Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X10623
Acta Limnologica Brasiliensia
Artigo Original

Influence of land use, occupation, and riparian zones on zooplankton diversity in Cerrado streams

Influência do uso e ocupação do solo e das zonas ripárias na diversidade do zooplâncton em riachos do Cerrado

Gustavo Fernandes Granjeiro; Carla Albuquerque de Souza; Ruan Carlos Pires Faquim; Pedro Paulino Borges; Pedro Henrique Francisco de Oliveira; João Carlos Nabout; Ludgero Cardoso Galli Vieira

Downloads: 0
Views: 236

Abstract

Aim: The riparian zones of the Cerrado biome have decreased significantly due to human expansion, altering the ecological dynamics of ecosystems, and zooplankton can respond to these changes. Therefore, we seek to evaluate the impact of riparian zones and environmental changes on zooplankton communities in streams, considering the trophic state and integrity of riparian zones. The research seeks to determine which predictors play the most significant role in structuring these communities. The main hypothesis is that local factors have a direct influence on zooplankton communities due to nearby limnological conditions.

Methods: We collected zooplankton samples and physicochemical variables at 20 points located in the Silvânia National Forest and surrounding areas (Goiás, Brazil). A Redundancy Analysis (RDA) was employed after selecting significant variables. A Multivariate Regression Tree (MRT) analysis was used to model relationships between species and environmental characteristics.

Results: We found that trophic state and forest cover had no significant influence on zooplankton richness and density. Despite identifying 88 species of zooplankton, we did not observe clear relationships with environmental factors. The Multivariate Regression Tree (MRT) analysis, however, revealed distinct clusters, clarifying the factors that shape the zooplankton community.

Conclusions: Our findings emphasize the need for further investigation into the interaction between zooplankton and their environment to offer valuable insights for ecological management and conservation efforts. Unforeseen disturbances can introduce stochastic elements into community variations, camouflaging the influence of local and spatial factors.

Keywords

metacommunities, impacts, anthropization, landscape, environmental variables

Resumo

Objetivo: As zonas ripárias do Cerrado diminuíram significativamente devido à expansão humana, alterando a dinâmica ecológica dos ecossistemas, e o zooplâncton pode responder à essas mudanças. Desta forma, buscamos avaliar o impacto das zonas ripárias e das mudanças ambientais nas comunidades de zooplâncton em riachos, considerando o estado trófico e integridade destas zonas. A pesquisa busca determinar quais preditores desempenham um papel mais significativo na estruturação dessas comunidades. A hipótese central é que os fatores locais têm uma influência direta nas comunidades de zooplâncton devido às condições limnológicas próximas.

Métodos: Coletamos as amostras de zooplâncton e variáveis físico-químicas em 20 pontos localizados na Floresta Nacional de Silvânia e arredores, Goiás, Brasil. Uma Análise de Redundância (RDA) foi empregada após a seleção de variáveis significativas. A análise de Árvore de Regressão Multivariada (MRT) foi utilizada para modelar as relações entre espécies e características ambientais.

Resultados: Descobrimos que o estado trófico e a cobertura florestal não tiveram influência significativa na riqueza e densidade do zooplâncton. Apesar de identificarmos 88 espécies de zooplâncton, não observamos relações claras com fatores ambientais. A análise da Árvore de Regressão Multivariada (MRT), no entanto, revelou agrupamentos distintos, esclarecendo os fatores que moldam a comunidade zooplanctônica.

Conclusões: Nossas descobertas destacam a necessidade de mais investigações sobre a interação entre o zooplâncton e seu ambiente, a fim de fornecer informações valiosas para a gestão ecológica e os esforços de conservação. Perturbações imprevistas podem introduzir elementos estocásticos nas variações das comunidades, mascarando a influência de fatores ambientais e espaciais locais.

Palavras-chave

metacomunidades, impactos, antropização, paisagem, variáveis ambientais

Referências

Aguiar Junior, T.R., Rasera, K., Parron, L.M., Brito, A.G., & Ferreira, M.T., 2015. Nutrient removal effectiveness by riparian buffer zones in rural temperate watersheds: the impact of no-till crops practices. Agric. Water Manage. 149, 74-80. http://doi.org/10.1016/j.agwat.2014.10.031.

Allan, J.D., & Castillo, M.M., 2007. An introduction to fluvial ecosystems. In: Allan, J. D., & Castillo, M. M., eds. Stream ecology: structure and function of running waters. Dordrecht: Springer, 1-12. http://doi.org/10.1007/978-1-4020-5583-6_1.

Allan, J.D., 1976. Life history patterns in zooplankton. Am. Nat. 110(971), 165-180. http://doi.org/10.1086/283056.

Allan, J.D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 35(1), 257-284. http://doi.org/10.1146/annurev.ecolsys.35.120202.110122.

Allen, A.P., & Gillooly, J.F., 2006. Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. Ecol. Lett. 9(8), 947-954. PMid:16913938. http://doi.org/10.1111/j.1461-0248.2006.00946.x.

Almendinger, J.E., Murphy, M.S., & Ulrich, J.S., 2014. Use of the Soil and Water Assessment Tool to scale sediment delivery from field to watershed in an agricultural landscape with topographic depressions. J. Environ. Qual. 43(1), 9-17. PMid:25602535. http://doi.org/10.2134/jeq2011.0340.

American Public Health Association – APHA, 1926. Standard methods for the examination of water and wastewater. Washington, D.C.: APHA, vol. 6.

Anas, M.M., Meegahage, B.J., Evans, M.S., Jeffries, D.S., & Wissel, B., 2017. Scale-dependent effects of natural environmental gradients, industrial emissions and dispersal processes on zooplankton metacommunity structure: implications for the bioassessment of boreal lakes. Ecol. Indic. 82, 484-494. http://doi.org/10.1016/j.ecolind.2017.07.035.

Anas, M.U.M., 2012. Zooplankton as indicators to detect and track the degree of acid-stress to lake ecosystems. Regina: The University of Regina.

Arauzo, M., 2003. Harmful effects of un-ionised ammonia on the zooplankton community in a deep waste treatment pond. Water Res. 37(5), 1048-1054. PMid:12553979. http://doi.org/10.1016/S0043-1354(02)00454-2.

Astorga, A., Oksanen, J., Luoto, M., Soininen, J., Virtanen, R., & Muotka, T., 2012. Distance decay of similarity in freshwater communities: do macro‐and microorganisms follow the same rules? Glob. Ecol. Biogeogr. 21(3), 365-375. http://doi.org/10.1111/j.1466-8238.2011.00681.x.

Blanchet, F.G., Legendre, P., & Borcard, D., 2008. Modelling directional spatial processes in ecological data. Ecol. Modell. 215(4), 325-336. http://doi.org/10.1016/j.ecolmodel.2008.04.001.

Borcard, D., Gillet, F., & Legendre, P., 2018. Numerical ecology with R. New York: Springer, vol. 2. http://doi.org/10.1007/978-3-319-71404-2.

Brito, S.L., Maia‐Barbosa, P.M., & Pinto‐Coelho, R.M., 2011. Zooplankton as an indicator of trophic conditions in two large reservoirs in Brazil. Lakes Reservoirs: Res. Manage. 16(4), 253-264. http://doi.org/10.1111/j.1440-1770.2011.00484.x.

Broetto, T., Tornquist, C.G., Bayer, C., Campos, B.C., Merten, C.G., & Wottrich, B., 2014. Soils and surface waters as affected by long-term swine slurry application in Oxisols of southern Brazil. Pedosphere 24(5), 585-594. http://doi.org/10.1016/S1002-0160(14)60044-8.

Cáceres, C.E., & Soluk, D.A., 2002. Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates. Oecologia 131(3), 402-408. PMid:28547712. http://doi.org/10.1007/s00442-002-0897-5.

Chase, J.M., 2007. Drought mediates the importance of stochastic community assembly. Proc. Natl. Acad. Sci. USA 104(44), 17430-17434. PMid:17942690. http://doi.org/10.1073/pnas.0704350104.

De Bie, T., De Meester, L., Brendonck, L., Martens, K., Goddeeris, B., Ercken, D., Hampel, H., Denys, L., Vanhecke, L., Van der Gucht, K., Van Wichelen, J., Vyverman, W., & Declerck, S.A., 2012. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol. Lett. 15(7), 740-747. PMid:22583795. http://doi.org/10.1111/j.1461-0248.2012.01794.x.

De’ath, G., 2002. Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology 83(4), 1105-1117. http://doi.org/10.1890/0012-9658(2002)083[1105:MRTANT]2.0.CO;2.

Dodds, W.K., Gido, K., Whiles, M.R., Fritz, K.M., & Matthews, W.J., 2004. Life on the edge: the ecology of Great Plains prairie streams. Bioscience 54(3), 205-216. http://doi.org/10.1641/0006-3568(2004)054[0205:LOTETE]2.0.CO;2.

Dray, S., Bauman, D., Blanchet, G., Borcard, D., Clappe, S., Guenard, G., Jombart, T., Larocque, G., Legendre, P., Madi, N., Wagner, H.H., & Siberchicot, A., 2018. Package ‘adespatial’. R package. Vienna: R Foundation for Statistical Computing, 3-8.

Dudgeon, D., ed., 2011. Tropical stream ecology. London: Academic Press.

Dulić, Z., Kljujev, I., Raičević, V., Živić, I., Marković, Z., Stanković, M., & Poleksić, V., 2008. Estimation of irrigation water quality using coliform bacteria, zooplankton and zoobenthos as indicators. Arch. Biol. Sci. 60(1), 11P-12P. http://doi.org/10.2298/ABS0801173D.

Esteves, F., 2011. Fundamentos de limnologia. Rio de Janeiro: Editora Interciência, 3 ed.

Esteves, K.E., & Sendacz, S., 1988. Relações entre a biomassa do zooplâncton e o estado trófico de reservatórios do Estado de São Paulo. Acta Limnol. Bras. 11, 587-604.

Gannon, J.E., & Stemberger, R.S., 1978. Zooplankton (especially crustaceans and rotifers) as indicators of water quality. Trans. Am. Microsc. Soc. 97(1), 16-35. http://doi.org/10.2307/3225681.

Gasca, R., & Suárez, E., 1996. Introducción al estudio del Zooplancton Marino. México, DF: El Colegio de la Frontera Sur (ECOSUR)/CONACYT.

Gregory, S.V., Swanson, F.J., McKee, W.A., & Cummins, K.W., 1991. An ecosystem perspective of riparian zones. Bioscience 41(8), 540-551. http://doi.org/10.2307/1311607.

Harper, D.M., 1992. Eutrophication of freshwaters: principles, problems and restoration. London: Chapman & Hall. http://doi.org/10.1007/978-94-011-3082-0.

Heino, J., & Mykrä, H., 2008. Control of stream insect assemblages: roles of spatial configuration and local environmental factors. Ecol. Entomol. 33(5), 614-622. http://doi.org/10.1111/j.1365-2311.2008.01012.x.

Heino, J., Melo, A.S., Siqueira, T., Soininen, J., Valanko, S., & Bini, L.M., 2015. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshw. Biol. 60(5), 845-869. http://doi.org/10.1111/fwb.12533.

Hubbell, S.P., 2001. The unified neutral theory of biodiversity and biogeography. Princeton: Princeton University Press.

Instituto Brasileiro de Geografia e Estatística – IBGE, 2010. Censo demográfico. Rio de Janeiro.

Jakhar, P., 2013. Role of phytoplankton and zooplankton as health indicators of aquatic ecosystem: a review. Int. J. Innov. Res. Stud. 2(12), 489-500.

Johnson, B.L., Richardson, W.B., & Naimo, T.J., 1995. Past, present, and future concepts in large river ecology. Bioscience 45(3), 134-141. http://doi.org/10.2307/1312552.

Johnson, R.K., 2005. Bioassessment of freshwater ecosystems: using the reference condition approach. Freshw. Biol. 50(1), 199. http://doi.org/10.1111/j.1365-2427.2004.01295.x.

Kalavrouziotis, I.K., & Drakatos, P.A., 2002. Irrigation of certain Mediterranean plants with heavy metals. Int. J. Environ. Pollut. 18(3), 294-300. http://doi.org/10.1504/IJEP.2002.000712.

Karr, J.R., & Schlosser, I.J., 1978. Water resources and the land-water interface. Science 201(4352), 229-234. PMid:17778646. http://doi.org/10.1126/science.201.4352.229.

Keppeler, E.C., Souza, S.L.S., Silva, E.S., Serrano, R.O.P., Souza, R.M., Dantas, I.I.S, Silvério, J.F., & Madeira, F.P., 2010. Rotifera, Eurotatoria, Lecanidae, Lecane monostyla (DADAY, 1897): new occurrence for state of Acre. Ens Cienc Cienc Biol Agrar Saude 14(1), 9-14.

King, R.S., & Baker, M.E., 2010. Considerations for analyzing ecological community thresholds in response to anthropogenic environmental gradients. J. N. Am. Benthol. Soc. 29(3), 998-1008. http://doi.org/10.1899/09-144.1.

Kirk, K.L., & Gilbert, J.J., 1990. Suspended clay and the population dynamics of planktonic rotifers and cladocerans. Ecology 71(5), 1741-1755. http://doi.org/10.2307/1937582.

Koeppen, W., & Hendrichs Pérez, P. R., 1948. Climatologia: con un estudio de los climas de la tierra. México, DF: Fondo de Cultura Economica.

Kuczyńska‐Kippen, N., & Basińska, A., 2014. Habitat as the most important influencing factor for the rotifer community structure at landscape level. Int. Rev. Hydrobiol. 99(1-2), 58-64. http://doi.org/10.1002/iroh.201301704.

Lair, N., 2006. A review of regulation mechanisms of metazoan plankton in riverine ecosystems: aquatic habitat versus biota. River Res. Appl. 22(5), 567-593. http://doi.org/10.1002/rra.923.

Lamparelli, M.C., 2004. Graus de trofia em corpos d\'água do estado de São Paulo: avaliação dos métodos de monitoramento [Doctoral dissertation in Sciences]. São Paulo: Universidade de São Paulo.

Lansac-Tôha, F.A., Velho, L.F.M., Costa, D.M., Simões, N.R., & Alves, G.M., 2014. Structure of the testate amoebae community in different habitats in a neotropical floodplain. Braz. J. Biol. 74(1), 181-190. PMid:25055100. http://doi.org/10.1590/1519-6984.24912.

Laws, E.A., 2000. Aquatic pollution: an introductory text. New York: John Wiley & Sons.

Legendre, P., & Gallagher, E.D., 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129(2), 271-280. PMid:28547606. http://doi.org/10.1007/s004420100716.

Legendre, P., & Legendre, L., 2012. Numerical ecology. Amsterdam: Elsevier, 3 ed., Development in Environmental Modelling, vol. 24.

Lorion, C.M., & Kennedy, B.P., 2009. Relationships between deforestation, riparian forest buffers and benthic macroinvertebrates in neotropical headwater streams. Freshw. Biol. 54(1), 165-180. http://doi.org/10.1111/j.1365-2427.2008.02092.x.

Lowrance, R., Altier, L.S., Newbold, J.D., Schnabel, R.R., Groffman, P.M., Denver, J.M., Correll, D.L., Gilliam, J.W., Robinson, J.L., Brinsfield, R.B., Staver, K.W., Lucas, W., & Todd, A.H., 1997. Water quality functions of riparian forest buffers in Chesapeake Bay watersheds. Environ. Manage. 21(5), 687-712. PMid:9236284. http://doi.org/10.1007/s002679900060.

Marcelino, S.C., 2007. Zooplâncton como bioindicadores do estado trófico na seleção de áreas aqüícolas para piscicultura em tanque-rede no reservatório da UHE Pedra no rio de Contas, Jequié - BA [Doctoral dissertation in Aquaculture]. Recife: Universidade Federal Rural de Pernambuco.

Morgan, M.D., 1985. Photosynthetically elevated pH in acid waters with high nutrient content and its significance for the zooplankton community. Hydrobiologia 128(3), 239-247. http://doi.org/10.1007/BF00006820.

Morgan, M.D., 1986. The effect of altered pH on zooplankton community structure in a disturbed New Jersey pine barrens pond. J. Freshwat. Ecol. 3(4), 467-476. http://doi.org/10.1080/02705060.1986.9665139.

Mucio Alves, G., Amodêo Lansac‐Tôha, F., Mayumi Takahashi, É., & Machado Velho, L.F., 2008. Fluctuations of testate amoebae populations (Rhizopoda) in plankton from different environments on the upper Paraná River floodplain, Brazil. Int. Rev. Hydrobiol. 93(2), 227-242. http://doi.org/10.1002/iroh.200711002.

Nabout, J.C., Siqueira, T., Bini, L.M., & Nogueira, I.D.S., 2009. No evidence for environmental and spatial processes in structuring phytoplankton communities. Acta Oecol. 35(5), 720-726. http://doi.org/10.1016/j.actao.2009.07.002.

Naiman, R.J., & Decamps, H., 1997. The ecology of interfaces: riparian zones. Annu. Rev. Ecol. Syst. 28(1), 621-658. http://doi.org/10.1146/annurev.ecolsys.28.1.621.

Nixon, S.W., 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41(1), 199-219. http://doi.org/10.1080/00785236.1995.10422044.

Nogueira, M.G., 2001. Zooplankton composition, dominance and abundance as indicators of environmental compartmentalization in Jurumirim Reservoir (Paranapanema River), São Paulo, Brazil. Hydrobiologia 455(1-3), 1-18. http://doi.org/10.1023/A:1011946708757.

Odemis, B., & Evrendilek, F., 2007. Monitoring water quality and quantity of national watersheds in Turkey. Environ. Monit. Assess. 133(1-3), 215-229. PMid:17171235. http://doi.org/10.1007/s10661-006-9574-1.

Ortega, J.A., Razola, L., & Garzón, G., 2014. Recent human impacts and change in dynamics and morphology of ephemeral rivers. Nat. Hazards Earth Syst. Sci. 14(3), 713-730. http://doi.org/10.5194/nhess-14-713-2014.

Parra, G., Matias, N.G., Guerrero Ruiz, F.J., & Boavida, M.J., 2009. Short term fluctuations of zooplankton abundance during autumn circulation in two reservoirs with contrasting trophic state. Limnetica 28(1), 175-184. http://doi.org/10.23818/limn.28.13.

Picket, S.T.A., & White, P.S., 1985. Patch dynamics: a synthesis. In: Picket, S.T.A. & White, P.S., eds. The ecology of natural disturbance and patch dynamics. New York: Academic Press, 371-384.

Reynolds, C.S., 2000. Hydroecology of river plankton: the role of variability in channel flow. Hydrol. Processes 14(16‐17), 3119-3132. http://doi.org/10.1002/1099-1085(200011/12)14:16/17<3119::AID-HYP137>3.0.CO;2-6.

Richardson, A.J., 2008. In hot water: zooplankton and climate change. ICES J. Mar. Sci. 65(3), 279-295. http://doi.org/10.1093/icesjms/fsn028.

Sala, O.E., Chapin III, F.S., Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L.F., Jackson, R.B., Kinzig, A., Leemans, R., Lodge, D.M., Mooney, H.A., Oesterheld, M., Poff, N.L., Sykes, M.T., Walker, B.H., Walker, M., & Wall, D.H., 2000. Global biodiversity scenarios for the year 2100. Science 287(5459), 1770-1774. PMid:10710299. http://doi.org/10.1126/science.287.5459.1770.

Savichtcheva, O., & Okabe, S., 2006. Alternative indicators of fecal pollution: relations with pathogens and conventional indicators, current methodologies for direct pathogen monitoring and future application perspectives. Water Res. 40(13), 2463-2476. PMid:16808958. http://doi.org/10.1016/j.watres.2006.04.040.

Schlosser, I.J., 1991. Stream fish ecology: a landscape perspective. Bioscience 41(10), 704-712. http://doi.org/10.2307/1311765.

Schuler, M.S., Chase, J.M., & Knight, T.M., 2017. Habitat size modulates the influence of heterogeneity on species richness patterns in a model zooplankton community. Ecology 98(6), 1651-1659. PMid:28369846. http://doi.org/10.1002/ecy.1833.

Sendacz, S., Caleffi, S., & Santos-Soares, J., 2006. Zooplankton biomass of reservoirs in different trophic conditions in the State of São Paulo, Brazil. Braz. J. Biol. 66(1B), 337-350. PMid:16710526. http://doi.org/10.1590/S1519-69842006000200016.

Serrano, L., González-Flor, C., & Gorchs, G., 2010. Assessing vineyard water status using the reflectance-based water index. Agric. Ecosyst. Environ. 139(4), 490-499. http://doi.org/10.1016/j.agee.2010.09.007.

Stoch, F., Artheau, M., Brancelj, A., Galassi, D.M., & Malard, F., 2009. Biodiversity indicators in European ground waters: towards a predictive model of stygobiotic species richness. Freshw. Biol. 54(4), 745-755. http://doi.org/10.1111/j.1365-2427.2008.02143.x.

Strecker, A.L., & Brittain, J.T., 2017. Increased habitat connectivity homogenizes freshwater communities: historical and landscape perspectives. J. Appl. Ecol. 54(5), 1343-1352. http://doi.org/10.1111/1365-2664.12882.

Thorp, J.H., & Casper, A.F., 2003. Importance of biotic interactions in large rivers: an experiment with planktivorous fish, dreissenid mussels and zooplankton in the St. Lawrence River. River Res. Appl. 19(3), 265-279. http://doi.org/10.1002/rra.703.

Vanormelingen, P., Cottenie, K., Michels, E., Muylaert, K., Vyverman, W.I.M., & De Meester, L.U.C., 2008. The relative importance of dispersal and local processes in structuring phytoplankton communities in a set of highly interconnected ponds. Freshw. Biol. 53(11), 2170-2183. http://doi.org/10.1111/j.1365-2427.2008.02040.x.

Velho, L.F.M., Alves, G.M., Lansac-Tôha, F.A., Bonecker, C.C., & Pereira, D.G., 2004. Testate amoebae abundance in plankton samples from Paraná State reservoirs. Acta Scientiarum 26(4), 415-419. http://doi.org/10.4025/actascibiolsci.v26i4.1522.

Ward, J.V., Tockner, K., Arscott, D.B., & Claret, C., 2002. Riverine landscape diversity. Freshw. Biol. 47(4), 517-539. http://doi.org/10.1046/j.1365-2427.2002.00893.x.

World Health Organization – WHO, 2003. Guidelines for safe recreational water environments: coastal and fresh waters. Geneva: WHO, vol. 1.

Xiong, W., Ni, P., Chen, Y., Gao, Y., Li, S., & Zhan, A., 2019. Biological consequences of environmental pollution in running water ecosystems: a case study in zooplankton. Environ. Pollut. 252(Pt B), 1483-1490. PMid:31265959. http://doi.org/10.1016/j.envpol.2019.06.055.

Zalidis, G., Stamatiadis, S., Takavakoglou, V., Eskridge, K., & Misopolinos, N., 2002. Impacts of agricultural practices on soil and water quality in the Mediterranean region and proposed assessment methodology. Agric. Ecosyst. Environ. 88(2), 137-146. http://doi.org/10.1016/S0167-8809(01)00249-3.

Zhai, M., Hřívová, D., & Peterka, T., 2015. The harpacticoid assemblages (Copepoda: Harpacticoida) in the Western Carpathian Spring fens in relation to environmental variables and habitat age. Limnologica 53, 84-94. http://doi.org/10.1016/j.limno.2015.07.001.
 


Submetido em:
06/12/2023

Aceito em:
30/07/2024

Publicado em:
16/09/2024

66e82e5da95395492915f213 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections