Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X2324
Acta Limnologica Brasiliensia
Original Article

Experimental approach on the contribution of wind and animal vectors in the dispersal and colonization of testate amoebae (Protista, Amoebozoa) in freshwater ecosystems

Abordagem experimental sobre a contribuição do vento e de vetores animais na dispersão e colonização de amebas testáceas (Protista, Amoebozoa) em ecossistemas de água doce

Matheus Henrique de Oliveira de Matos; Felipe Rafael de Oliveira; Fernando Miranda Lansac-Tôha; Melissa Progênio; Bianca Ramos de Meira; Loiani Oliveira Santana; Crislaine Cochak; Luiz Felipe Machado Velho

Downloads: 0
Views: 122

Abstract

Aim: We aimed to understand how testaceous amoebae spread in new sites, assessing their dispersal potential by wind and animals in freshwater ecosystems.

Methods: We conducted a field experiment over 33 days between July and August 2018. The study included four different approaches: (i) a control group exposed exclusively to wind, (ii) the addition of propagules dispersed by Odonata (aquatic insects), (iii) the addition of propagules dispersed by amphibians, and (iv) the combined addition of propagules of both animals.

Results: We detected a total of 13 species of testate amoebae. Regarding species richness, we observed a steady increase throughout the experimental period. In terms of abundance, a similar trend was observed, with differences in the treatment of all vectors combinated, when comparing the treatments with only wind, and the combination of wind and vectors alone, indicating a possible progressive colonization of these organisms in the new aquatic environment. Regarding the composition of testate amoebae, we did not detect significant differences between treatments within each period or between different treatments throughout the experiment.

Conclusions: Our results demonstrate the importance of animal vectors in the transport of testate amoebae cysts.

Keywords

Amoebozoa; distribution; microcosm; ecological experiment; zoochory

Resumo

Objetivo: Buscamos entender como as amebas testáceas se espalham em novos locais, avaliando seu potencial de dispersão pelo vento e por animais em ecossistemas de água doce.

Métodos: Realizamos um experimento de campo durante 33 dias entre julho e agosto de 2018. O estudo incluiu quatro abordagens diferentes: (i) um grupo controle exposto exclusivamente ao vento, (ii) a adição de propágulos dispersos por Odonata (insetos aquáticos), (iii) a adição de propágulos dispersos por anfíbios, e (iv) a adição combinada de propágulos de ambos os animais.

Resultados: Detectamos um total de 13 espécies de amebas testáceas. Em termos de riqueza de espécies, observamos um aumento constante ao longo do período experimental. Em termos de abundância, observou-se uma tendência semelhante, com diferenças no tratamento de todos os vectores combinados, quando comparados os tratamentos com somente vento, e da combinação do vento com os vetores de forma isolada, indicando uma possível colonização progressiva destes organismos no novo ambiente aquático. Relativamente à composição das amebas testadas, não foram detectadas diferenças significativas entre tratamentos dentro de cada período ou entre os diferentes tratamentos ao longo da experiência.

Conclusões: Nossos resultados demonstram a importância dos vetores animais no transporte de cistos de amebas testáceas.

Palavras-chave

Amoebozoa; distribuição; microcosmos; experimento ecológico; zoocoria

References

Allen, M.R., 2007. Measuring and modelling dispersal of adult zooplankton. Oecologia 153(1), 135-143. PMid:17375330. http://doi.org/10.1007/s00442-007-0704-4.

Anderson, M.J., 2005. PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance. Auckland, NZL: Department of Statistics, University of Auckland.

Balkau, B., & Feldman, M.W., 1973. Selection for migration modification. Genetics 74(1), 171-174. PMid:17248608. http://doi.org/10.1093/genetics/74.1.171.

Bilton, D.T., Freeland, J.R., & Okamura, B., 2001. Dispersal in freshwater invertebrates: mechanisms and consequences. Annu. Rev. Ecol. Syst. 32(1), 159-181. http://doi.org/10.1146/annurev.ecolsys.32.081501.114016.

Bohonak, A.J., & Jenkins, D.G., 2003. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecol. Lett. 6(8), 783-796. http://doi.org/10.1046/j.1461-0248.2003.00486.x.

Bohonak, A.J., & Whiteman, H.H., 1999. Dispersal of the fairy shrimp Branchinecta coloradensis (Anostraca): effects of hydroperiod and salamanders. Limnol. Oceanogr. 44(3), 487-493. http://doi.org/10.4319/lo.1999.44.3.0487.

Bowler, D.E., & Benton, T.G., 2005. Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol. Rev. Camb. Philos. Soc. 80(2), 205-225. PMid:15921049. http://doi.org/10.1017/S1464793104006645.

Bruni, E.P., Rusconi, O., Broennimann, O., Adde, A., Jauslin, R., Krashevska, V., Kosakyan, A., Châtelet, E.A., Alcino, J.P.B., Beyens, L., Blandenier, Q., Bobrov, A., Burdman, L., Duckert, C., Fernández, L., Gomes e Souza, M.B., Heger, T., Koenig, I., Lahr, D., McKeown, M., Meisterfield, R., Singer, D., Voelcker, E., Wilmhurst, J., Wohlhauser, S., Wilkinson, D.M., Guisan, A., & Mitchell, E.A., 2024. Global distribution modelling of a conspicuous Gondwanian soil protist reveals latitudinal dispersal limitation and range contraction in response to climate warming. Divers. Distrib. 30(2), e13779. http://doi.org/10.1111/ddi.13779.

Cochak, C., Oliveira, F.R., Lansac-Tôha, F.M., Meira, B.R., Durán, C.L.G., Vitule, J.R.S., & Velho, L.F.M., 2021. Relative contributions of disparate animal vectors to the development of freshwater ciliate communities. Hydrobiol. 848(5), 1121-1135. http://doi.org/10.1007/s10750-021-04518-9.

Cochak, C., Zanon, F.M., Pineda, A., Lansac-Tôha, F.M., Jati, S., & Velho, L.F.M., 2024. Beta diversity of freshwater algal communities: influence of different dispersal mechanisms. Aquat. Sci. 86(2), 26. http://doi.org/10.1007/s00027-023-01040-z.

Dallimore, A., 2004. The characteristics of thecamoebians of Artic thermokarst lakes, Richards Island, N.W.T. J. Foraminiferal Res. 34(4), 249-257. http://doi.org/10.2113/34.4.249.

Diniz, L.P., Braghin, L.D.S.M., Pinheiro, T.S.A., Melo, P.A.M.D.C., Bonecker, C.C., & Melo Júnior, M.D., 2021. Environmental filter drives the taxonomic and functional β-diversity of zooplankton in tropical shallow lakes. Hydrobiol. 848(8), 1881-1895. http://doi.org/10.1007/s10750-021-04562-5.

Dumont, H.J., & Negrea, S.V., 2002. Introduction to the Class Branchiopoda. Leiden: Backhuys Publishers.

Foissner, W., Wolf, K.W., Yashchenko, V., & Stoeck, T., 2011. Description of Leptopharynx bromelicola n. sp. and characterization of the genus Leptopharynx Mermod, 1914 (Protista, Ciliophora). J. Eukaryot. Microbiol. 58(2), 134-151. PMid:21366759. http://doi.org/10.1111/j.1550-7408.2011.00532.x.

Gimenes, M.F., Benedito, E., Takeda, A.M., & Vismara, M.R., 2004. Availability of sedimentary organic matter for benthic fishes of the upper Paraná River floodplain. Acta Sci. Biol. Sci. 26, 181-187.

Godsoe, W., Murray, R., & Plank, M.J., 2015. The effect of competitionon species’ distributions depends on coexistence, rather than scale alone. Ecography 38(11), 1071-1079. http://doi.org/10.1111/ecog.01134.

Gomes e Souza, M.B, 2008. Guia das tecamebas da bacia do rio Peruaçu, Minas Gerais: subsídio para conservação e monitoramento da bacia do Rio São Francisco. Belo Horizonte: Editora UFMG.

Gonzalez, A., King, A., Robeson 2nd, M.S., Song, S., Shade, A., Metcalf, J.L., & Knight, R., 2012. Characterizing microbial communities through space and time. Curr. Opin. Biotechnol. 23(3), 431-436. PMid:22154467. http://doi.org/10.1016/j.copbio.2011.11.017.

Heino, J., 2013. Environmental heterogeneity, dispersal mode and co-occurrence in stream macroinvertebrates. Ecol. Evol. 3(2), 344-355. PMid:23467653. http://doi.org/10.1002/ece3.470.

Incagnone, G., Marrone, F., Naselli-Flores, L., Barone, R., & Robba, L., 2015. How do freshwater organisms cross the “dry ocean”? A review on passive dispersal and colonization processes with a special focus on temporary ponds. Hydrobiol. 750(1), 103-123. http://doi.org/10.1007/s10750-014-2110-3.

Lansac-Tôha, F.A., Velho, L.F.M., Zimmermann-Callegari, M.C., & Bonecker, C.C., 2000. On the occurrence of testate amoebae (Protozoa, Rhizopoda) in Brazilian inland waters. I. Fam. Arcellidae. Acta Sci. Biol. Sci. 22(2), 355-363.

Lansac-Tôha, F.A., Velho, L.F.M., Zimmermann-Callegari, M.C., Bonecker, C.C., & Takahashi, E.M., 2001. Occurrence of testate amoebae (Protozoa, Amoebozoa, Rhizopoda) in Brazilian continental waters. III. Family Difflugiidae. Genus Difflugia. Acta Sci. Biol. Sci. 23, 305-321.

Lansac-Tôha, F.A., Zimmermann-Callegari, M.C., Alves, G.M., Velho, L.F.M., & Fulone, L.J., 2007. Species richness and geographic distribution of testate amoebae (Rhizopoda) in Brazilian freshwater environments. Acta Sci. Biol. Sci. 29(2), 185-195.

Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F., Hold, R.D., Shurin, J.B., Law, R., Tilman, D., Loreau, M., & Gonzalez, A.A., 2004. The metacommunity concept: a framework for multiscale community ecology. Ecol. Lett. 7(7), 601-613. http://doi.org/10.1111/j.1461-0248.2004.00608.x.

Leturque, H., & Rousset, F., 2002. Dispersal, kin competition, and the ideal free distribution in a spatially heterogeneous population. Theor. Popul. Biol. 62(2), 169-180. PMid:12167355. http://doi.org/10.1006/tpbi.2002.1600.

Lopez, L.C.S., Filizola, B., Deiss, I., & Rios, R.I., 2005. Phoretic behaviour of bromeliadannelids (Dero) and ostracods (Elpidium) using frogs andlizards as dispersal vectors. Hydrobiol. 549(1), 1522. http://doi.org/10.1007/s10750-005-1701-4.

Ndayishimiye, J.C., Mazei, Y., Babeshko, K., Tsyganov, A.N., Bobrov, A., Mazei, N., Smirnov, A., Ren, K., Abdullah, M., Chen, H., Wang, W., Saldev, D., Ivanovskii, A., Nyirabuhoro, P., & Yang, J., 2023. Stochastic and deterministic processes shaping the testate amoeba communities across different biotopes of urban parks in Moscow and Xiamen cities. Urban Ecosyst. 26, 617-628. https://doi.org/10.1007/s11252-022-01306-8.

Ndayishimiye, J.C., Nyirabuhoro, P., Gao, X., Chen, H., Wang, W., Mazei, Y., & Yang, J., 2024. Community responses of testate amoebae (Arcellinida and Euglyphida) to ecological disturbance explained by contrasting assembly mechanisms in two subtropical reservoirs. Sci. Total Environ. 953, 176058. PMid:39241884. http://doi.org/10.1016/j.scitotenv.2024.176058.

Negreiros, O.P., Segovia, B.T., Lansac-Tôha, F.M., Meira, B.R., Buosi, P.R.B., Cabral, A.F., Silva, H.S., Lansac-Tôha, F.A., & Velho, L.F.M., 2017. Structure and dynamic of planktonic ciliate community in a large Neotropical river: the relevance of the pluviosity and tributaries in the biodiversity maintenance. Acta Limnol. Bras. 29, e101. http://doi.org/10.1590/s2179-975x10816.

Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’hara, R.B., & Oksanen, M.J., 2013. Package ‘vegan’. Community ecology package, version 2 [online]. Retrieved in 2024, March 13, from https://github.com/vegandevs/vegan.

Oksanen, J.F.G., Blanchet, M., Friendly, R., Kindt, P., Legendre, D., & McGlinn, H.W., 2017. Vegan: Community Ecology Package. R package version 2.6-8. [online]. Retrieved in 2024, March 13, from https://CRAN.R-project.org/package=vegan.

Oliveira, F.R., Lansac-Tôha, F.M., Meira, B.R., Segovia, B.T., Cochak, C., & Velho, L.F.M., 2019. Effects of the exotic rotifer Kellicottia bostoniensis (Rousselet, 1908) on the microbial food web components. Aquat. Ecol. 53(4), 581-594. http://doi.org/10.1007/s10452-019-09710-7.

Padial, A.A., Ceschin, F., Declerck, S.A.J., Meester, L., Bonecker, C.C., Lansac-Tôha, F.A., Rodrigues, L., Rodrigues, L.C., Train, S., Velho, L.F.M., & Bini, L.M., 2014. Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS One 9(10), e111227. PMid:25340577. http://doi.org/10.1371/journal.pone.0111227.

Parry, V., Kiemel, K., Pawlak, J., Eccard, J., Tiedemann, R., & Weithoff, G., 2024. Drivers of zooplankton dispersal in a pond metacommunity. Hydrobiol. 851(12), 2875-2893. http://doi.org/10.1007/s10750-023-05232-4.

Parsons, W.M., Schlichting, M.E., & Stewart, K.W., 1966. Inflighttransport of Algae and Protozoa by selected Cklonata. Trans. Am. Microsc. Soc. 85(4), 520-527. http://doi.org/10.2307/3224476.

Pilatti, M.C., Medeiros, G., Padial, A.A., Amaral, M.W.W., Guicho, R., & Bueno, N.C., 2024. Main predictors of phytoplankton occurrence in lotic ecosystems. Acta Limnol. Bras. 36, e9. http://doi.org/10.1590/s2179-975x6223.

R Core Team, 2024. The R Project for Statistical Computing [online]. Retrieved in 2024, March 13, from https://www.R-project.org/.

Rundle, S.D., Bilton, D.T., & Foggo, A., 2007. By wind, wings or water: body size, dispersal and range size in aquatic invertebrates. In: Hildrew, A.G., Raffaelli, D.G., & Edmonds-Brown, R., eds. Body size: the structure and function of aquatic ecosystems. Cambridge: Cambridge University Press, 186-209. http://doi.org/10.1017/CBO9780511611223.011.

Russo, S.E., Portnoy, S., & Augspurger, C.K., 2006. Incorporating animal behaviour into seed dispersal models: implications for seed shadows. Ecology 87(12), 3160-3174. PMid:17249240. http://doi.org/10.1890/0012-9658(2006)87[3160:IABISD]2.0.CO;2.

Sherr, E.B., & Sherr, B.F., 1993. Preservation and storage of samples for enumeration of heterotrophic protists. In: Current Kemp, P., Sherr, B., Sherr, E., & Cole, J., eds. Methods in aquatic microbial ecology. New York: Lewis Publ., 207-212.

Smith, H.G., Bobrov, A., & Lara, E., 2008. Diversity and biogeography of testate amoebae. Biodivers. Conserv. 2(2), 329-343. http://doi.org/10.1007/s10531-007-9260-9.

Van Damme, K., & Sinev, A.Y., 2013. Tropical Amphi-Pacific disjunctions in the Cladocera (Crustacea: branchiopoda). J. Limnol. 72(s2), 209-244. http://doi.org/10.4081/jlimnol.2013.s2.e11.

Vanschoenwinkel, B., Gielen, S., Vandewaerde, H., Seaman, M., & Brendonck, L., 2008. Relative importance of different dispersal vectors for small aquatic invertebrates in a rock pool metacommunity. Ecography 31(5), 567-577. http://doi.org/10.1111/j.0906-7590.2008.05442.x.

Velho, L.F.M., Lansac-Tôha, F.A., & Bini, L.M., 1999. Spatial and temporal variation in densities of testate amoebae in the plankton of the Upper Paraná River floodplain, Brazil. Hydrobiol. 411, 103-113. http://doi.org/10.1023/A:1003889331767.

Velho, L.F.M., Lansac-Tôha, F.A., & Bini, L.M., 2003. Influence of environmental heterogeneity on the structure of testate amoebae (Protozoa, Rhizopoda) assemblages in the plankton of the upper Paraná River floodplain, Brazil. Int. Rev. Hydrobiol. 88(2), 154-166. http://doi.org/10.1002/iroh.200390011.

Velho, L.F.M., Lansac-Tôha, F.M., Buosi, P.R.B., Meira, B.R., Cabral, A.F., & Lansac-Tôha, F.A., 2013. Structure of planktonic ciliates community (Protist, Ciliophora) from an urban lake of southern Brazil. Acta Sci. Biol. Sci. 35(4), 531-539. http://doi.org/10.4025/actascibiolsci.v35i4.18579.

Wang, W., Ren, K., Chen, H., Gao, X., Rønn, R., & Yang, J., 2020. Seven-year dynamics of testate amoeba communities driven more by stochastic than deterministic processes in two subtropical reservoirs. Water Res. 185, 116232. PMid:32750568. http://doi.org/10.1016/j.watres.2020.116232.

Wang, Z., Xu, G., Yang, Z., & Xu, H., 2016. An approach to determining homogeneity of bodysize spectrum of biofilm-dwelling ciliates for colonization surveys. Ecology 61, 865-870. https://doi.org/10.1016/j.ecolind.2015.10.039.

Wanner, M., Elmer, M., Sommer, M., Funk, R., & Puppe, D., 2015. Testate amoebae colonizing a newly exposed land surface are of airborne origin. Ecol. Indic. 48, 55-62. http://doi.org/10.1016/j.ecolind.2014.07.037.

Weisse, T., 2008. Distribution and diversity of aquatic protists: an evolutionary and ecological perspective. Biodivers. Conserv. 17(2), 243-259. http://doi.org/10.1007/s10531-007-9249-4.

Weisse, T., 2024. Thermal response of freshwater ciliates: can they survive at elevated lake temperatures? Freshw. Biol. 69(9), 1245-1260. http://doi.org/10.1111/fwb.14302.

Wickham, H., 2016. Ggplot2: elegant graphics for data analysis. New York: Springer, 2nd ed. http://doi.org/10.1007/978-3-319-24277-4.

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L.D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T.L., Miller, E., Bache, S.M., Müller, K., Ooms, J., Robinson, D., Seidel, D.P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., & Yutani, H., 2019. Welcome to the tidyverse. J. Open Source Softw. 43(43), 1686. http://doi.org/10.21105/joss.01686.

Zagumyonnaya, O.N., Philippov, D.A., Zagumyonnyi, D.G., Komarov, A.A., Tsyganov, A.N., & Tikhonenkov, D.V., 2023. Changes in testate amoeba assemblages in a series of different types of aquatic and terrestrial habitats of wetland and forest ecosystems. Biol. Bull. 50(8), 1719-1737. http://doi.org/10.1134/S1062359023080332.

Zhang, W.H., Xu, H., Jiang, Y., Zhu, M., & Al-Hasheid, K.A., 2012. Colonization dynamics in trophic-functional structure of periphytic protist communities in coastal waters. Mar. Biol. 159(4), 735-748. http://doi.org/10.1007/s00227-011-1850-0.

Zhang, W.H., Xu, H., Jiang, Y., Zhu, M., & Al-Hasheid, K.A., 2013. Colonization dynamics of periphytic ciliate communities on an artificial substratum in coastal waters of the Yellow Sea, Northern China. J. Mar. Biology (Basel) 93, 57. https://doi.org/10.1017/S0025315412000744.

Zhong, X., Xu, G., & Xu, H., 2017. An approach to analysis of colonization dynamics in community functioning of protozoa for bioassessment of marine pollution. Ecol. Indic. 78, 526-530. http://doi.org/10.1016/j.ecolind.2017.03.050.
 


Submitted date:
03/13/2024

Accepted date:
11/06/2024

Publication date:
01/31/2025

679d0478a953954c1d3602e3 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections