Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X2120
Acta Limnologica Brasiliensia
Original Article

Root growth and anatomy of Typha domingensis Pers. related to phosphorus availability

Crescimento e anatomia radiculares de Typha domingensis Pers. e sua relação com a disponibilidade de fósforo

Juliana Costa Bueno dos Santos; Evaristo Mauro de Castro; Vinícius Politi Duarte; Márcio Paulo Pereira; Felipe Fogaroli Corrêa; Fabricio José Pereira

Downloads: 1
Views: 603

Abstract

Abstract:

Aim: The capacity of macrophytes to colonize large areas is often referred to as dependent of the investment in root system and its capacity to uptake nutrients. This work aimed to evaluate the phosphorus (P) effects on the root growth and anatomy as well as its capacity to uptake this nutrient by the aquatic macrophyte Typha domingensis.

Methods: Plants were grown for 60 days in nutrient solution containing 0, 0.2, 0.4, 0.6 or 0.8 mM of phosphorus. At the end of the experiment, the root length and P root content as well as the root anatomy at the maturation and meristematic zones were evaluated.

Results: Higher P concentrations increased the uptake of this nutrient and plant dry mass. However, the root length was reduced by higher phosphorus levels. In addition, P increased the proportion of the root cap while reduced the proportion of the procambium at the meristematic zone. Higher phosphorus concentrations reduced the xylem vessel diameter and the proportion of the vascular cylinder at the maturation zone, whereas increased phloem proportion was observed under this condition. Furthermore, higher phosphorus levels reduced the endodermis and exodermis thickness as well as the aerenchyma proportion.

Conclusions: Therefore, the T. domingensis P requirement is fulfilled at 0.4 mM of this nutrient and hypertrophic conditions promote the development of unfavorable root anatomical traits and reduction of the root growth.
 

Keywords

cattail, eutrophication, macrophyte growth, root meristems

Resumo

Resumo:

Objetivo: A capacidade das macrófitas, para colonizar grandes áreas é frequentemente relatada como dependente do investimento no sistema radicular e a sua capacidade para absorver nutrientes. Este trabalho teve como objetivo avaliar os efeitos do fósforo no crescimento da raiz, na anatomia radicular e na sua capacidade de absorver este nutriente pela macrófita aquática Typha domingensis.

Metodologia: As plantas foram cultivadas por 60 dias em solução nutritiva contendo 0, 0,2, 0,4, 0,6 ou 0,8 mM de fósforo. Ao final do experimento, o comprimento e conteúdo de P da raiz bem como a sua anatomia nas regiões de maturação e meristemática foram avaliados.

Resultados: Maiores concentrações de P aumentaram a absorção deste nutriente bem como a massa seca das plantas. Contudo o comprimento da raiz foi reduzido pelas maiores concentrações de fósforo. Além disso, maiores concentrações de P aumentaram a proporção da coifa e reduziram a proporção de procâmbio na zona meristemática. Ademais, maiores concentrações de fósforo reduziram o diâmetro dos vasos de xilema e a proporção do cilindro vascular na zona de maturação apesar de uma maior proporção de floema ter sido observada nestas condições. A espessura da endoderme e a exoderme bem como a proporção de aerênquima foram reduzidas pelas maiores concentrações de fósforo.

Conclusões: Portanto, a exigência de fósforo de T. domingensis é atingida sob 0,4 mM deste nutriente e condições hipertróficas promovem o desenvolvimento de características desfavoráveis na anatomia e um menor crescimento radicular.
 

Palavras-chave

taboa, eutrofização, crescimento de macrófitas, meristemas radiculares

References

CAI, M., WANG, N., XING, C., WANG, F., WU, K. and DU, X. Immobilization of aluminum with mucilage secreted by root cap and root border cells is related to aluminum resistance in Glycine max L. Environmental Science and Pollution Research International, 2013, 20(12), 8924-8933. http://dx.doi.org/10.1007/s11356-013-1815-6. PMid:23749363.

CARLSON, R.E. A trophic state index for lakes. Limnology and Oceanography, 1977, 22(2), 361-369. http://dx.doi.org/10.4319/lo.1977.22.2.0361.

CORRÊA, F.F., MADAIL, R.H., BARBOSA, S., PEREIRA, M.P., CASTRO, E.M., SORIANO, A.C.T.G. and PEREIRA, F.J. Anatomy and physiology of cattail as related to different population densities. Planta Daninha, 2015, 33(1), 1-12. http://dx.doi.org/10.1590/S0100-83582015000100001.

CORRÊA, F.F., PEREIRA, M.P., KLOSS, R.B., CASTRO, E.M. and PEREIRA, F.J. Leaf ontogeny and meristem activity of Typha domingensis Pers. (Typhaceae) under different phosphate concentrations. Aquatic Botany, 2017a, 136, 43-51. http://dx.doi.org/10.1016/j.aquabot.2016.09.007.

CORRÊA, F.F., PEREIRA, M.P., MADAIL, R.H., SANTOS, B.R., BARBOSA, S., CASTRO, E.M. and PEREIRA, F.J. Anatomical traits related to stress in high density populations of Typha angustifolia L. (Typhaceae). Brazilian Journal of Biology = Revista Brasileira de Biologia, 2017b, 77(1), 52-59. http://dx.doi.org/10.1590/1519-6984.09715. PMid:27382995.

COELHO, G.T.C., SOUZA, I.R.P., CARNEIRO, N.P., SCHAFFERT, R.E., BRANDÃO, R.A.L., ALVES, V.M.C., PAIVA, L.V. and CARNEIRO, A.A. Formação de aerênquima em raízes de milho sob estresse de fósforo. Revista Brasileira de Milho e Sorgo, 2006, 5(3), 443-449. http://dx.doi.org/10.18512/1980-6477/rbms.v5n3p443-449.

CRUZ, Y.C., SCARPA, A.L.M., PEREIRA, M.P., CASTRO, E.M. and PEREIRA, F.J. Root anatomy and nutrient uptake of the cattail Typha domingensis Pers. (Typhaceae) grown under drought condition. Rhizosphere, 2020, 16, 100253. http://dx.doi.org/10.1016/j.rhisph.2020.100253.

DÍAZ, A.S., AGUIAR, G.M., PEREIRA, M.P., DE CASTRO, E.M., MAGALHÃES, P.C. and PEREIRA, F.J. Aerenchyma development in different root zones of maize genotypes under water limitation and different phosphorus nutrition. Biologia Plantarum, 2018, 62(3), 561-568. http://dx.doi.org/10.1007/s10535-018-0773-8.

DI LUCA, G.A., MAINE, M.A., MUFARREGE, M.M., HADAD, H.R. and BONETTO, C.A. Influence of Typha domingensis in the removal of high P concentrations from water. Chemosphere, 2015, 138, 405-411. http://dx.doi.org/10.1016/j.chemosphere.2015.06.068. PMid:26149856.

DISSANAYAKA, D.M.S.B., MARUYAMA, H., NISHIDA, S., TAWARAYA, K. and WASAKI, J. Landrace of japonica rice, Akamai exhibits enhanced root growth and efficient leaf phosphorus remobilization in response to limited phosphorus availability. Plant and Soil, 2017, 414(1-2), 327-338. http://dx.doi.org/10.1007/s11104-016-3129-1.

DUARTE, V.P., PEREIRA, M.P., CORRÊA, F.F., CASTRO, E.M. and PEREIRA, F.J. Aerenchyma, gas diffusion, and catalase activity in Typha domingensis: a complementary model for radial oxygen loss. Protoplasma, 2021, 258(4), 765-777. http://dx.doi.org/10.1007/s00709-020-01597-8. PMid:33404920.

ESCUTIA-LARA, Y., GÓMEZ-ROMERO, M. and LINDIG-CISNEROS, R. Nitrogen and phosphorus effect on Typha domingensis Pers. rhizome growth in a matrix of Schoenoplectus americanus (Pers.) Volkart ex Schinz and Keller. Aquatic Botany, 2009, 90(1), 74-77. http://dx.doi.org/10.1016/j.aquabot.2008.06.002.

ESCUTIA-LARA, Y., DE LA BARRERA, E., MARTÍNEZ DE LA CRUZ, Y. and LINDIG-CISNEROS, R. Respuesta a la adición de nitrógeno y fósforo en el crecimiento de Typha domingensis y Schoenoplectus americanus. Boletín de la Sociedad Botánica de México, 2010, 87, 83-87. http://dx.doi.org/10.17129/botsci.307.

FERREIRA, D.F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 2011, 35(6), 1039-1042. http://dx.doi.org/10.1590/S1413-70542011000600001.

JOHANSEN, D.A. Plant microtechinique. 2nd ed. New York: Mc Graw-Hill, 1940.

JOHNSON, S. and REJMÁNKOVÁ, E. Impacts of land use on nutrient distribution and vegetation composition of freshwater wetlands in Northern Belize. Wetlands, 2005, 25(1), 89-100. http://dx.doi.org/10.1672/0277-5212(2005)025[0089:IOLUON]2.0.CO;2.

HEGAZY, A.K., ABDEL-GHANI, N.T. and EL-CHAGHABY, G.A. Phytoremediation of industrial wastewater potentiality by Typha domingensis. International Journal of Environmental Science and Technology, 2011, 8(3), 639-648. http://dx.doi.org/10.1007/BF03326249.

HEUER, S., GAXIOLA, R., SCHILLING, R., HERRERA-ESTRELLA, L., LÓPEZ-ARREDONDO, D., WISSUWA, M., DELHAIZE, E. and ROUACHED, H. Improving phosphorus use efficiency: a complex trait with emerging opportunities. The Plant Journal, 2017, 90(5), 868-885. http://dx.doi.org/10.1111/tpj.13423. PMid:27859875.

HOAGLAND, D.R. and ARNON, D.I. Crop production in artificial culture solutions and in soils with special reference to factors influencing yield absorption of inorganic nutrients. Soil Science, 1940, 50, 463-483.

LI, S., MENDELSSOHN, I.A., CHEN, H. and OREM, W.H. Does sulphate enrichment promote the expansion of Typha domingensis (cattail) in the Florida Everglades? Freshwater Biology, 2009, 54(9), 1909-1923. http://dx.doi.org/10.1111/j.1365-2427.2009.02242.x.

LI, S., LISSNER, J., MENDELSSOHN, I., BRIX, H., LORENZEN, B., MCKEE, K.L. and MIAO, S. Nutrient and growth responses of cattail (Typha domingensis) to redox intensity and phosphate availability. Annals of Botany, 2010, 105(1), 175-184. http://dx.doi.org/10.1093/aob/mcp213. PMid:19748907.

MACEK, P., REJMÁNKOVÁ, E. and LEPŠ, J. Dynamics of Typha domingensis spread in Eleocharis dominated oligotrophic tropical wetlands following nutrient enrichment. Evolutionary Ecology, 2010, 24(6), 1505-1519. http://dx.doi.org/10.1007/s10682-010-9397-y.

MENDES JÚNIOR, H., TAVARES, A.S., SANTOS JÚNIOR, W.R. and MINCATO, R.L. Water erosion in oxisols under coffee cultivation. Revista Brasileira de Ciência do Solo, 2018, 42, e0170093. http://dx.doi.org/10.1590/18069657rbcs20170093.

MIAO, S., NEWMAN, S. and SKLAR, F.H. Effects of habitat nutrients and seed sources on growth and expansion of Typha domingensis. Aquatic Botany, 2000, 68(4), 297-311. http://dx.doi.org/10.1016/S0304-3770(00)00127-3.

NYENJE, P.M., FOPPEN, J.W., UHLENBROOK, S., KULABAKO, R. and MUWANGA, A. Eutrophication and nutrient release in urban areas of sub-Saharan Africa - A review. The Science of the Total Environment, 2010, 408(3), 447-455. http://dx.doi.org/10.1016/j.scitotenv.2009.10.020. PMid:19889445.

O’BRIEN, T.P., FEDER, N. and MCCULLY, M.E. Polychromatic staining of plant cell walls by Toluidine Blue. Protoplasma, 1964, 59(2), 368-373. http://dx.doi.org/10.1007/BF01248568.

OLIVEIRA, J.P.V., PEREIRA, M.P., DUARTE, V.P., CORRÊA, F.F., CASTRO, E.M. and PEREIRA, F.J. Cadmium tolerance of Typha domingensis Pers. (Typhaceae) as related to growth and leaf morphophysiology. Brazilian Journal of Biology = Revista Brasileira de Biologia, 2018, 78(3), 509-516. http://dx.doi.org/10.1590/1519-6984.171961. PMid:29995113.

RIBEIRO, E.S., PEREIRA, M.P., CASTRO, E.M., BARONI, G.R., CORRÊA, F.F. and PEREIRA, F.J. Relações da anatomia radicular na absorção, no acúmulo e na tolerância ao chumbo em Echinodorus grandiflorus. Revista Brasileira de Engenharia Agrícola e Ambiental, 2015, 19(6), 605-612. http://dx.doi.org/10.1590/1807-1929/agriambi.v19n6p605-612.

SANTOS, K.R., PEREIRA, M.P., FERREIRA, A.C.G., RODRIGUES, L.C.A., CASTRO, E.M., CORRÊA, F.F. and PEREIRA, F.J. Typha domingensis Pers. Growth responses to leaf anatomy and photosynthesis as influenced by phosphorus. Aquatic Botany, 2015, 122, 47-53. http://dx.doi.org/10.1016/j.aquabot.2015.01.007.

SARRUGE, J.R. and HAAG, H.P. Análises químicas em plantas. Piracicaba: ESALQ, 1974.

SHUKLA, D., RINEHART, C.A. and SAHI, S.V. phosphate response reveals ethylene mediated signaling that negatively regulates plant growth and development. Scientific Reports, 2017, 7(1), 3074. http://dx.doi.org/10.1038/s41598-017-03061-9. PMid:28596610.

SILVINO, R.F. and BARBOSA, F.A.R. Eutrophication potential of lakes: an integrated analysis of trophic state, morphometry, land occupation, and land use. Brazilian Journal of Biology = Revista Brasileira de Biologia, 2015, 75(3), 607-615. http://dx.doi.org/10.1590/1519-6984.18913. PMid:26292101.

SOUZA, P.H., SANCHES, R.G. and SANTOS, B.C. Índices climáticos e chuvas intensas no município de alfenas/mg no período de 1984-2016. Edição Especial Dossiê Climatologia de Minas Gerais, 2018, 14, 320-341.

SPERRY, J.S., MEINZER, F.C. and MCCULLOH, K.A. Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant, Cell & Environment, 2008, 31(5), 632-645. http://dx.doi.org/10.1111/j.1365-3040.2007.01765.x. PMid:18088335.

STEINBACHOVÁ-VOJTÍŠKOVÁ, L., TYLOVÁ, E., SOUKUP, A., NOVICKÁ, H., VOTRUBOVÁ, O., LIPAVSKÁ, H. and ČÍŽKOVÁ, H. Influence of nutrient supply on growth carbohydrate, and nitrogen metabolic relations in Typha angustifolia. Environmental and Experimental Botany, 2006, 57(3), 246-257. http://dx.doi.org/10.1016/j.envexpbot.2005.06.003.

STRIEDER, M.L., PINTO, K.G., BERTOLDI, C., DE SCHNEIDER, A.B. and DELATORRE, C.A. Response of Arabidopsis thaliana root growth to phosphorus and its relation to media chemical composition. Biologia Plantarum, 2017, 61(3), 587-594. http://dx.doi.org/10.1007/s10535-017-0713-z.

TIECHER, T., SCHENATO, R.B., SANTANNA, M.A., CANER, L. and SANTOS, D.R. Phosphorus forms in sediments as indicators of anthropic pressures in an agricultural catchment in southern Brazil. Revista Brasileira de Ciência do Solo, 2017, 41(0), e0160569. http://dx.doi.org/10.1590/18069657rbcs20160569.

VEJCHASARN, P., LYNCH, J.P. and BROWN, K.M. Genetic Variability in Phosphorus Responses of rice root Phenotypes. Rice (New York, N.Y.), 2016, 9(1), 1-16. http://dx.doi.org/10.1186/s12284-016-0102-9. PMid:27294384.

VOESENEK, L.A.C.J. and BAILEY-SERRES, J. Flood adaptive traits and processes: an overview. The New Phytologist, 2015, 206(1), 57-73. http://dx.doi.org/10.1111/nph.13209. PMid:25580769.

WEBB, J. and ZHANG, X. Organ-disparate allocation of plasticity in phosphorus response as and underlying mechanism for the sawgrass-to-cattail habitat shift in Florida Everglades wetlands. International Journal of Plant Sciences, 2013, 174(5), 779-790. http://dx.doi.org/10.1086/670236.

WHITE, J.S., BAYLEY, S.R. and CURTIS, P.J. Sediment storage of phosphorus in a northern prairie wetland receiving municipal and agro-industrial wastewater. Ecological Engineering, 2000, 14(1-2), 127-138. http://dx.doi.org/10.1016/S0925-8574(99)00024-5.

ZAMPARAS, M. and ZACHARIAS, I. Restoration of eutrophic freshwater by managing internal nutrient loads. The Science of the Total Environment, 2014, 496, 551-562. http://dx.doi.org/10.1016/j.scitotenv.2014.07.076. PMid:25108796.

ZENG, M., HU, B., LI, J., ZHANG, G., RUAN, Y., HUANG, H., WANG, H. and XU, L. Stem cell lineage in body layer specialization and vascular patterning of rice root and leaf. Science Bulletin, 2016, 61(11), 847-858. http://dx.doi.org/10.1007/s11434-015-0849-1.
 


Submitted date:
03/15/2020

Accepted date:
07/19/2021

Publication date:
08/17/2021

611bf41ea953952e014b7715 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections