Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X2624
Acta Limnologica Brasiliensia
Seção Temática: Simpósio de Zooplâncton Neotropical

Environmental heterogeneity in wetlands increases alpha and beta diversity of cladocerans (Crustacea, Branchiopoda) at local and regional scale

A heterogeneidade ambiental em áreas úmidas aumenta a diversidade alfa e beta de cladóceros (Crustacea, Branchiopoda) em escala local e regional

Francisco Diogo Rocha Sousa; Lourdes Maria Abdu Elmoor-Loureiro; Luciana Mendonça-Galvão; Nadson Ressyé Simões

Downloads: 2
Views: 111

Abstract

Aim: The goal of this study was to investigate the effect of habitat heterogeneity on diversity on a local and regional scale. We tested two hypotheses: (i) the habitat diversity, given by quantity of microhabitat by macrophytes richness, increases the alpha diversity of organisms that live in those environments; (ii) the habitat heterogeneity, given by compositional difference of microhabitat, increases the beta diversity of organisms that live in those environments.

Methods: Samples contained cladocerans and macrophytes were collected in six wetlands from the Brazil Central during dry and rainy seasons, in Brazilian National Park (BNP) and Formosa Instruction Field (FIF).

Results: In local scale (wetlands) the number of macrophyte morphospecies shows the positive effect on alpha diversity of cladoceran; the compositional difference of the microhabitat positively affected the beta diversity in three wetlands studied. In regional scale, the number of macrophyte morphospecies showed the positive effect on alpha diversity; the beta diversity was higher in the BNP than in the FIF.

Conclusions: Our findings suggest that the species richness and dissimilarity of aquatic macrophytes increased to alpha and beta diversity of cladocerans on the local and regional scales. Thus, cladocerans richness was correlated with the number of microhabitats and the variability between microhabitats in wetlands.

 

Keywords

 Chydoridae, microcrustaceans, microhabitats, wetland

Resumo

Objetivo: O objetivo deste estudo foi investigar o efeito da heterogeneidade do habitat na diversidade de cladóceros em escala local e regional. Nós testamos duas hipóteses: (i) a diversidade de habitat, dada pela quantidade de microhabitat, amenta a diversidade alfa de organismos que vivem nesses ambientes; (ii) a heterogeneidade de microhabitat, dada pela diferença de composição do microhabitat, aumenta a diversidade beta dos organismos que vivem nesses ambientes.

Métodos: Amostras de cladóceros e de macrófitas foram coletadas em seis áreas úmidas do Brasil Central, durante as estações seca e chuvosa, no Parque Nacional de Brasília (BNP) e no Campos de Instrução de Formosa (FIF).

Resultados: Em escala local (áreas úmidas), o número de morfoespécies de macrófitas mostrou um efeito positivo na diversidade alfa de cladóceros; a diferença de composição do microhabitat afetou positivamente a diversidade beta em três áreas úmidas estudadas. Em escala regional, o número de morfoespécies de macrófitas mostrou efeito positivo na diversidade alfa; a diversidade beta foi maior em BNP do que em FIF.

Conclusões: Nossos resultados indicam que a riqueza e dissimilaridade de espécies de macrófitas aquáticas aumentaram a diversidade alfa e beta de cladóceros em escala local e regional. Assim, a riqueza de cladóceros foi correlacionada ao número e a variabilidade de microhabitats em áreas úmidas.

Palavras-chave

Chydoridae, microcrustáceos, microhabitats, áreas úmida

Referências

Agostinho, A.A., Thomaz, S.M., Gomes, L.C., & Baltar, S.L.S.M.A., 2007. Influence of the macrophyte Eichhornia azurea on fish assemblage of the Upper Paraná River floodplain (Brazil). Aquat. Ecol. 41(4), 611-619. http://doi.org/10.1007/s10452-007-9122-2.

Anderson, M.J., Ellingsen, K.E., & McArdle, B.H., 2006. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9(6), 683-693. http://doi.org/10.1111/j.1461-0248.2006.00926.x.

American Public Healht Association – APHA, 2005. Standard methods for examination of water and wastewater. 21. ed. Washington: American Public Healht Association.

Boix, D., Gascón, S., Sala, J., Badosa, A., Brucet, S., López-Flores, R., Martinoy, M., Gifre, J., & Quintana, X.D., 2008. Patterns of composition and species richness crustaceans and aquatic insects along environmental gradients in Mediterranean water bodies. Hydrobiologia 597(1), 53-69. http://doi.org/10.1007/s10750-007-9221-z.

Braghin, L.S.M., Simões, N.R., & Bonecker, C.C., 2016. Hierarchical effects of local factors on zooplankton species diversity. Inland Waters 6(4), 645-654. http://doi.org/10.1080/IW-6.4.919.

Buosi, P.R.B., Pauleto, G.M., Lansac-Tôha, F.A., & Velho, L.F.M., 2011. Ciliate community associated with aquatic macrophyte roots: effects of nutrient enrichment on the community composition and species richness. Eur. J. Protistol. 47(2), 86-102. PMid:21353502. http://doi.org/10.1016/j.ejop.2011.02.001.

Burks, R.L., Jeppesen, E., & Lodge, D.M., 2002. Littoral zone structures as Daphnia refugia against fish predators. Limnol. Oceanogr. 46(2), 230-237. http://doi.org/10.4319/lo.2001.46.2.0230.

Castilho-Noll, M.S.M., Câmara, C.F., Chicone, M.F., & Shibata, E.H., 2010. Pelagic and littoral cladocerans (Crustacea, Anomopoda and Ctenopoda) from reservoirs of the Northwest of São Paulo State, Brazil. Biota Neotrop. 10(1), 21-30. http://doi.org/10.1590/S1676-06032010000100001.

Céréghino, R., Biggs, J., Oertli, B., & Declerck, S., 2008. The ecology of European ponds: defining the characteristics of a neglected freshwater habitat. Hydrobiologia 597(1), 1-6. http://doi.org/10.1007/s10750-007-9225-8.

Choi, J.Y., Jeong, K.S., La, G.H., & Joo, G.J., 2014. Effect of removal of free-floating macrophytes on zooplankton habitat in shallow wetland. Knowl. Manag. Aquat. Ecosyst. 414(414), 1-10. http://doi.org/10.1051/kmae/2014023.

Cronk, J.K., & Fennessy, M.S., 2001. Wetland plants: biology and ecology, London: Lewis.

Deosti, S., de Fátima Bomfim, F., Lansac-Tôha, F.M., Quirino, B.A., Bonecker, C.C., & Lansac-Tôha, F.A., 2021. Zooplankton taxonomic and functional structure is determined by macrophytes and fish predation in a Neotropical river. Hydrobiologia 848(7), 1475-1490. http://doi.org/10.1007/s10750-021-04527-8.

Elmoor-Loureiro, L.M.A., 2007. Phytophilous cladocerans (Crustacea, Anomopoda and Ctenopoda) from Paranã River Valley, Goiás, Brazil. Rev. Bras. Zool. 24(2), 344-352. http://doi.org/10.1590/S0101-81752007000200012.

Espinosa-Rodríguez, C.A., Sarma, S.S.S., & Nandini, S., 2021. Zooplankton community changes in relation to different macrophyte species: effects of Egeria densa removal. Ecohydrol. Hydrobiol. 21(1), 153-163. http://doi.org/10.1016/j.ecohyd.2020.08.007.

Fonseca, B.M., & Mendonça-Galvão, L., 2014. Pristine aquatic systems in a long term ecological research (LTER) site of the Brazilian Cerrado. Environ. Monit. Assess. 186(12), 8683-8695. PMid:25200993. http://doi.org/10.1007/s10661-014-4035-8.

Fonseca, B.M., Mendonça-Galvão, L., Sousa, F.D.R., Elmoor-Loureiro, L.M.A., Gomes-e-Souza, M.B., Pinto, R.L., Petracco, P., Oliveira, R.C., & Jesus Lima, E., 2018. Biodiversity in pristine wetlands of Central Brazil: a multi-taxonomic approach. Wetlands 38(1), 145-156. http://doi.org/10.1007/s13157-017-0964-7.

Forró, L., Korovichinsky, N.M., Kotov, A.A., & Petrusek, A., 2008. Global diversity of cladocerans (Cladocera; Crustacea) in freshwater. Hydrobiologia 595(1), 177-184. http://doi.org/10.1007/s10750-007-9013-5.

Gebrehiwot, M., Kifle, D., & Triest, L., 2017. Emergent macrophytes support zooplankton in a shallow tropical lake: a basis for wetland conservation. Environ. Manage. 60(6), 1127-1138. PMid:28887591. http://doi.org/10.1007/s00267-017-0935-z.

Geralds, A.M., & Boavida, M.J., 2004. Do littoral macrophytes influence crustacean zooplankton distribution? Limnetica 23(1), 57-64. http://doi.org/10.23818/limn.23.05.

Gledhill, D.G., James, P., & Davies, D.H., 2008. Pond density as a determinant of aquatic species richness in an urban landscape. Landsc. Ecol. 23(10), 1219-1230. http://doi.org/10.1007/s10980-008-9292-x.

Hann, B.J., & Turner, M.A., 2000. Littoral microcrustaceans in Lake 302s in the Experimental lakes area of Canada: acidification and recovery. Freshw. Biol. 43(1), 133-146. http://doi.org/10.1046/j.1365-2427.2000.00528.x.

Hansen, J.P., Wikstrom, S.A., Axemar, H., & Kautsky, L., 2011. Distribution differences and active habitat choices of invertebrates between macrophytes of different morphological complexity. Aquat. Ecol. 45(1), 11-22. http://doi.org/10.1007/s10452-010-9319-7.

Hinojosa-Garro, D., Mason, C.F., & Underwood, G.J.C., 2010. Influence of macrophyte spatial architecture on periphyton and macroinvertebrate community structure in shallow water bodies under contrasting land management. Fundam. Appl. Limnol. 177(1), 19-37. http://doi.org/10.1127/1863-9135/2010/0177-0019.

Hornung, J.P., & Foote, A.L., 2006. Aquatic invertebrate responses to fish presence and vegetation complexity in western boreal wetlands, with implications for waterbird productivity. Wetlands 26(1), 1-12. http://doi.org/10.1672/0277-5212(2006)26[1:AIRTFP]2.0.CO;2.

Kuczyńska-Kippen, N., & Joniak, T., 2016. Zooplankton diversity and macrophyte biometry in shallow water bodies of various trophic state. Hydrobiologia 774(1), 39-51. http://doi.org/10.1007/s10750-015-2595-4.

Kuczynska-Kippen, N., 2009. The impact of differentiated habitat on crustacean community structure in macrophyte-dominated lakes in the Wielkopolska region, Poland. In: Proceedings of the Conference Wuham. Wuham.

Lucena-Moya, P., & Duggan, I.C., 2011. Macrophyte architecture affects the abundance and diversity of littoral microfauna. Aquat. Ecol. 45(2), 279-287. http://doi.org/10.1007/s10452-011-9353-0.

Meerhoff, M., Iglesias, C., Mello, F.T., Clemente, J.M., Jensen, E., Lauridsen, T.L., & Jeppesen, E., 2007. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshw. Biol. 52(6), 1009-1021. http://doi.org/10.1111/j.1365-2427.2007.01748.x.

Munhoz, C.B.R., Eugênio, C.U.O., & Oliveira, R.C., 2011. Vereda: Guia de Campo. Brasília: Rede de Sementes do Cerrado.

Nogueira, M.G., George, D.G., & Jorcin, A., 2003. Estudo do zooplâncton em zonas litorâneas lacustres: um enfoque metodológico. In: Henry, R., ed. Ecótonos na interface dos ecossistemas aquáticos. São Carlos: Rima, 83-128.

Padial, A.A., Thomaz, S.M., & Agostinho, A.A., 2009. Effects of structural heterogeneity provided by the floating macrophyte Eichhornia azurea on the predation efficiency and habitat use of the small Neotropical fish Moenkhausia sanctaefilomenae. Hydrobiologia 624(1), 161-170. http://doi.org/10.1007/s10750-008-9690-8.

Pelicice, F.M., Thomaz, S.M., & Agostinho, A.A., 2008. Simple relationships to predict attributes of fish assemblages in patches of submerged macrophytes. Neotrop. Ichthyol. 6(4), 543-550. http://doi.org/10.1590/S1679-62252008000400001.

Pott, V.J., & Pott, A., 2000. Plantas aquáticas do Pantanal. Brasília: Embrapa.

Quirino, B.A., Mello, F.T., Deosti, S., Bonecker, C.C., Cardozo, A.L.P., Yofukuji, K.Y., Aleixo, M.H.F., & Fugi, R., 2021. Interactions between a planktivorous fish and planktonic microcrustaceans mediated by the biomass of aquatic macrophytes. J. Plankton Res. 43(1), 46-60. http://doi.org/10.1093/plankt/fbaa061.

Reid, J.W., 1984. Semiterrestrial meiofauna inhabiting a wet campo in central Brazil, with special reference to the Copepoda (Crustacea). Hydrobiologia 118(1), 95-111. http://doi.org/10.1007/BF00031792.

Reid, J.W., 1987. The cyclopoid copepods of a wet campo marsh in central Brazil. Hydrobiologia 153(2), 121-138. http://doi.org/10.1007/BF00006644.

Reid, J.W., 1993. The Harpacticoid and cyclopoid copepod fauna in the cerrado region of central Brazil. 1. Species composition, habitats, and zoogeography. Acta Limnol. Bras. 6, 56-68.

Rennie, M.D., & Jackson, L.J., 2005. The influence of habitat complexity on littoral invertebrate distributions: patterns differ in shallow prairie lakes with and without fish. Can. J. Fish. Aquat. Sci. 62(9), 2088-2099. http://doi.org/10.1139/f05-123.

Sakuma, H., & Hanazato, T., 2002. Abundance of Chydoridae associated with plant surfaces, water column and bottom sediments in the macrophyte zone of a lake. Verh. Int. Ver. Theor. Angew. Limnol. 28(2), 975-979. http://doi.org/10.1080/03680770.2001.11901862.

Scheffer, M., Zimmer, K., Jepessen, E., Søndengaard, M., Butler, M.G., Hanson, M.A., Declerck, S., & De Meester, L., 2006. Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds. Oikos 121(1), 227-231. http://doi.org/10.1111/j.0030-1299.2006.14145.x.

Schwarzbold, A., 1990. Métodos biológicos aplicados ao estudo do perifíton. Acta Limnol. Bras. 3, 545-592.

Shmida, A., & Wilson, M.V., 1985. Biological determinants of species diversity. J. Biogeogr. 12(1), 1-20. http://doi.org/10.2307/2845026.

Smirnov, N.N., 1992. The Macrothricidae of the world. Amsterdam: SPB Academic Publishing.

Smirnov, N.N., 1996. Cladocera: the chydorinae and sayciinae (Chydoridae) of the world. Amsterdam: SPB Academic Publishing.

Sousa, F.D.R., & Elmoor-Loureiro, L.M.A., 2008. Phytopilous cladocerans (Crustacea, Branchiopoda) of the Parque Nacional das Emas, State of Goiás. Biota Neotrop. 8, 159-166. http://doi.org/10.1590/S1676-06032008000100019.

Sousa, F.D.R., 2012. Diversidade da fauna de Cladocera (Crustacea, Branchiopoda) associada a‘ macrófitas em áreas úmidas naturais do Cerrado do Brasil Central [Master’s thesis in Ecology]. Brasília: University of Brasília.

Sousa, F.D.R., Elmoor-Loureiro, L.M.A., & Souza, M.B.G., 2009. A contribution to the fauna of Cladocera (Branchiopoda) from Ceará state, Brazil. Nauplius 17, 101-105.

Sousa, F.D.R., Elmoor-Loureiro, L.M.A., Mendonça-Galvão, L., & Pujol-Luz, J.R., 2014. Evaluation of a new sampling method for assessing Cladocera richness (Crustacea, Branchiopoda) in macrophyte-rich wetlands. Ann. Limnol. 50(2), 143-153. http://doi.org/10.1051/limn/2014007.

Thomaz, S.M., & Cunha, E.R., 2010. The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnol. Bras. 22(2), 218-236. http://doi.org/10.4322/actalb.02202011.

Thomaz, S.M., Dibble, E.D., Evangelista, L.R., Higuti, J., & Bini, L.M., 2008. Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshw. Biol. 53(2), 358-367. http://doi.org/10.1111/j.1365-2427.2007.01898.x.

Trochine, C., Modenutti, B.E., & Balseiro, E.G., 2009. Chemical signals and habitat selection by three zooplankters in Andean Patagonian ponds. Freshw. Biol. 54(3), 480-494. http://doi.org/10.1111/j.1365-2427.2008.02125.x.

Vieira, L.C.G., Bini, L.M., Velho, L.F.M., & Mazão, G.R., 2007. Influence of spatial complexity on the density and diversity of periphytic rotifers, microcrustaceans and testate amoebae. Fundam. Appl. Limnol. 170(1), 77-85. http://doi.org/10.1127/1863-9135/2007/0170-0077.

Walseng, B., Hessen, D.O., Halvorsen, G., & Schartau, A.K., 2006. Major contribution from littoral crustaceans to zooplankton species richness in lakes. Limnol. Oceanogr. 51(6), 2600-2606. http://doi.org/10.4319/lo.2006.51.6.2600.

Whiteside, M.C., & Harmsworth, R.V., 1967. Species diversity in Chydoridae (Cladocera) communities. Ecology 48(4), 664-667. http://doi.org/10.2307/1936514.
 


Submetido em:
18/03/2024

Aceito em:
31/10/2024

Publicado em:
07/02/2025

67a6297ba953955a9604d296 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections