Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X1923
Acta Limnologica Brasiliensia
Thematic Section: Methods

Phenometric predictors of Pontederia crassipes biomass under natural conditions in the Paraná River

Preditores fenométricos de biomassa de Pontederia crassipes em ambientes naturais no rio Paraná

Sylvina Lorena Casco; Violeta Amancay Zambiasio; Eduardo Adolfo Porcel; Luciana Irene Gallardo

Downloads: 0
Views: 547

Abstract

Abstract: The water hyacinth, Pontederia crassipes, is a free-floating aquatic plant native to South America, which has colonized tropical rivers in several continents and has become dominant in floodplains.

Aim: This study aimed to evaluate the relationship between leaf length and leaf biomass (as an indirect phenometric estimation) and to compare the accuracy of the indirect phenometric estimation (which is a non-destructive method) with that of the direct estimation of aboveground biomass (which is destructive).

Methods: Pontederia crassipes green leaves of all sizes were collected from a floodplain lake of the Paraná River (Argentina). The leaves were oven-dried in the laboratory to obtain the constant dry weight. To determine the accuracy the indirect phenometric estimation was compared with the direct estimation of aboveground biomass. The relationship between leaf weight and leaf length was evaluated by regression analysis. The length of the 279 green leaves collected ranged between 7 and 115 cm.

Results: The non-destructive method was a good predictor of leaf biomass (R2 = 0.87 p < 0.0001). No significant differences were found between the dry weight obtained directly and that estimated by the indirect method.

Conclusions: Our results suggest that leaf length is a good attribute to estimate the aboveground biomass of P. crassipes. This method can contribute to diminish the impact of the direct method of harvest of P. crassipes and can be applied in experimental studies aimed to determine the leaf life span and primary productivity of P. crassipes clones.

Keywords

wetlands, water hyacinth, large rivers, South America

Resumo

Resumo: Pontederia crassipes é uma planta aquática flutuante livre nativa da América do Sul, que colonizou rios tropicais em vários continentes, tornando-se dominante nas planícies aluviais.

Objetivo: Neste estudo testamos a relação entre o comprimento das folhas e a biomassa foliar, e comparamos a precisão da estimativa fenométrica indireta com a biomassa direta acima do solo.

Métodos: Recolhemos folhas verdes de aguapé com diferentes tamanhos num lago de planície de inundação do rio Paraná (Argentina). As folhas foram secas em estufa de laboratório para obter um peso seco constante. Para determinar a acuracidade da estimativa fenométrica indireta foi comparada com a biomassa direta para a parte aérea. A análise de regressão foi utilizada para testar a relação entre o peso e o comprimento das folhas. O comprimento de 279 folhas verdes variou entre 7 e 115 cm.

Resultados: O método não destrutivo foi um bom preditor da biomassa foliar (R2 = 0,87 p < 0,0001). Não foram encontradas diferenças significativas entre o peso seco obtido diretamente e o peso estimado através do método indireto.

Conclusões: Os nossos resultados sugerem que o comprimento da folha é um bom atributo para estimar a biomassa aérea de P. crassipes. Este método é útil para reduzir o impacto do método direto de colheita de aguapé e necessário para aplicação em estudos experimentais que determinam a duração da vida foliar e a produtividade primária em clones.

Palavras-chave

zonas úmidas, aguapé, grandes rios, América do Sul

References

Batzer, D.P., Rader, R.B., & Wissinger, S.A., 1999. Invertebrates in freshwater wetlands of North America: ecology and management. New York: John Wiley & Sons.

Blanco Belmonte, L., Neiff, J.J., & Poi de Neiff, A.S.G., 1998. Invertebrate fauna associated with floating macrophytes in the floodplain lakes of the Orinoco (Venezuela) and Paraná (Argentina). Verh. Int. Ver. Theor. Angew. Limnol. 26(4), 2030-2034. http://doi.org/10.1080/03680770.1995.11901099.

Bonetto, A.A., 1986. Fish of the Paraná system. In: Davies, B.R., & Walker, K.F., eds. The ecology of river systems. The Netherlands: Dr. W. Junk Publ., 573-588. http://doi.org/10.1007/978-94-017-3290-1_11.

Bruniard, E.D., 1999. Los regímenes hídricos de las formaciones vegetales: aportes para un modelo fotoclimático mundial. Resistencia, Chaco: Editorial Universitaria del Nordeste (Eudene).

Carignan, R., & Neiff, J.J., 1992. Nutrient dynamics in the floodplain ponds of the Paraná River (Argentina) dominated by the water hyacinth Eichhornia crassipes. Biogeochemistry 17(2), 85-121. http://doi.org/10.1007/BF00002642.

Carignan, R., Neiff, J.J., & Planas, D., 1994. Limitation of water hyacinth by nitrogen in subtropical lakes of the Paraná floodplain (Argentina). Limnol. Oceanogr. 39(2), 439-443. http://doi.org/10.4319/lo.1994.39.2.0439.

Casco, S.L., Carnevali, R.P., Poi, A.S.G., & Neiff, J.J., 2014. The influence of water hyacinth floating meadows on limnological characteristics in shallow subtropical waters. Am. J. Plant Sci. 5(13), 1983-1994. http://doi.org/10.4236/ajps.2014.513212.

Colonnello Bertoli, G., 1996. Aquatic vegetation of the Orinoco River Delta (Venezuela): an overview. Hydrobiologia 340(1-3), 109-113. http://doi.org/10.1007/BF00012741.

Daoust, R.J., & Childers, D.L., 1998. Quantifying aboveground biomass and estimating net aboveground primary production for wetland macrophytes using a nondestructive phenometric technique. Aquat. Bot. 62(2), 115-133. http://doi.org/10.1016/S0304-3770(98)00078-3.

Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., & Robledo, C.W., 2020. InfoStat (Online). Córdoba: Grupo InfoStat, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba. Retrieved in 2023, March 17, from http://www.infostat.com.ar

Franceschini, M.C., Poi de Neiff, A., & Galassi, M.E., 2010. Is the biomass of water hyacinth lost through herbivory in native areas important? Aquat. Bot. 92(4), 250-256. http://doi.org/10.1016/j.aquabot.2010.01.005.

Gonçalves, C.V., Schwarzbold, A., Jasper, A., & Vasconcelos, M.C., 2010. Application of a non-destructive method to determine biomass in Pontederiaceae. Acta Limnol. Bras. 22(4), 361-366. http://doi.org/10.4322/actalb.2011.001.

Klok, P.F., & van der Velde, G., 2017. Plant traits and environment: floating leaf blade production and turnover of waterlilies. PeerJ 5, e3212. PMid:28462025. http://doi.org/10.7717/peerj.3212.

Navarro, G., & Maldonado, M., 2002. Geografía ecológica de Bolivia: vegetación y ambientes acuáticos. Bolivia: Fundación Simón Patiño.

Neiff, J.J., Casco, S.L., Mari, E.K., Di Rienzo, J.A., & Poi de Neiff, A., 2014. Do aquatic plant assemblages in the Paraná River change along the river’s length? Aquat. Bot. 114, 50-57. http://doi.org/10.1016/j.aquabot.2013.12.005.

Neiff, J.J., & Poi de Neiff, A., 1984. Cambios estacionales en la biomasa de Eichhornia crassipes y su fauna en una laguna del Chaco. Ecosur 11, 51-60.

Neiff, J.J., Poi de Neiff, A., & Casco, S.L., 2001. The effect of prolonged floods on Eichhornia crassipes growth in the Paraná River floodplain lakes. Acta Limnol. Bras. 13, 51-60.

Neiff, J.J., Casco, S.L., & Poi de Neiff, A., 2007. Response of Eichhornia crassipes (Pontederiaceae) to water level fluctuations in two lakes with different connectivity in the Paraná River floodplain. Rev. Biol. Trop. 56, 613-623. http://doi.org/10.15517/rbt.v56i2.5612.

Nunes, L.S.C., & Camargo, A.F.M., 2017. A simple non-destructive method for estimating aboveground biomass of emergent aquatic macrophytes. Acta Limnol. Bras. 29(0), e2. http://doi.org/10.1590/s2179-975x6416.

Pellegrini, M.O.O., Horn, C.N., & Almeida, R.F., 2018. Total evidence phylogeny of Pontederiaceae (Commelinales) sheds light on the necessity of its recircumscription and synopsis of Pontederia L. PhytoKeys 108(108), 25-83. PMid:30275733. http://doi.org/10.3897/phytokeys.108.27652.

Poi de Neiff, A.S.G., Neiff, J.J., & Casco, S.L., 2006. Leaf litter decomposition in three wetland types of the Paraná River floodplain. Wetlands 26(2), 558-566. http://doi.org/10.1672/0277-5212(2006)26[558:LLDITW]2.0.CO;2.

Poi de Neiff, A.S.G., Neiff, J.J., Casco, S.L., & Gallardo, L.I., 2020. Macroinvertebrates of Eichhornia crassipes (Pontederiaceae) roots in the alluvial floodplain of large tropical rivers (Argentina). Rev. Biol. Trop. 68(S2), S104-S115. http://doi.org/10.15517/rbt.v68iS2.44342.

Puhakka, M., & Kalliola, R., 1993. La vegetación en áreas de inundación en la selva baja de la Amazonia. In: Kalliola, R., Puhakka, M., & Danjoy, W., eds. Amazonia Peruana. Jyväskylä: PAUT y ONERN, 113-138.

Rocha-Ramírez, A., Ramirez-Rojas, A., Chavez-Lopez, R., & Alcocer, J., 2007. Invertebrate assemblages associated with root masses of Eichhornia crassipes (Mart.) Solms-Laubach 1883 in the Alvarado Lagoonal System, Veracruz, México. Aquat. Ecol. 41(2), 319-333. http://doi.org/10.1007/s10452-006-9054-2.

Santos, A., & Esteves, F., 2002. Primary production and mortality of Eleocharis interstincta in response to water level fluctuations. Aquat. Bot. 74(3), 189-199. http://doi.org/10.1016/S0304-3770(02)00082-7.

Shindoi, M.M.J.F., Sotelo, C.E., Galdeano, F. & Prause, J., 2003. Régimen de Heladas para el área de influencia de Colonia Benítez (Chaco). Chaco: INTA (EEA. Colonia Benítez).

Silva, C., & Esteves, F.A., 1993. Biomass of three macrophytes in the Pantanal of the Mato Grosso, Brazil. Int. J. Ecol. Environ. Sci. 19, 11-23.

Silva, T.S., Costa, M.P.F., & Melack, J.M., 2010. Assessment of two biomass estimation methods for aquatic vegetation growing on the Amazon Floodplain. Aquat. Bot. 92(3), 161-167. http://doi.org/10.1016/j.aquabot.2009.10.015.

Thomaz, S.M., & Esteves, F.A., 2011. Comunidade de macrófitas aquáticas. In: Esteves, F.A., ed. Fundamentos de limnologia. Rio de Janeiro: Interciência, 461-518, 3 ed.

Villamagna, A.M., & Murphy, B., 2010. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshw. Biol. 55(2), 282-298. http://doi.org/10.1111/j.1365-2427.2009.02294.x.

Wetzel, R.G., 1983. Limnology. Philadelphia: Saunders College Publishing, 2 ed.
 


Submitted date:
03/17/2023

Accepted date:
05/08/2024

Publication date:
07/08/2024

668bede2a9539562253f0d63 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections