Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X2321
Acta Limnologica Brasiliensia
Original Article

Leaf breakdown in a tropical stream: comparison between the exotic Eucalyptus grandis and two native species

Decomposição foliar em um riacho tropical: comparação entre a exótica Eucalyptus grandis e duas espécies nativas

Gisele Pires Pelizari; Ariane Almeida Vaz; Davi Butturi-Gomes; Welber Senteio Smith

Downloads: 0
Views: 1244

Abstract

Abstract: Aim: We evaluated the leaf decomposition in a first order stream of the exotic Eucalyptus grandis and two native species Lithraea molleoides and Maytenus aquifolium common riparian trees in a tropical forest. Besides seasonal effects on leaf decomposition of the three species were evaluated.

Methods: The dried leaves were incubated in litter bags” of 20 x 20 cm with 10 mm of mesh opening in two different treatments and at two times of the year (dry and rainy): i) 48 “litter bags” containing 4 g of leaves, being 24 “litter bags” with leaves of L. molleoides and 24 with E. grandis and ii) 48 “litter bags” containing 4 g of leaves, being 24 “litter bags” with of M. aquifolium and 24 with leaves of E. grandis. After 2, 7, 14, 21, 28 and 60 days of immersion, randomly removed four “litter bags” of each species to carry out the analyzes.

Results: The weight loss in the first two days was between 20% and 40% in both experiments and in both seasons of the year. Leaf decomposition was higher in L. molleoides (k=0.0062 ± 0.0002 day-1) than in E. grandis (k=0.0039 ± 0.0005 day-1) in the dry season and higher in L. molleoides (k=0.0185 ± 0.0002 day-1) than E. grandis (k=0.0164 ± 0.0003 day-1) in the rainy season. In the second experiment the decomposition rates were higher in M. aquifolium (k=0.0151 ± 0.0009 day-1) than E. grandis (k=0.0149 ± 0.0006 day-1) in the dry season and higher in M. aquifolium (k=0.0174 ± 0.0001 day-1) than E. grandis (k=0.0164 ± 0.0002 day-1) in the rainy season. Besides, the results indicate that there is an effect of both the dry and rainy season and the native or exotic species on the decomposition rates.

Conclusions: Our findings indicate that, the seasons are likely to influence leaf decomposition, and future studies should consider seasonality. Furthermore, the exotic species had a lower decomposition rate compared to native species, which reinforces that the replacement of native riparian vegetation by exotic species such as eucalyptus can interfere on the quality of allochthonous resources and on the cycling of nutrients in neotropical streams.

Keywords

leaf decomposition, riparian forest, seasonality, negative exponential model

Resumo

Resumo: Objetivo: O objetivo deste estudo foi avaliar a decomposição foliar da espécie exótica Eucalyptus grandis e das espécies nativas Lithraea molleoides e Maytenus aquifolium (árvores ribeirinhas comuns em uma floresta tropical) em um riacho de primeira ordem. Além disso, foram avaliados os efeitos sazonais na decomposição foliar das três espécies.

Métodos: As folhas secas foram incubadas em litter bags de 20 x 20 cm com 10 mm de abertura de malha em dois tratamentos distintos e em duas épocas do ano (seca e chuvosa): i) 48 “litter bags” contendo 4 g de folhas, sendo 24 “litter bags” com folhas de L.molleoides e 24 com folhas de E. grandis por estação e ii) 48 “litter bags”, sendo 24 “litter bags” com folhas de M. aquifolium e 24 com folhas de E. grandis. Após 2, 7, 14, 21, 28 e 60 dias de imersão, foram retirados, aleatoriamente, quatro “litter bags” de cada espécie para a realização das análises.

Resultados: A perda de peso nos primeiros dois dias esteve entre 20% e 40% em ambos os experimentos e épocas do ano analisadas. As taxas de decomposição foram: L. molleoides (k=0.0062 ± 0.0002 dia-1) > E. grandis (k=0.0039 ± 0.0005 dia-1) na época seca e L. molleoides (k=0.0185 ± 0.0002 dia-1) > E. grandis (k=0.0164 ± 0.0003 dia-1) na época chuvosa. No segundo experimento os resultados mostraram M. aquifolium (k=0.0151 ± 0.0009 dia-1) > E. grandis (k=0.0149 ± 0.0006 dia-1) na época seca e M. aquifolium (k=0.0174 ± 0.0001 dia-1) > E. grandis (k=0.0164 ± 0.0002 dia-1) na época chuvosa. Os resultados demonstraram ainda que há efeito tanto da época seca e chuvosa, quanto das espécies nativas ou exóticas no coeficiente de decomposição, indicando que no período chuvoso a taxa de decomposição mais alta.

Conclusões: Nossos resultados indicam que a época do ano influencia a decomposição das folhas, e futuros estudos devem considerar a sazonalidade. Além disso, a espécie exótica apresentou taxa de decomposição mais baixa em comparação com as espécies nativas, o que reforça que a substituição da vegetação ripária nativa por espécies exóticas como o eucalipto pode interferir na qualidade dos recursos alóctones e na ciclagem de nutrientes em riachos neotropicais.
 

Palavras-chave

decomposição foliar, mata ripária, sazonalidade, modelo exponencial negativo

References

Abelho, M., Graça, M.A.S., 1996. Effects of Eucalyptus afforestation on leaf litter dynamics and macroinvertebrate community structure of streams in central Portugal. Hydrobiologia 324, 195-204. https://doi:10.1007/BF00016391.

Alvim, E.A.C.C., Medeiros, A.O., Rezende, R.S., & Gonçalves, J.F. Jr., 2015. Leaf breakdown in a natural open tropical stream. J. Limnol. 74(2), 248-260. https://doi.org/10.4081/jlimnol.2014.982.

Aragón, R., Montti, L., Ayup, M.M., & Fernandez, R., 2014. Exotic species as modifiers of ecosystem processes: litter decomposition in native and invaded secondary forests of NW Argentina. Acta Oecol. 54, 21-28. http://dx.doi.org/10.1016/j.actao.2013.03.007.

Bärlocher, F., & Graça, M.A.S., 2002. Exotic riparian vegetation lowers fungal diversity but not leaf decomposition in Portuguese streams. Freshw. Biol. 47(6), 1123-1135. http://dx.doi.org/10.1046/j.1365-2427.2002.00836.x.

Benfield, E.F., Fritz, K.M., & Tiegs, S.D., 2017. Leaf-litter breakdown. In: Lamberti, G.A., & Hauer, F.R., eds. Methods in stream ecology: ecosystem function. London: Academic Press, 71-82, 2 ed. http://dx.doi.org/10.1016/B978-0-12-813047-6.00005-X.

Boyero, L., Pearson, R.G., Gessner, M.O., Dudgeon, D., Ramirez, A., Yule, C.M., Callisto, M., Pringle, C.M., Encalada, A.C., Arunachalam, M., Mathooko, J., Helson, J.E., Rincón, J., Bruder, A., Cornejo, A., Flecker, A.S., Mathuriau, C., M’Erimba, C., Gonçalves, J.F. Jr., Moretti, M., & Jinggut, T., 2015. Leaf-litter breakdown in tropical streams: is variability the norm? Freshw. Sci. 34(2), 759-769. http://dx.doi.org/10.1086/681093.

Bueno, A.A.P., Bond-Buckup, G., & Ferreira, B.D.P., 2003. Structure of the benthic invertebrate community in two water courses in Rio Grande do Sul, Brazil. Rev. Bras. Zool. 20(1), 115-125. http://dx.doi.org/10.1590/S0101-81752003000100014.

Canhoto, C., & Graça, M.A.S., 1995. Food value of introduced eucalypt leaves for a Mediterranean stream detritivore: tipula lateralis. Freshw. Biol. 34(2), 209-214. http://dx.doi.org/10.1111/j.1365-2427.1995.tb00881.x.

Canhoto, C., & Graça, M.A.S., 1996. Decomposition of Eucalyptus globulus leaves and three native leaf species (Alnus glutinosa, Castanea sativa and Querus faginea) in a Portuguese low order stream. Hydrobiologia 333(2), 79-85. http://dx.doi.org/10.1007/BF00017570.

Canhoto, C., & Graça, M.A.S., 2006. Leaf litter processing in low order streams. Limnetica 25(1), 1-10. http://dx.doi.org/10.23818/limn.25.01.

Canhoto, C., & Laranjeira, C., 2007. Leachates of Eucalyptus globulus in Intermittent Streams Affect Water Parameters and Invertebrates. Int. Rev. Hydrobiol. 92(2), 173-182. http://dx.doi.org/10.1002/iroh.200510956.

Canhoto, C., Graça, M.A.S., & Bärlocher, F., 2005. Feeding preferences. In: Graça, M.A.S., Bärlocher, F. & Gessner, M.O., eds. Methods to study litter decomposition: a practical guide. Netherlands: Springer, 297-302, 1 ed. http://dx.doi.org/10.1007/1-4020-3466-0_41.

Cionek, V.D.E.M., Fogaça, F.N.O., Moulton, T.P., Pazianoto, L.H.R., Landgraf, G.O., & Benedito, E., 2021. Influence of leaf miners and environmental quality on litter breakdown in tropical headwater streams. Hydrobiologia 848(6), 1311-1331. http://dx.doi.org/10.1007/s10750-021-04529-6.

Correa-Araneda, F., Boyero, L., Figueroa, R., Sánchez, C., Abdala, R., Ruiz-García, A., & Graça, M.A.S., 2015. Joint effects of climate warming and exotic litter (Eucalyptus globulus Labill.) on stream detritivore fitness and litter breakdown. Aquat. Sci. 77(2), 197-205. http://dx.doi.org/10.1007/s00027-014-0379-y.

Encalada, A.C., Calles, J., Ferreira, V., Canhoto, C.M., & Graça, M.A.S., 2010. Riparian land use and the relationship between the benthos and litter decomposition in Tropical Montane Streams. Freshw. Biol. 55(8), 1719-1733. http://dx.doi.org/10.1111/j.1365-2427.2010.02406.x.

Ferreira, V., Boyero, L., Calvo, C., Correa, F., Figueroa, R., Gonçalves, J.F.J., Goyenola, G., Graça, M.A.S., Hepp, L.U., Kariuki, S., Rodríguez, A.N., Mazzeo, C., Merimba, S., Monroy, A., Peil, J., Pozo, J., Rezende, R., & Teixeira-de-Mello, F. 2019. Global assessment of the effects of Eucalyptus plantations on stream ecosystem functioning. Ecosystems 22(3), 629-642. http://dx.doi.org/10.1007/s10021-018-0292-7.

Ferreira, V., Encalada, A.C., & Graça, M.A.S., 2012. Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams. Freshw. Sci. 32(3), 945-962. http://dx.doi.org/10.1899/11-062.1.

Flack, V.F., & Flores, R.A., 1989. Using simulated envelopes in the evaluation of normal probability plots of regression residuals. Technometrics 31(2), 219-225. http://dx.doi.org/10.1080/00401706.1989.10488515.

Gessner, M.O., Chauvet, E., & Dobson, M., 1999. A perspective on leaf litter breakdown in streams. Oikos 85(2), 377-384. http://dx.doi.org/10.2307/3546505.

Gessner, M.O., Swan, C.M., Dang, C.K., Mckie, B.G., Bardgett, R.D., Wall, D.H., & Hattenschwiler, S., 2010. Diversity meets decomposition. Trends Ecol. Evol. 25(6), 372-380. PMid:20189677. http://dx.doi.org/10.1016/j.tree.2010.01.010.

Gonçalves, J.F. Jr., França, J.S., Medeiros, A.O., Rosa, C.A., & Callisto, M., 2006. Leaf breakdown in a tropical stream. Int. Rev. Hydrobiol. 91(2), 164-177. http://dx.doi.org/10.1002/iroh.200510826.

Gonçalves, J.F. Jr., Martins, R.T., Ottoni, B.M.P., & Couceiro, S.R., 2014. Uma visão sobre a decomposição foliar em sistemas aquáticos brasileiros. In: Hamada, N., Nessimian, J.L., & Querino, R.B. eds. Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia. Manaus: Editora do INPA, 389-416, 1 ed.

Gonçalves, J.F. Jr., Rezende, R.S., Martins, N.M., & Gregorio, R.S., 2012a. Leaf breakdown in an Atlantic Rain Forest stream. Austral Ecol. 37(7), 807-815. http://dx.doi.org/10.1111/j.1442-9993.2011.02341.x.

Gonçalves, J.F. Jr., Rezende, R.S., França, J., & Callisto, M., 2012b. Invertebrate colonisation during leaf processing of native, exotic and artificial detritus in a tropical stream. Mar. Freshw. Res. 63(5), 428-439. http://dx.doi.org/10.1071/MF11172.

Graça, M.A.S., Ferreira, V., Canhoto, C., Encalada, A.C., Guerrero-Bolaño, F., Wantzen, K.M., & Boyero, L., 2015. A conceptual model of litter breakdown in low order streams. Int. Rev. Hydrobiol. 100(1), 1-12. http://dx.doi.org/10.1002/iroh.201401757.

Hepp, L.U., Delanora, R., & Trevisan, A., 2009. Compostos secundários durante a decomposição foliar de espécies arbóreas em um riacho do sul do Brasil. Acta Bot. Bras. 23(2), 407-413. http://dx.doi.org/10.1590/S0102-33062009000200012.

Kiffer, W.P. Jr., Mendes, F., Casotti, C.G., Costa, L.C., & Moretti, M.S., 2018. Exotic Eucalyptus leaves are preferred over tougher native species but affect the growth and survival of shredders in an Atlantic Forest stream (Brazil). PLoS One 13(1), e0190743. PMid:29293646. http://dx.doi.org/10.1371/journal.pone.0190743.

Kobayashi, S., & Kagaya, T., 2005. Hot spots of leaf breakdown within a headwater stream reach: comparing breakdown rates among litter patch types with different macroinvertebrate assemblages. Freshw. Biol. 50(6), 921-929. http://dx.doi.org/10.1111/j.1365-2427.2005.01371.x.

Kominoski, J.S., Marczak, L.B., & Richardson, J.S., 2011. Riparian forest composition affects stream litter decomposition despite similar microbial and invertebrate communities. Ecology 92(1), 151-159. PMid:21560685. http://dx.doi.org/10.1890/10-0028.1.

Leroy, C.J., & Marks, J.C., 2006. Litter quality, stream characteristics and litter diversity influence decomposition rates and macroinvertebrates. Freshw. Biol. 51(4), 605-617. http://dx.doi.org/10.1111/j.1365-2427.2006.01512.x.

Lima, W.P. 1996. Environmental impact of Eucalyptus. São Paulo: Editora da Universidade de São Paulo.

Molinero, J. & Pozo, J., 2004. Impact of a eucalyptus (Eucalyptus globulus Labill.) plantation on the dynamic and nutrient content of coarse particulate organic matter (CPOM) in a small stream. Hydrobiologia 528, 143-165. https://doi.org/10.1007/s10750-004-2338-4.

Mora-Gomez, J., Elosegi, A., Mas-Marti, E., & Romani, A.M., 2016. Factors controlling seasonality in leaf-litter breakdown in a Mediterranean stream. Freshw. Sci. 34(4), 1245-1258. http://dx.doi.org/10.1086/683120.

Moretti, M.S., Gonçalves, J.F. Jr., Ligeiro, R., & Callisto, M., 2007. Invertebrates colonization on native tree leaves in a neotropical stream (Brazil). Int. Rev. Hydrobiol. 92(2), 199-210. http://dx.doi.org/10.1002/iroh.200510957.

Nin, C.S., Ruppenthal, E.L., & Rodrigues, G.G., 2009. Production of foliage and associated fauna of aquatic macroinvertebrates undergoing bedwetting in the Ombrophylous Forest of the State of Rio Grande do Sul, Brazil. Acta Sci. Biol. Sci. 31(3), 263-271.

Panhota, R.S., Cunha-Santino, M.B., & Bianchini, I. Jr., 2006. Consumos de oxigênio das mineralizações de lixiviados de Salvinia auriculata e de Utricularia breviscapa da lagoa do Óleo. In: Santos, J.E.P., & Pires, J.S.R., eds. Estudos integrados em ecossistemas: estação ecológica de Jataí. São Carlos: RiMa, 259-273, 4 ed.

R Core Team, 2018. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

Raposeiro, P.M., Martins, G.M., Moniz, I., Cunha, A., Costa, A.C., & Gonçalves, V., 2014. Leaf litter decomposition in remote oceanic islands: the role of macroinvertebrates vs. microbial decomposition of native vs. exotic plant species. Limnologica 45, 80-87. http://dx.doi.org/10.1016/j.limno.2013.10.006.

Remor, M.B., Santos, C., Sampaio, S.C., Sgarbi, L.F., & Sorace, M., 2013. The effects caused by the replacement of native riparian forest with Eucalyptus sp. on the benthic macroinvertebrate community. J. Food Agric. Environ. 11(2), 1444-1448.

Rezende, R.S., Gonçalves, J.F. Jr., & Petrucio, M.M., 2010. Leaf breakdown and invertebrate colonization of Eucalyptus grandis (Myrtaceae) and Hirtella glandulosa (Chrysobalanaceae) in two Neotropical lakes. Acta Limnol. Bras. 22(1), 23-34. http://dx.doi.org/10.4322/actalb.02201004.

Richardson, J.S., Shaughnessy, C.R., & Harrison, P.G., 2004. Litter breakdown and invertebrate association with three types of leaves in a temperate rainforest stream. Arch. Hydrobiol. 159(3), 309-325. http://dx.doi.org/10.1127/0003-9136/2004/0159-0309.

Roberts, M., Strauch, A.M., Wiegner, T., & Mackenzie, R.A., 2016. Leaf Litter Breakdown of Native and Exotic Tree Species in Two Hawaiian Streams that Differ in Flow. Pac. Sci. 70(2), 209-222. http://dx.doi.org/10.2984/70.2.7.

Sorocaba, 2012. Plano de manejo do Parque Natural Municipal Corredores da Biodiversidade de Sorocaba. SEMA. Retrieved in 2021, January 2, from http://www.meioambientesorocaba.com.br/sema/UserFiles/file/P%20M_Parte%20_0912.pdf

Tagliaferro, M., Giorgi, A., Torremorell, A., & Albariño, R., 2019. Urbanisation reduces litter breakdown rates and affects benthic invertebrate structure in Pampean streams. Int. Rev. Hydrobiol. 105, 33- 43. https://doi.org/10.1002/iroh.201902000.

Telöken, F., Albertoni, E.F., Hepp, L.U., & Silva, C.P., 2014. Invertebrados aquáticos associados a serapilheira de Salix humboldtiana em um riacho subtropical. Ecol. Austral 24(2), 220-228. http://dx.doi.org/10.25260/EA.14.24.2.0.25.

Tiegs, S., Costello, D.M., Isken, M.W., Woodward, G., Mcintyre, P., Gessner, M.O., Chauvet, E., Griffiths, N.A., Lecker, A.S., Acuña, V., Albariño, R., Allen, D.C., Alonso, C., Andino, P., Arango, C., Aroviita, J., Barbosa, M.V.M., Barmuta, L.A., Baxter, C.V., Bell, T.D.C., Bellinger, B., Boyero, L., Brown, L.E., Bruder, A., Bruesewitz, D.A., Burdon, F.J., Callisto, M., Canhoto, C., Capps, K.A., Castillo, M.M., Clapcott, J., Colas, F., Colón-Gaud, C., Cornut, J., Crespo-Pérez, V., Cross, W.F., Culp, J.M., Danger, M., Dangles, O., De Eyto, E., Derry, A.M., Villanueva, V.D., Douglas, M.M., Elosegi, A., Encalada, A.C., Entrekin, S., Espinosa, R., Ethaiya, D., Ferreira, V., Ferriol, C., Flanagan, K.M., Fleituch, T., Follstad Shah, J.J., Barbosa, A.F., Friberg, N., Frost, P.C., Garcia, E.A., García Lago, L., García-Soto, P.E., Ghate, S., Giling, D.P., Gilmer, A., Gonçalves, J.F. Jr., Gonzales, R.K., Graça, M.A.S., Grace, M., Grossart, H.P., Guérold, F., Gulis, V., Hepp, L.U., Higgins, S., Hishi, T., Huddart, J., Hudson, J., Imberger, S., Iñiguez-armijos, C., Iwata, T., Janetski, D.J., Jennings, E., Kirkwood, A.E., Koning, A.A., Kosten, S., Kuehn, K.A., Laudon, H., Leavitt, P.R., Silva, A.L., Leroux, S.J., Leroy, C.J., Lisi, P.J., Mackenzie, R., Marcarelli, A.M., Masese, F.O., Mckie, B.G., Medeiros, A.O., Meissner, K., Miliša, M., Mishra, S., Miyake, Y., Moerke, A., Mombrikotb, S., Mooney, R., Moulton, T., Muotka, T., Negishi, J.N., Neres-lima, V., Nieminen, M.L., Nimptsch, J., Ondruch, J., Paavola, R., Pardo, I., Patrick, C.J., Peeters, E., Pozo, J., Pringle, C., Prussian, A., Quenta, E., Quesada, A., Reid, B., Richardson, J.S., Rigosi, A., Rincón, J., Rîşnoveanu, G., Robinson, C.T., Rodríguez-Gallego, L., Royer, T.V., Rusak, J.A., Santamans, A.C., Selmeczy, G.B., Simiyu, G., Skuja, A., Smykla, J., Sridhar, K.R., Sponseller, R., Stoler, A., Swan, C.M., Szlag, D., Mello, F.T., Tonkin, J.D., Uusheimo, S., Veach, A.M., Vilbaste, S., Vought, L.B.M., Wang, C.P., Webster, J.R., Wilson, P.B., Woelfl, S., Xenopoulos, M.A., Yates, A.G., Yoshimura, C., Yule, C.M., Zhang, Y.X., & Zwart, J.A., 2019. Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Sci. Adv. 5(1), 1-8. PMid:30662951. http://dx.doi.org/10.1126/sciadv.aav0486.

Tonello, G., Loureiro, R.C., Krause, P., Silva, C., Ongaratto, R.M., Sepp, S., Restello, R.M., & Hepp, L.U., 2014. Colonização de invertebrados durante a decomposição de diferentes detritos vegetais em um riacho subtropical. Rev. Bras. Biocienc. 12, 98-105.

Tonin, A.M., Hepp, L.U., Restello, R.M., & Gonçalves, J.F. Jr., 2014. Understanding of colonization and breakdown of leaves by invertebrates in a tropical stream is enhanced by using biomass as well as count data. Hydrobiologia 740(1), 79-88. http://dx.doi.org/10.1007/s10750-014-1939-9.

Turner, H., & Firth, D., 2018. Generalized nonlinear models in R: an overview of the gnm package. (R package version 1.1-0). Vienna: R Foundation for Statistical Computing. Retrieved in 2021, January 2, from https://cran.r-project.org/package=gnm

Vaz, A.A., Vaz, A.A., Pelizari, G.P., Biagioni, R.C., & Smith, W.S., 2017. Biota Aquática em um Riacho Tropical e suas Relações com Fatores Ambientais. Biod. Bras. 7(1), 55-68. https://doi.org/10.37002/biobrasil.v%25vi%25i.713.

Vaz, A.A., Vaz, A.A., Pelizari, G.P., Buturi-Gomes, D., & Smith, W.S., 2019. Colonização de folhas por invertebrados aquáticos em um riacho tropical: há diferenças entre espécies nativas e Eucalyptus grandis (Hill ex Maiden) nas épocas chuvosa e seca? Biotemas 32(3), 51-64. http://dx.doi.org/10.5007/2175-7925.2019v32n3p51.

Vital, M.H.F., 2007. Environmental Impact of Eucalyptus Forests. Rev. BNDES 14(28), 235-276.

Wallace, J.B., Eggert, S.T., Meyer, J.L., & Webster, J.R., 1997. Multiple Trophic Levels of a Forested Stream Linked to Terrestrial Litter Inputs. Science 277(5322), 102-104. http://dx.doi.org/10.1126/science.277.5322.102.

Wantzen, K.M., Yule, C.M., & Mathooko, J.M., 2008. Organic matter processing in tropical streams. In: Dudgeon, D., ed. Tropical stream ecology. London: Academic Press, 44-64, 1 ed. http://dx.doi.org/10.1016/B978-012088449-0.50005-4.

Webster, J.R., & Benfield, E.F., 1986. Vascular plant breakdown in freshwater ecosystems. Annu. Rev. Ecol. Syst. 17(1), 567-594. http://dx.doi.org/10.1146/annurev.es.17.110186.003031.
 


Submitted date:
03/31/2021

Accepted date:
03/25/2022

Publication date:
04/28/2022

626a9122a9539537b06c2ae4 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections