0EM00124D. PMid:33084697.

REDDY, K.R. and DELAUNE, R.D. Biochemistry of wetlands - science and applications. Boca Raton: CRC Press, 2008. http://dx.doi.org/10.1201/9780203491454.

SANDERMAN, J. and AMUNDSON, R. Biogeochemistry of decomposition and detrital processing. In: W.H. SCHLESINGER ed. Biogeochemistry. Oxford: Elsevier-Pergamon, 2004. pp. 249-316.

SAUNDERS, G.W. Decomposition in fresh water. In: J.M. ANDERSON and A. MACFADYEN eds. The role of terrestrial and aquatic organisms in decomposition processes. Oxford: Blackwell, 1976, pp. 341-373.

SILVA, D.S., CUNHA-SANTINO, M.B., MARQUES, E.E. and BIANCHINI JÚNIOR, I. The decomposition of aquatic macrophytes: bioassays versus in situ experiments. Hydrobiologia, 2011, 665(1), 219-227. http://dx.doi.org/10.1007/s10750-011-0625-4.

STEINBERG, C.E.W. Ecology of humic substances in freshwaters: determinants from geochemistry to ecological niches. Berlin: Springer, 2003. http://dx.doi.org/10.1007/978-3-662-06815-1.

SWIFT, M.J., HEAL, O.W. and ANDERSON, J.M. Decomposition in terrestrial ecosystems. Oxford: Blackwell, 1979.

YAN, J., WANG, L., HU, Y., TSANG, Y.F., ZHANG, Y., WU, J., FU, X. and SUN, Y. Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability. Geoderma, 2018, 319, 194-203. http://dx.doi.org/10.1016/j.geoderma.2018.01.009.

YARWOOD, S.A. The role of wetland microorganisms in plant-litter decomposition and soil organic matter formation: a critical review. FEMS Microbiology Ecology, 2018, 94(11), fiy175. http://dx.doi.org/10.1093/femsec/fiy175. PMid:30169564.
 


Submitted date:
06/04/2021

Accepted date:
16/08/2021

Publication date:
13/09/2021

613faad6a953954417136a03 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections