Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X11323
Acta Limnologica Brasiliensia
Seção Temática: Métodos

Comparative analysis of ex situ zooplankton hatching methods

Análise comparativa de métodos de eclosão de zooplâncton ex situ

Daniel Nino Flores-Mendez; María Florencia Gutierrez

Downloads: 0
Views: 41

Abstract

Aims: This study aims to analyze the efficiency of two novel methods for ex situ zooplankton hatching experiments, compared with a traditional one. Both proposed methods were specifically designed to minimize sediment resuspension during the sampling of hatched individuals when no previous egg isolation is performed.

Methods: Sediment samples were collected from shallow lakes, homogenized, and incubated for 18 days under stable laboratory conditions. The traditional method (1M) involved simple water filtration from incubated sediments. The so called “inverted funnel filtering” method (2M) includes an inverted funnel located above the sediment to trap zooplankton that passes through the funnel aperture, and the “levels filtering” method (3M) involves perforated plates above the sediment. The efficiency of each method was evaluated by analyzing the cumulative abundance and number of taxa in hatched total zooplankton, rotifers, and microcrustaceans, as well as the overall composition.

Results: The new proposed methods significantly favored higher abundances than 1M for total zooplankton and rotifers. Even more, 3M outperformed 2M in the case of microcrustacean hatching abundances.

Conclusions: Our findings suggest that despite all analyzed methods being suitable for studying zooplankton hatchings, the newly proposed methods incorporating internal structures to minimize sediment resuspension displayed increased capture efficiency.

Keywords

methods, ex situ experiments, resistance eggs, passive zooplankton, sediment

Resumo

Objetivo: Este estudo tem como objetivo analisar a eficiência de dois novos métodos para experimentos de eclosão de zooplâncton ex situ, comparados com um método tradicional. Ambos os métodos propostos foram especificamente projetados para minimizar a ressuspensão de sedimentos durante a amostragem de indivíduos eclodidos quando não há isolamento prévio dos ovos.

Métodos: Amostras de sedimentos foram coletadas de lagos rasos, homogeneizadas e incubadas por 18 dias em condições laboratoriais estáveis. O método tradicional (1M) envolveu uma simples filtração da água dos sedimentos incubados. O método chamado “filtragem por funil invertido” (2M) inclui um funil invertido localizado acima do sedimento para capturar zooplâncton que passasse pela abertura do funil, e o método “filtragem por níveis” (3M) envolveu placas perfuradas acima do sedimento. A eficiência de cada método foi avaliada analisando a abundância cumulativa e o número de táxons no zooplâncton total eclodido, rotíferos e microcrustáceos, bem como a composição geral.

Resultados: Os novos métodos propostos favoreceram significativamente uma maior abundância do que 1M para zooplâncton total e rotíferos. Além disso, 3M superou 2M no caso das capturas de eclosão de microcrustáceos.

Conclusões: Nossos resultados sugerem que, apesar de todos os métodos analisados serem adequados para estudar eclosões de zooplâncton, os novos métodos propostos que incorporam estruturas internas para minimizar a ressuspensão de sedimentos apresentaram maior eficiência de captura.

Palavras-chave

métodos, experimentos ex situ, ovos de resistência, zooplâncton passivo, sedimento

Referências

Basu, S., & Lokesh, K.S., 2014. Application of multiple linear regression and Manova to evaluate health impacts due to changing river water quality. Appl. Math. 5(5), 799-807. http://doi.org/10.4236/am.2014.55076.

Battauz, Y.S., de Paggi, S.B.J., & Paggi, J.C., 2015. Endozoochory by an ilyophagous fish in the Paraná River floodplain: a window for zooplankton dispersal. Hydrobiologia 755(1), 161-171. http://doi.org/10.1007/s10750-015-2230-4.

Brakke, D.F., 1976. Modification of the Whiteside-Williams pattern sampler. J. Fish. Res. Board Can. 33(12), 2861-2863. http://doi.org/10.1139/f76-346.

Brazil, T., Caetano, A.C.L., Vargas, A.L., Bozelli, R.L., & Santangelo, J.M., 2022. Desiccation increases the hatching of resting eggs of a freshwater calanoid copepod. J. Plankton Res. 44(2), 273-277. http://doi.org/10.1093/plankt/fbac008.

Brendonck, L., & De Meester, L., 2003. Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491(1-3), 65-84. http://doi.org/10.1023/A:1024454905119.

Buckley, Y.M., 2015. Generalized linear models. In: Fox, G.A., Negrete-Yankelevich, S., & Sosa, V.J., eds. Ecological statistics: contemporary theory and application. Oxford: Oxford University Press, 131-148, 1 ed. http://doi.org/10.1093/acprof:oso/9780199672547.003.0007.

Coelho, P.N., Paes, T.A.S.V., Maia-Barbosa, P.M., & dos Santos-Wisniewski, M.J., 2021. Effects of pollution on dormant-stage banks of cladocerans and rotifers in a large tropical reservoir. Environ. Sci. Pollut. Res. Int. 28(24), 30887-30897. PMid:33594550. http://doi.org/10.1007/s11356-021-12751-x.

Compte, J., Montenegro, M., Ruhí, A., Gascón, S., Sala, J., & Boix, D., 2016. Microhabitat selection and diel patterns of zooplankton in a Mediterranean temporary pond. Hydrobiologia 766(1), 201-213. http://doi.org/10.1007/s10750-015-2455-2.

De Stasio Jr, B.T., 1990. The role of dormancy and emergence patterns in the dynamics of a freshwater zooplankton community. Limnol. Oceanogr. 35(5), 1079-1090. http://doi.org/10.4319/lo.1990.35.5.1079.

Dodson, S., & Ramcharan, C., 1991. Size-specific swimming behavior of Daphnia pulex. J. Plankton Res. 13(6), 1367-1379. http://doi.org/10.1093/plankt/13.6.1367.

Gaikwad, S.R., Ingle, K.N., & Thorat, S.R., 2008. Study of zooplankton emergence pattern and resting egg diversity of recently dried waterbodies in North Maharashtra Region. J. Environ. Biol. 29(3), 353-356. PMid:18972691.

Gutierrez, M.F., Battauz, Y., & Caisso, B., 2017. Disruption of the hatching dynamics of zooplankton egg banks due to glyphosate application. Chemosphere 171, 644-653. PMid:28056451. http://doi.org/10.1016/j.chemosphere.2016.12.110.

Gutierrez, M.F., Molina, F.R., Frau, D., Mayora, G., & Battauz, Y., 2020. Interactive effects of fish predation and sublethal insecticide concentrations on freshwater zooplankton communities. Ecotoxicol. Environ. Saf. 196, 110497. PMid:32247956. http://doi.org/10.1016/j.ecoenv.2020.110497.

Gyllström, M., & Hansson, L.-A., 2004. Dormancy in freshwater zooplankton: Induction, termination and the importance of benthic-pelagic coupling. Aquat. Sci. 66, 274-295. http://doi.org/10.1007/s00027-004-0712-y.

Hairston Jr, N.G., Hansen, A.-M., & Schaffner, W.R., 2000. The effect of diapause emergence on the seasonal dynamics of a zooplankton assemblage. Freshw. Biol. 45(2), 133-145. http://doi.org/10.1046/j.1365-2427.2000.00386.x.

Hanson, M.L., Graham, D.W., Babin, E., Azam, D., Coutellec, M.-A., Knapp, C.W., Lagadic, L., & Caquet, T., 2007. Influence of isolation on the recovery of pond mesocosms from the application of an insecticide. I. Study design and planktonic community responses. Environ. Toxicol. Chem. 26(6), 1265-1279. PMid:17571694. http://doi.org/10.1897/06-248R.1.

Jeppesen, E., Leavitt, P., De Meester, L., & Jensen, J.P., 2001. Functional ecology and palaeolimnology: using cladoceran remains to reconstruct anthropogenic impact. Trends Ecol. Evol. 16(4), 191-198. PMid:11245942. http://doi.org/10.1016/S0169-5347(01)02100-0.

Liefferink, S.L., Tate, R.B., van Vuren, J.H.J., Ferreira, M., & Malherbe, W., 2014. A comparison of methods for incubating zooplankton diapausing eggs from sediment of endorheic pans in the Free State, South Africa. Afr. J. Aquat. Sci. 39(4), 417-423. http://doi.org/10.2989/16085914.2014.975778.

López-Mancisidor, P., Carbonell, G., Marina, A., Fernández, C., & Tarazona, J.V., 2008. Zooplankton community responses to chlorpyrifos in mesocosms under Mediterranean conditions. Ecotoxicol. Environ. Saf. 71(1), 16-25. PMid:17629945. http://doi.org/10.1016/j.ecoenv.2007.06.006.

Marcus, N.H., & Taulbee, K., 1992. Potential effects of a resuspension event on the vertical distribution of copepod eggs in the sea bed: a laboratory simulation. Mar. Biol. 114(2), 249-251. http://doi.org/10.1007/BF00349526.

Medeiros, A.M.A., Eustáquio de Sousa, C., Crispim, M.C., Karla, A., & Montenegro, A., 2013. Effects of experimental eutrophization on zooplankton community. Acta Limnol. Bras. 25(2), 183-191. http://doi.org/10.1590/S2179-975X2013000200009.

Moreira, R.A., dos Santos Silva, E., Sanches, A.L.M., Freitas, E.C., Vieira, B.H., Reghini, M.V., Mello Batista, H., Silva Pinto, T.J., Santos Wisniewski, M.J., Espindola, E.L.G., Rocha, O., & Daam, M.A., 2021. Impact of simulated pesticide spray drift and runoff events on the structural and functional zooplankton diversity in tropical freshwater microcosms. Water Air Soil Pollut. 232(8), 1-15. http://doi.org/10.1007/s11270-021-05265-2.

Nevalainen, L., Luoto, T.P., Levine, S., & Manca, M., 2011. Paleolimnological evidence for increased sexual reproduction in chydorids (Chydoridae, Cladocera) under environmental stress. J. Limnol. 70(2), 255-262. http://doi.org/10.4081/jlimnol.2011.255.

Nielsen, D.L., & Brock, M.A., 2009. Modified water regime and salinity as a consequence of climate change: prospects for wetlands of Southern Australia. Clim. Change 95(3-4), 523-533. http://doi.org/10.1007/s10584-009-9564-8.

O'Keefe, T., Brewer, M.C., & Dodson, S.I., 1998. Swimming behavior of Daphnia: its role in determining predation risk. J. Plankton Res. 20(5), 973-984. http://doi.org/10.1093/plankt/20.5.973.

Paggi, J.C., 1979. Revisión de las especies argentinas del género Bosmina Baird agrupadas en el subgénero Neobosmina Lieder (Crustacea: cladocera). Acta Zool. Lilloana 35(1), 137-162.

Piscia, R., Tabozzi, S., Bettinetti, R., Nevalainen, L., & Manca, M.M., 2016. Unexpected increases in rotifer resting egg abundances during the period of contamination of Lake Orta. J. Limnol. 75(2s), 76-85. http://doi.org/10.4081/jlimnol.2016.1300.

Portinho, J.L., Nielsen, D.L., Daré, L., Henry, R., Oliveira, C., & Branco, C.C.Z., 2018. Mixture of commercial herbicides based on 2,4-D and glyphosate mixture can suppress the emergence of zooplankton from sediments. Chemosphere 203, 151-159. PMid:29614408. http://doi.org/10.1016/j.chemosphere.2018.03.156.

Radzikowski, J., Sikora, A., & Ślusarczyk, M., 2016. The effect of lake sediment on the hatching success of Daphnia ephippial eggs. J. Limnol. 75(3), 597-605. http://doi.org/10.4081/jlimnol.2016.1345.

Reid, J.W., 1985. Chave de identificação e lista de referências bibliográficas para as espécies continentais sulamericanas de vida livre da ordem Cyclopoida (Crustacea, Copepoda). Boll. Zool. 9(9), 17-143. http://doi.org/10.11606/issn.2526-3358.bolzoo.1985.122293.

Ringuelet, R.A., 1958. Los Crustáceos Copépodos de las aguas continentales de la República Argentina: contribuciones científicas. Buenos Aires: Facultad de Ciencias Exactas y Naturales, UBA.

Rogalski, M.A., Leavitt, P.R., & Skelly, D.K., 2017. Daphniid zooplankton assemblage shifts in response to eutrophication and metal contamination during the Anthropocene. Proc. Biol. Sci. 284(1859), 20170865. PMid:28747475. http://doi.org/10.1098/rspb.2017.0865.

Silva Bandeira, M.G., Martins, K.P., Palma-Silva, C., Hepp, L.U., & Albertoni, E.F., 2020. Hydration time influences microcrustacean hatching in intermittent wetlands: in situ and ex situ approaches. Hydrobiologia 847(15), 3227-3245. http://doi.org/10.1007/s10750-020-04315-w.

Smirnov, N.N., 1992. The Macrothricidae of the world. Amsterdam: SPB Academic Publishing.

Souza Santos, G., Silva, E.E.C., Balmant, F.M., & Gomes, P.C.S., 2021. Impacts of exposure to mine tailings on zooplankton hatching from a resting egg bank. Aquat. Ecol. 55(2), 545-557. http://doi.org/10.1007/s10452-021-09844-7.

Tavşanoğlu, Ü.N., Idil Çakiroğlu, A., Erdoğan, Ş., Meerhoff, M., Jeppesen, E., & Beklioglu, M., 2012. Sediments, not plants, offer the preferred refuge for Daphnia against fish predation in Mediterranean shallow lakes: an experimental demonstration. Freshw. Biol. 57(4), 795-802. http://doi.org/10.1111/j.1365-2427.2012.02745.x.

Uttieri, M., Sandulli, R., Spezie, G., & Zambianchi, E., 2014. From small to large scale: a review of the swimming behaviour of Daphnia. In: M. El-Doma, ed. Daphnia: biology and mathematics perspectives. New York: Nova Science Publishers, 309-322.

Van Den Brink, P.J., & ter Braak, C.J.F., 1999. Principal response curves: analysis of time‐dependent multivariate responses of biological community to stress. Environ. Toxicol. Chem. 18(2), 138-148. http://doi.org/10.1002/etc.5620180207.

Van Den Brink, P.J., Hattink, J., Bransen, F., Van Donk, E., Brock, T.C.M., & Van Den Brink, P.J., 2000. Impact of the fungicide carbendazim in freshwater microcosms. II. Zooplankton, primary producers and final conclusions. Aquat. Toxicol. 48(2-3), 251-264. PMid:10686330. http://doi.org/10.1016/S0166-445X(99)00037-5.

Vandekerkhove, J., Declerck, S., Brendonck, L., Conde-Porcuna, J.M., Jeppesen, E., & De Meester, L., 2005. Hatching of cladoceran resting eggs: temperature and photoperiod. Freshw. Biol. 50(1), 96-104. http://doi.org/10.1111/j.1365-2427.2004.01312.x.

Vandekerkhove, J., Niessen, B., Declerck, S., Jeppesen, E., Conde Porcuna, J.J., Brendonck, L., & De Meester, L., 2004. Hatching rate and hatching success with and without isolation of zooplankton resting stages. Hydrobiologia 526(1), 235-241. http://doi.org/10.1023/B:HYDR.0000041598.68424.fc.

Vargas, A.L., Santangelo, J.M., & Bozelli, R.L., 2019. Recovery from drought: viability and hatching patterns of hydrated and desiccated zooplankton resting eggs. Int. Rev. Hydrobiol. 104(1-2), 26-33. http://doi.org/10.1002/iroh.201801977.

Vehmaa, A., Katajisto, T., & Candolin, U., 2018. Long-term changes in a zooplankton community revealed by the sediment archive. Limnol. Oceanogr. 63(5), 2126-2139. http://doi.org/10.1002/lno.10928.

Vendramin, D., Pires, M.M., Medeiros, E.S.F., Stenert, C., & Maltchik, L., 2023. Life finds a way: hatching dynamics of zooplankton dormant stages in intermittent wetlands from the Brazilian tropical semiarid. J. Arid Environ. 212, 104949. http://doi.org/10.1016/j.jaridenv.2023.104949.

Voigt, M., & Koste, W., 1978. Rotatoria: die Radetiere Mitteleuropas. Ein Bestimmungswerk, begrundet von Max Voigt. Berlin: Borntraeger, 1149 p.

Whiteside, M.C., & Williams, J.B., 1975. A new sampling technique for aquatic ecologists. Verh. Int. Ver. Theor. Angew. Limnol. 19(2), 1534-1539. http://doi.org/10.1080/03680770.1974.11896216.
 


Submetido em:
26/12/2023

Aceito em:
13/05/2024

Publicado em:
22/07/2024

669e5f99a953956d0140ec02 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections