Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X2424
Acta Limnologica Brasiliensia
Original Article

Review of biomonitoring metals in rivers using bullfrog tadpoles: an applicability study of exposed animals to Sorocaba River

Revisão do biomonitoramento de metais em rios utilizando girinos de rã-touro: um estudo de aplicabilidade de animais expostos ao rio Sorocaba

Victor Holanda Arjonas; Isabela Ferreira Fernandes; Mayara de Almeida Ribeiro Carvalho; Luciana Camargo de Oliveira; Heidi Samantha Moraes Utsunomiya; Gabriel Hiroshi Fujiwara; Cleoni dos Santos Carvalho

Downloads: 0
Views: 63

Abstract

Aim: This study reviewed recent literature on the use of the bullfrog species (Aquarana catesbeiana, Shaw, 1802) as an environmental bioindicator of pollution. Additionally, the total concentration of metals in the skin of bullfrog tadpoles exposed to the Sorocaba River was evaluated to explore the potential of this tissue as a biomonitoring tool and assess the bioavailability of metals in the river to aquatic organisms.

Methods: A bibliographic review was conducted using the Scopus and PubMed platforms with the search terms “Lithobates catesbeianus biomarkers,” “Aquarana catesbeiana biomarkers,” and “Rana catesbeiana biomarkers.” Tadpoles were exposed for 96 hours to water from two points along the Sorocaba River: Point Ibiúna (PI), representing the river's source, and Point Itupararanga Reservoir (PIR), a key water supply location for the Sorocaba-SP region. Deionized, contaminant-free water served as the control. Metal concentrations (Ba, Cu, Mn, Sr, and Zn) in skin samples (n=30) were analyzed after sample digestion using HNO3 and HCl, with determination via Microwave Plasma Atomic Emission Spectrometer (MP-AES).

Results: A review of the last 10 years of bibliographic production revealed 35 articles, where metals were the second most studied contaminant using this species (approximately 34% of articles), following agricultural pesticides (43%). Metal concentrations of Ba and Zn in the PI group varied compared to the control group. For the PIR group, Mn concentrations varied significantly relative to both the control and PI groups. No significant variation in Cu and Sr concentrations was observed across the groups.

Conclusions: Existing literature supports the use of various bullfrog tissues as bioindicators of environmental pollution. In this study, Ba concentrations increased by 12% and Mn by 54% in the PIR group compared to the PI group. No differences were observed for Cu, Sr, and Zn across groups. Metals such as As, Cd, Co, Mo, Ni, and Pb were below the quantification limit in all groups. The increased Mn concentration in PIR-exposed tadpoles suggests metal accumulation, pointing to a potential decline in water quality downstream from the river's source.

Keywords

environmental monitoring; metallic pollution; amphibians

Resumo

Objetivo: Neste estudo foi avaliada a bibliografia recente sobre o uso da espécie de rã-touro Aquarana catesbeiana (Shaw, 1802) como bioindicador ambiental e a concentração total de metais na pele de girinos de rã-touro expostos às águas do rio Sorocaba, a fim de avaliar o potencial uso do tecido como ferramenta de biomonitoramento ambiental e a disponibilidade de metais no Rio Sorocaba para os animais.

Métodos: A bibliografia recente foi avaliada através das plataformas Scopus e Pubmed utilizando os termos “Lithobates catesbeianus biomarkers”, “Aquarana catesbeiana biomarkers” e “Rana catesbeiana biomarkers”. Os girinos foram expostos por 96 horas às águas de 2 pontos do Rio Sorocaba, sendo o ponto Ibiúna (PI) representando a nascente do Rio Sorocaba e o ponto Represa de Itupararanga (PIR) representando um importante ponto de abastecimento de água para região da cidade de Sorocaba-SP. Foi utilizada água deionizada livre de contaminantes como controle. A avaliação da concentração dos metais Ba, Cu, Mn, Sr e Zn nas amostras de pele (n=30) foi realizada após digestão das amostras em sistema fechado utilizando HN3 e HCl e determinação em Espectrômetro de Emissão Atômica por Plasma de Microondas (MP-AES).

Resultados: A revisão da produção bibliográfica dos últimos 10 anos resultou em 35 artigos sobre o tema, onde os metais foram o segundo contaminante mais estudado utilizando esta espécie (cerca de 34% dos artigos), atrás apenas dos defensivos agrícolas (cerca de 43% dos artigos). A concentração dos metais Ba e Zn no grupo PI variou em relação ao grupo controle, e a concentração de Mn no grupo PIR variou em relação ao grupo controle e em relação ao grupo exposto às águas do grupo PI. Para os metais Cu e Sr não houve variação significativa entre os grupos.

Conclusões: A bibliografia existente demonstra a capacidade de utilização de diversos tecidos de girinos de rã-touro como bioindicadores ambientais. Foi identificado o aumento de Ba (12%) e Mn (54%) no grupo PIR em relação ao grupo PI na pele dos girinos. Para os metais Cu, Sr e Zn não houve diferença entre os grupos. As, Cd, Co, Mo, Ni e Pb tiveram resultados abaixo do limite de quantificação nos grupos estudados. O aumento da concentração de Mn na pele dos girinos de rã-touro expostos às águas do reservatório de Itupararanga em relação ao grupo exposto às águas de Ibiúna pode indicar o acúmulo deste, apontando para piora na qualidade da água em relação ao ponto inicial do curso do rio.

Palavras-chave

monitoramento ambiental; poluição metálica; anfíbios

References

Amaral, D.F., Montalvão, M.F., Mendes, B.O., Araújo, A.P.C., Rodrigues, A.S.L., & Malafaia, G., 2019. Sub-lethal effects induced by a mixture of different pharmaceutical drugs in predicted environmentally relevant concentrations on Lithobates catesbeianus (Shaw, 1802) (Anura, Ranidae) tadpoles. Environ. Sci. Pollut. Res. Int. 26(1), 600-616. PMid:30411290. http://doi.org/10.1007/s11356-018-3656-9.

Amaral, D.F., Montalvão, M.F., Mendes, B.O., Castro, A.L.S., & Malafaia, G., 2018. Behavioral and mutagenic biomarkers in tadpoles exposed to different abamectin concentrations. Environ. Sci. Pollut. Res. Int. 25(13), 12932-12946. PMid:29478167. http://doi.org/10.1007/s11356-018-1562-9.

American Society for Testing and Materials – ASTM, 2000. ASTM E729-96: standard guide for conducting acute toxicity tests on test materials with fishes, macroinvertebrates, and amphibians. Philadelphia, PA: ASTM.

American Veterinary Medical Association – AVMA, 2001. Report of the AVMA panel on euthanasia. J. Am. Vet. Med. Assoc. 218(5), 669-696. PMid:11280396. http://doi.org/10.2460/javma.2001.218.669.

Bing, 2024. Retrieved in 2024, March 15, from https://www.bing.com/

Carvalho, C.S., Utsunomiya, H.S.M., Pasquoto, T., Lima, R., Jones-Costa, M., & Fernandes, M.N., 2016. Blood cell responses and metallothionein in the liver, kidney and muscles of bullfrog tadpoles, Lithobates catesbeianus, following exposure to different metals. Environ. Pollut. 221, 445-452. PMid:27989390. http://doi.org/10.1016/j.envpol.2016.12.012.

Conceição, F.T., Sardinha, D.S., Godoy, L.H., Fernandes, A.M., & Pedrazzi, F., 2011. Influência sazonal no transporte específico de metais totais e dissolvidos nas águas fluviais da Bacia do Alto Sorocaba (SP). Geochim. Bras. 29(1), 23-34.

Dornelles, M.F., & Oliveira, G.T., 2014. Effect of Atrazine, Gliphosate and Quinclorac on biochemical parameters, lipid peroxidation and survival in bullfrog tadpoles (Lithobates catesbeianus). Arch. Environ. Contam. Toxicol. 66(3), 415-429. PMid:24276472. http://doi.org/10.1007/s00244-013-9967-4.

Fernandes, I.F., Utsunomiya, H.S.M., Valverde, B.S.L., Ferraz, J.V.C., Fujiwara, G.H., Gutierres, D.M., Oliveira, C., Franco-Belussi, L., Fernandes, M.N., & Carvalho, C.S., 2021. Ecotoxicological evaluation of water from the Sorocaba River using an integrated analysis of biochemical and morphological biomarkers in bullfrog tadpoles, Lithobates catesbeianus (Shaw, 1802). Chemosphere 275, 130000. PMid:33667769. http://doi.org/10.1016/j.chemosphere.2021.130000.

Fernandes, N.L., Rocha, G.P., Teixeira, J.R.F., Correa, S.M., & Lavatori, M.P.A., 2016. Implantação de metodologia aplicada ao monitoramento de metais em ostras, como sentinela da contaminação de Zn e Cd na Baía de Sepitiba/RJ. Interfaces Cient. Saude Ambient. Online 5(1), 27-38. http://doi.org/10.17564/2316-3798.2016v5n1p27-38.

Frascarelli, D., Silva, S.C., Chaves, A.P., & Carlos, V.M., 2016. Qualidade da água do Rio Sorocaba (Sorocaba, SP) e sensibilizações educacionais nas escolas públicas municipais. Ambient. Educ. (Online) 21(1), 195-213. Retrieved in 2024, March 15, from https://periodicos.furg.br/ambeduc/article/view/5978/3979

Gagnow, M.M., & Rawson, C., 2017. Bioindicator species for EROD activity measurements: a review with Australian fish as a case study. Ecol. Indic. 73, 166-180. http://doi.org/10.1016/j.ecolind.2016.09.015.

Girotto, L., Espíndola, E.L.G., Gebara, R.C., & Freitas, J.S., 2020. Acute and chronic effects on tadpoles (Lithobates catesbeianus) exposed to mining tailings from the Dam rupture in Mariana, MG (Brazil). Water Air Soil Pollut. 231(7), 325. http://doi.org/10.1007/s11270-020-04691-y.

Gosner, K., 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica (Online) 16(3), 183-190. Retrieved in 2024, March 15, from https://www.jstor.org/stable/3890061

Gregorio, L., Franco-Belussi, L., & Oliveira, C., 2019. Genotoxic effects of 4-nonylphenol and Cyproterone Acetate on Rana catesbeiana (Anura) tadpoles and juveniles. Environ. Pollut. 251, 879-884. PMid:31234253. http://doi.org/10.1016/j.envpol.2019.05.076.

Grott, S.C., Israel, N.G., Bitschinski, D., Abel, G., Carneiro, F., Alves, T.C., & Almeida, E.A., 2022. Influence of the temperature on biomarker responses of bullfrog tadpoles (Lithobates catesbeianus) exposed to the herbicide ametryn. Chemosphere 308(2), 136327. PMid:36087723. http://doi.org/10.1016/j.chemosphere.2022.136327.

Holt, E., & Miller, S., 2011. Bioindicators: using organisms to measure environmental impacts. Nat. Educ. Knowl. (Online) 2(8), 1-10. Retrieved in 2024, March 15, from https://www.nature.com/scitable/knowledge/library/bioindicators-using-organisms-to-measure-environmental-impacts-16821310/

Ighodaro, O., & Akinloye, O.A., 2018. First line defence antioxidants-superoxide dismutase (SOD), catalase(CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 54(4), 287-293. http://doi.org/10.1016/j.ajme.2017.09.001.

Instituto Brasileiro de Geografia e Estatística – IBGE, 2024. Retrieved in 2024, March 15, from https://www.ibge.gov.br/

Jackman, K., Veldhoen, N., Miliano, R., Robert, B., Li, L., Khojasteh, A., Zheng, X., Zaborniak, T., Aggelen, G., Lesperance, M., Parker, W., Hall, E., Pyle, G., & Helbing, C., 2018. Transcriptomics investigation of thiroyd hormone disruption in the olfactory system of the Rana (Lithobates) catesbeiana tadpole. Aquat. Toxicol. 202, 46-56. PMid:30007154. http://doi.org/10.1016/j.aquatox.2018.06.015.

Jones-Costa, M., Franco-Belussi, L., Vidal, F.A.P., Gongora, N.P., Castanho, L.M., Carvalho, C.S., Silva-Zacarin, E.C.M., Abdalla, F.C., Duarte, I.C.S., Oliveira, C., Oliveira, C.R., & Salla, R., 2018. Cardiac biomarkers as sensitive tools to evaluate the impact of xenobiotics on amphibians: the effects of anionic surfactant linear alkylbenzene sulfonate (LAS). Ecotoxicol. Environ. Saf. 151, 184-190. PMid:29351853. http://doi.org/10.1016/j.ecoenv.2018.01.022.

Laurin, E., Thakur, K., Mohr, P., Hick, P., Crane, M., Gardner, I., Moody, N., Colling, A., & Ernst, I., 2019. To pool or not to pool? Guidelines for pooling samples for use in surveillance testing of infectious diseases in aquatic animals. J. Fish Dis. 42(11), 1471-1491. PMid:31637760. http://doi.org/10.1111/jfd.13083.

Marcantonio, A.S., França, F.M., Santos, D.S., Martins, A.M.C., Hipólito, M., Schalch, S.H., Viriato, C.F., & Ferreira, C.M., 2022. Histopathological changes in Lithobates catesbeianus tadpoles used as biomarkers of pesticide poisoning. Bol. Inst. Pesca 48, 1-8. http://doi.org/10.20950/1678-2305/bip.2022.48.e711.

Martins, T.F.G., Ferreira, K.S., Rani-Borges, B., Biamont-Rojas, I.E., Cardoso-Silva, S., Moschini-Carlos, V., & Pompêo, M.L.M., 2021. Land use, spatial heterogeneity of organic matter, granulometric fractions and metal complexation in reservoir sediments. Acta Limnol. Bras. 33(e23), 1-15. http://doi.org/10.1590/s2179-975x3521.

Motta, A.G., Guerra, V., Amaral, D.F., Araújo, A.P., Vieira, L.G., Silva, D.M., & Rocha, T.L., 2023. Assessment of multiple biomarkers in Lithobates catesbeianus (Anura: Ranidae) tadpoles exposed to zinc oxide nanoparticles and zinc chloride: Integrating morphological and behavioral approaches to ecotoxicology. Environ. Sci. Pollut. Res. Int. 30(5), 13755-13772. PMid:36138291. http://doi.org/10.1007/s11356-022-23018-4.

Nimet, J., Leite, N.F., Paulin, A.F., Margarido, V.P., & Moresco, R.M., 2021. Use of high-performance liquid chromatography – mass spectrometry of adipose tissue for detection of bioaccumulation of Pyriproxifen in adults of Lithobates catesbeianus. Bull. Environ. Contam. Toxicol. 107(5), 911-916. PMid:34415366. http://doi.org/10.1007/s00128-021-03356-8.

Ocaña-Fernández, Y., & Fuster-Guillén, D., 2021. The bibliographical review as a research methodology. Rev. Tempos Espacos Educ. 14(33), 1-15. http://doi.org/10.20952/revtee.v14i33.15614.

Oliveira, T.M., & Amaral, C.L.C., 2022. A preocupante situação da Represa de Itupararanga. In: Melo MMB, Senhoras EM, editors. Gestão Ambiental e dos Recursos Naturais. Boa Vista, Roraima: Editora Iole, 193-208. http://doi.org/10.5281/zenodo.7032578

Ossana, N.A., Salibán, A., Eissa, B.L., & Castané, P.M., 2013. Use of Lithobates catesbeianus tadpoles in a multiple biomarker approach for the assessment of water quality of the Reconquista River (Argentina). Arch. Environ. Contam. Toxicol. 65(3), 486-497. PMid:23744050. http://doi.org/10.1007/s00244-013-9920-6.

Ossana, N.A., Salibán, A., Eissa, B.L., & Castané, P.M., 2017. Water pollution monitoring of the Lujan River (Argentina): chemical analyses and hepatic biomarkers in Lithobates catesbeianus tadpoles. Int. J. Environ. Health 8(2), 150-163. http://doi.org/10.1504/IJENVH.2017.083975.

Pérez-Alvarez, I., Islas-Flores, H., Gómes-Oliván, L.M., Barceló, D., De Alda, M.L., Solsona, S.P., Sánchez-Aceves, L., San Juan-Reyes, N., & Galar-Martínez, M., 2018. Determination of metals and pharmaceutical compounds released in hospital wastewater from Toluca, Mexico, and evaluation of their toxic impact. Environ. Pollut. 240, 330-341. PMid:29751329. http://doi.org/10.1016/j.envpol.2018.04.116.

Prokic, M., Borković-Mitić, S., Imre, K., Mutić, J., Trifković, J., Gavrić, J., Despotović, S., Gavrilović, B., Radovanović, T., Pavlović, S., & Saicić, Z., 2016. Bioaccumulation and effects of metals on oxidative stress and neurotoxicity parameters in the frogs from the Pelophylax esculentus complex. Ecotoxicology 25(8), 1531-1542. PMid:27629268. http://doi.org/10.1007/s10646-016-1707-x.

Sakakibara, M., Ohmori, Y., Ha, N., & Sera, K., 2011. Phytoremediation of heavy metal-contamined water and sediment by Eleocharis acicularis. Clean (Weinh.) 39(8), 735-741. http://doi.org/10.1002/clen.201000488.

Santos, A., Valverde, B., Oliveira, C., & Franco-Belussi, L., 2021. Genotoxic and melanic alterations in Lithobates catesbeianus (anura) tadpoles exposed to fipronil insecticide. Environ. Sci. Pollut. Res. Int. 28(16), 20072-20081. PMid:33405149. http://doi.org/10.1007/s11356-020-11948-w.

Scaia, M.F., De Gregorio, L., Franco-Belussi, L., Siucci-Domingues, M., & Oliveira, C., 2019. Gonadal, body color, and genotoxic alterations in Lithobates catesbeianus tadpoles exposed to nonylphenol. Environ. Sci. Pollut. Res. Int. 26, 22209-22219. PMid:31152429. http://doi.org/10.1007/s11356-019-05403-8.

Simoncelli, F., Belia, S., Di Rosa, I., Parachucchi, R., Rossi, R., La Porta, G., Lucentini, L., & Fagotti, A., 2015. Short-term cadmium exposure induces stress responses in frog (Pelophylax bergeri) skin organ culture. Ecotoxicol. Environ. Saf. 122, 221-229. PMid:26277541. http://doi.org/10.1016/j.ecoenv.2015.08.001.

Stibilj, V., Kristan, U., Osterc, S., & Ramsak, A., 2014. Assessment of pollution level using Mytilus galloprovincialis as a bioindicator species: the case of the Gulf of Triestre. Mar. Pollut. Bull. 89(1-2), 455-463. PMid:25444628. http://doi.org/10.1016/j.marpolbul.2014.09.046.

Veronez, A., Salla, R., Baroni, V., Indianara, B., Bianchini, A., Martinez, C., & Chippari-Gomes, A.R., 2016. Genetic and biochemical effects induced by iron ore, Fe and Mn exposure in tadpoles of the bullfrog Lithobates catesbeianus. Aquat. Toxicol. 174, 101-108. PMid:26930479. http://doi.org/10.1016/j.aquatox.2016.02.011.

Vidal, F., Carvalho, C.S., Abdalla, F.H., Bertolli, L., Utsonomyia, H.S.M., Silva, R., Salla, R., & Jones-Costa, M., 2021. Metabolic, immunologic, and histopathologic responses on premetamorphic American bullfrog (Lithobates catesbeianus) following exposure to lithium and selenium. Environ. Pollut. 270, 116086. PMid:33248831. http://doi.org/10.1016/j.envpol.2020.116086.

Wang, Q., & Yang, Z., 2016. Industrial water pollution, water environment treatment, and health risks in China. Environ. Pollut. 218, 358-365. PMid:27443951. http://doi.org/10.1016/j.envpol.2016.07.011.

Wei, L., Ding, G., Guo, S., Tong, M., Chen, W., Flanders, J., Shao, W., & Lin, Z., 2015. Toxic effects of three heavy metallic ions on Rana zhenhaiensis tadpoles. Asian Herpetol. Res. 6(2), 132-142. http://doi.org/10.16373/j.cnki.ahr.140092.

Wilkens, A.L.L., Valgas, A.A.N., & Oliveira, G.T., 2019. Effects of ecologically relevant concentrations of Boral® 500 SC, Glifosato® Biocarb, and a Blend of both herbicides on markers of metabolism, stress, and nutrional condition factors in bullfrog tadpoles. Environ. Sci. Pollut. Res. Int. 26(23), 23242-23256. PMid:31190300. http://doi.org/10.1007/s11356-019-05533-z.

Yao, Q., Yang, H., Wang, X., & Wang, H., 2019. Effects of hexavalent chromium on intestinal histology and microbiota in Bufo gargarizans tadpoles. Chemosphere 216, 313-323. PMid:30384300. http://doi.org/10.1016/j.chemosphere.2018.10.147.

Yologlu, E., & Ozmen, M., 2015. Low concentrations of metal exposure have adverse effects on selected biomarkers of Xenopus laevis tadpoles. Aquat. Toxicol. 168, 19-27. PMid:26415005. http://doi.org/10.1016/j.aquatox.2015.09.006.

Zhao, H., Wang, H., Li, X., Ya, J., & Ju, Z., 2020. The effects of chronic cadmium exposure on Bufo gargarizans larvae: histopathological impairment, gene expression alteration and fatty acid metabolism disorder in the liver. Aquat. Toxicol. 222, 105470. PMid:32199138. http://doi.org/10.1016/j.aquatox.2020.105470.

Zhou, Q., Zhang, J., Fu, J., Shi, J., & Jiang, G., 2008. Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal. Chim. Acta 606(2), 135-150. PMid:18082645. http://doi.org/10.1016/j.aca.2007.11.018.
 


Submitted date:
03/15/2024

Accepted date:
03/31/2025

Publication date:
05/27/2025

68360de9a953956f8361b343 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections