Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X10320
Acta Limnologica Brasiliensia
Original Article

Phytoplankton functional groups in shallow aquatic ecosystems from the semiarid region of Brazil

Grupos funcionais fitoplanctônicos em ecossistemas aquáticos rasos na região semiárida do Brasil

Klivia Rilavia Paiva da Silva; José Etham de Lucena Barbosa; Lucineide Maria Santana; Luciana Gomes Barbosa

Downloads: 0
Views: 987

Abstract

Abstract:

Aim: The study analyzed the potential use of the phytoplankton functional groups as an environmental bioindicator in aquatic ecosystems of Brazilian semiarid region.

Methods: Using data collected over five years of a natural lagoon and two reservoirs, we evaluate the relationship between functional groups and environmental conditions through the multivariate approach. The Q index was applied to assess ecological status in these ecosystems.

Results: In Panati, the temporary and natural lagoon, the partial habitat desiccation and presence of macrophytes reflected in the less nutrients concentrations and phytoplankton composition, with high biomass of coccoids Chlorophyceae, diatoms and desmids (functional groups J, MP and N, respectively). Taperoá and Soledade reservoirs presented high cyanobacteria contribution, however the biomass and contribution of cyanobacteria in Taperoá (SN, S1) were lower than in Soledade. In this reservoir, cyanobacteria were more abundant, alternating in dominance (LO, M, LM, SN, S1). According to tendencies revealed by Redundancy Analysis (RDA), the main driving abiotic factors on the phytoplankton functional groups were pH, nutrients and light availability. As expected, phytoplankton composition directly influenced the Q index result, showing mostly bad to tolerable conditions in Soledade, medium to good in Taperoá and good to excellent in Panati.

Conclusions: The Q index was a good tool to assess the water quality and ecological status in aquatic ecosystems from the Brazilian semiarid region, reflecting the influence of natural control mechanisms on the harmful cyanobacteria blooms in temporary ecosystems.

Keywords

cyanobacteria dominance, reservoirs, physical disturbances, Q index, water quality

Resumo

Resumo:

Objetivo: O estudo analisou o potencial uso dos grupos funcionais do fitoplâncton como bioindicador ambiental em ecossistemas aquáticos do semiárido brasileiro.

Métodos: Usando dados coletados de uma lagoa natural e dois reservatórios ao longo de cinco anos, avaliamos a relação entre grupos funcionais e condições ambientais por meio de uma abordagem multivariada. O índice Q foi aplicado para avaliar o estado ecológico desses ecossistemas.

Resultados: Em Panati, uma lagoa temporária e natural, a dessecação parcial do habitat e presença de macrófitas aquáticas refletiram nas menores concentrações de nutrientes e na composição do fitoplâncton, com alta biomassa de Chlorophyceae cocóides, diatomáceas e desmídias (grupos funcionais J, MP e N, respectivamente). Os reservatórios Taperoá e Soledade apresentaram alta contribuição de cianobactérias, no entanto a biomassa e a contribuição de cianobactérias em Taperoá (SN, S1) foram menores do que em Soledade. Nesse reservatório, as cianobactérias foram mais abundantes, alternando em dominância (LO, M, LM, SN, S1). De acordo com as tendências reveladas pela análise de redundância (RDA), os principais fatores abióticos atuantes sobre a estrutura dos grupos funcionais do fitoplâncton foram o pH, os nutrientes e a disponibilidade de luz. Como esperado, a composição do fitoplâncton influenciou diretamente o resultado do índice Q, mostrando condições ruins a toleráveis em Soledade, médias a boas em Taperoá e boas a excelentes em Panati.

Conclusões: O índice Q mostrou-se uma boa ferramenta para avaliar a qualidade da água e o estado ecológico de ecossistemas aquáticos do semiárido brasileiro, refletindo a influência de mecanismos naturais de controle sobre o florescimento de cianobactérias prejudiciais em ecossistemas temporários.
 

Palavras-chave

dominância de cianobactéria, reservatórios, distúrbios físicos, índice Q, qualidade de água

References

AGÊNCIA EXECUTIVA DE GESTÃO DAS ÁGUAS DO ESTADO DA PARAÍBA – AESA. Monitoramento dos volumes dos açudes [online]. João Pessoa: AESA, 2019a [viewed 15 Nov. 2019]. Available from: http://site2.aesa.pb.gov.br/aesa/volumesAcudes.do?metodo=selecionarMesEAnoVolumesMensais

AGÊNCIA EXECUTIVA DE GESTÃO DAS ÁGUAS DO ESTADO DA PARAÍBA – AESA. Precipitação máxima dos municípios [online]. João Pessoa: AESA, 2019b [viewed 15 Nov. 2019]. Available from: http://www.aesa.pb.gov.br/aesa-website/meteorologia-chuvas/?formdate=2005-11-30&produto=municipio&periodo=mensal

AGÊNCIA NACIONAL DE ÁGUAS – ANA. Reservatórios do semiárido brasileiro: hidrologia, balanço hídrico e operação: anexo A (Apodi, Curimataú, Paraíba) [online]. Brasília, 2017 [viewed 15 Nov. 2019]. Available from: https://metadados.snirh.gov.br/geonetwork/srv/api/records/ccc25b76-f711-41ea-a79e-c8d30c287e53

ALEXANDER, T.J., VONLANTHEN, P. and SEEHAUSEN, O. Does eutrophication-driven evolution change aquatic ecosystems? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2017, 372(1712), 20160041. http://dx.doi.org/10.1098/rstb.2016.0041. PMid:27920386.

ALVARES, C.A., STAPE, J.L., SENTELHAS, P.C., GONÇALVES, J.L.M. and SPAROVEK, G. Köppen’s climate classification map for Brazil. Meteorologie Zeitschrift, 2014, 22(6), 711-728. http://dx.doi.org/10.1127/0941-2948/2013/0507.

AMERICAN PUBLIC HEALTH ASSOCIATION – APHA. Standard methods for the examination of water and wastewater. Washington DC: APHA, 2005.

BAKKER, E.S. and HILT, S. Impact of water-level fluctuations on cyanobacterial blooms: options for management. Aquatic Ecology, 2016, 50(3), 485-498. http://dx.doi.org/10.1007/s10452-015-9556-x.

BARROS, M.U., WILSON, A.E., LEITÃO, J.I., PEREIRA, S.P., BULEY, R.P., FERNANDEZ-FIGUEROA, E.G. and CAPELO-NETO, J. Environmental factors associated with toxic cyanobacterial blooms across 20 drinking water reservoirs in a semi-arid region of Brazil. Harmful Algae, 2019, 86, 128-137. http://dx.doi.org/10.1016/j.hal.2019.05.006. PMid:31358272.

BECKER, V., HUSZAR, V.L.M. and CROSSETTI, L.O. Responses of phytoplankton functional groups to the mixing regime in a deep subtropical reservoir. Hydrobiologia, 2009, 628(1), 137-151. http://dx.doi.org/10.1007/s10750-009-9751-7.

BELKINOVA, D., PADISÁK, J., GECHEVA, G. and CHESHMEDJIEV, S. Phytoplankton based assessment of ecological status of Bulgarian lakes and comparison of metrics within the Water Framework Directive. Applied Ecology and Environmental Research, 2014, 12(1), 83-103. http://dx.doi.org/10.15666/aeer/1201_083103.

BENNETT, E.M., CRAMER, W., BEGOSSI, A., CUNDILL, G., DÍAZ, S., EGOH, B.N., GEIJZENDORFFER, I.R., KRUG, C.B., LAVOREL, S., LAZOS, E., LEBEL, L., MARTÍN-LÓPEZ, B., MEYFROIDT, P., MOONEY, H.A., NEL, J.L., PASCUAL, U., PAYET, K., HARGUINDEGUY, N.P., PETERSON, G.D., PRIEUR-RICHARD, A.-H., REYERS, B., ROEBELING, P., SEPPELT, R., SOLAN, M., TSCHAKERT, P., TSCHARNTKE, T., TURNER II, B.L., VERBURG, P.H., VIGLIZZO, E.F., WHITE, P.C.L. and WOODWARD, G. Linking biodiversity, ecosystem services, and human well-being: three challenges for designing research for sustainability. Current Opinion in Environmental Sustainability, 2015, 14, 76-85. http://dx.doi.org/10.1016/j.cosust.2015.03.007.

BENNION, H. and BATTARBEE, R. The European Union water framework directive: opportunities for paleolimnology. Journal of Paleolimnology, 2007, 38(2), 285-295. http://dx.doi.org/10.1007/s10933-007-9108-z.

BORICS, G., VÁRBÍRÓ, G., GRIGORSZKY, I., KRASZNAI, E., SZABÓ, S. and KISS, K. T. A new evaluation technique of potamo-plankton for the assessment of the ecological status of rivers. Archiv für Hydrobiologie Supplement, 2007, 161, 465-486.

BORMANS, M., FORD, P.W. and FABBRO, L. Spatial and temporal variability in cyanobacterial populations controlled by physical processes. Journal of Plankton Research, 2005, 27(1), 61-70. http://dx.doi.org/10.1093/plankt/fbh150.

BOUVY, M.A., NASCIMENTO, S.M., MOLICA, R.J.R., FERREIRA, A., HUSZAR, V. and AZEVEDO, S.M.F.O. Limnological features in Tapacurá reservoir (Northeast Brazil) during a severe drought. Hydrobiologia, 2003, 493(1/3), 115-130. http://dx.doi.org/10.1023/A:1025405817350.

BRAGA, G.G., BECKER, V., OLIVEIRA, J.N.P., MENDONÇA JUNIOR, J.R., BEZERRA, A.F.M., TORRES, L.M., GALVÃO, Â.M.F. and MATTOS, A. Influence of extended drought on water quality in tropical reservoirs in a semiarid region. Acta Limnologica Brasiliensia, 2015, 27(1), 15-23. http://dx.doi.org/10.1590/S2179-975X2214.

BRASIL, J., ATTAYDE, J.L., VASCONCELOS, F.R., DANTAS, D.D.F. and HUSZAR, V.L.M. Drought-induced water-level reduction favors cyanobacteria blooms in tropical shallow lakes. Hydrobiologia, 2016, 770(1), 145-164. http://dx.doi.org/10.1007/s10750-015-2578-5.

CALHOUN, A.J.K., MUSHET, D.M., BELL, K.P., BOIX, D., FITZSIMONS, J.A. and ISSELIN-NONDEDEU, F.. Temporary wetlands: challenges and solutions to conserving a ‘disappearing’ ecosystem. Biological Conservation, 2017, 211, 3-11. http://dx.doi.org/10.1016/j.biocon.2016.11.024.

CHAVES, F.I.B., LIMA, P.F., LEITÃO, R.C., PAULINO, W.D. and SANTAELLA, S.T. Influence of rainfall on the trophic status of a Brazilian semiarid reservoir. Acta Scientiarum. Biological Sciences, 2013, 35(4), 505-511. http://dx.doi.org/10.4025/actascibiolsci.v35i4.18261.

CHELLAPPA, N.T., CHELLAPPA, T., CÂMARA, F.R.A., ROCHA, O. and CHELLAPPA, S. Impact of stress and disturbance factors on the phytoplankton communities in Northeastern Brazil reservoir. Limnologica, 2009, 39(4), 273-282. http://dx.doi.org/10.1016/j.limno.2009.06.006.

COLE, G. Textbook of limnology. Illinois: Waveland Press, 1994.

COSTA, I.A.S., AZEVEDO, S.M.F.O., SENNA, P.A.C., BERNARDO, R.R., COSTA, S.M. and CHELLAPPA, N.T. Occurrence of toxin producing cyanobacteria blooms in a Brazilian semiarid reservoir. Brazilian Journal of Biology = Revista Brasileira de Biologia, 2006, 66(1B), 211-219. http://dx.doi.org/10.1590/S1519-69842006000200005. PMid:16710515.

COSTA, M.R.A., ATTAYDE, J.L. and BECKER, V. Effects of water level reduction on the dynamics of phytoplankton functional groups in tropical semi-arid shallow lakes. Hydrobiologia, 2016, 778(1), 75-89. http://dx.doi.org/10.1007/s10750-015-2593-6.

CROSSETTI, L.O. and BICUDO, C.E.M. Phytoplankton as a monitoring tool in a tropical urban shallow reservoir (Garças Pond): the assemblage index application. Hydrobiologia, 2008, 610, 161-173. http://dx.doi.org/10.1007/s10750-008-9431-z.

DANTAS, E.W., MOURA, A.N., BITTENCOURT-OLIVEIRA, M.C., ARRUDANETO, J.D.T. and CAVALCANTI, A.D.C. Temporal variation of the phytoplankton community at short sampling intervals in the Mundaú reservoir, Northeastern Brazil. Acta Botanica Brasílica, 2008, 22(4), 970-982. http://dx.doi.org/10.1590/S0102-33062008000400008.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA – EMBRAPA. Clima [online]. 2019 [viewed 20 Oct. 2019]. Available from: https://www.cnpf.embrapa.br/pesquisa/efb/clima.htm

EUROPEAN UNION. Directive (2000) Directive 2000/60/EC of the European parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities, Brussels, 22 dec. 2000, L 327, pp. 1-72.

FREITAS, G.T. and CRISPIM, M.C. Seasonal effects on zooplanktonic community in a temporary lagoon of Northeast Brazil. Acta Limnologica Brasiliensia, 2005, 17, 385-393.

HAJNAL, E. and PADISÁK, J. Analysis of long-term ecological status of Lake Balaton based on the ALMOBAL phytoplankton database. Hydrobiologia, 2008, 599(1), 227-237. http://dx.doi.org/10.1007/s10750-007-9207-x.

HILLEBRAND, H., DÜRSELEN, C.D., KIRSCHIEL, D., POLLINGHER, U. and ZOHARY, T. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 1999, 35(2), 403-424. http://dx.doi.org/10.1046/j.1529-8817.1999.3520403.x.

LAMPARELLI, M.C. Grau de trofia em corpos d’água do estado de São Paulo: avaliação dos métodos de monitoramento [Tese de Doutorado em Ciências na Área de Ecossistemas Terrestres e Aquáticos]. São Paulo: Universidade de São Paulo, 2004.

LI, Y., CHEN, Y. and LI, Z. Dry/wet pattern changes in global dryland areas over the past six decades. Global and Planetary Change, 2019, 178, 184-192. http://dx.doi.org/10.1016/j.gloplacha.2019.04.017.

LINS, R.P.M., BARBOSA, L.G., MINILLO, A. and DE CEBALLOS, B.S.O. Cyanobacteria in a eutrophicated reservoir in a semi-arid region in Brazil: dominance and microcystin events of blooms. Brazilian Journal of Botany, 2016, 39(2), 583-591. http://dx.doi.org/10.1007/s40415-016-0267-x.

LUND, J.W.G., KIPLING, C. and LE CREN, E.D. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia, 1958, 11(2), 143-170. http://dx.doi.org/10.1007/BF00007865.

MENDONÇA JÚNIOR, J.R., AMADO, A.M., VIDAL, L.O., MATTOS, A. and BECKER, V. Extreme droughts drive tropical semi-arid eutrophic reservoirs towards CO2 sub-saturation. Acta Limnologica Brasiliencia, 2018, 30(101). http://dx.doi.org/10.1590/s2179-975x1517.

NAKAZAWA, M. Fmsb: Functions for Medical Statistics Book with some Demographic Data. R package version 0.7.0 [online]. 2019 [viewed 7 Dec 2019]. Available from: https://CRAN.R-project.org/package=fmsb

OKSANEN, J., BLANCHET, F.G., FRIENDLY, M., KINDT, R., LEGENDRE, P., MCGLINN, D., MINCHIN, P.R., O’HARA, R.B., SIMPSON, G.L., SOLYMOS, P., STEVENS, M.H.H., SZOECS, E. and WAGNER, H. Vegan: Community Ecology Package. R package version 2.5-5 [online]. 2019 [viewed 7 Dec 2019]. Available from: http://CRAN.R-project.org/package=vegan

PADISÁK, J., BORICS, G., GRIGORSZKY, I. and SORÓCZKI-PINTÉR, E. Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: the assemblage index. Hydrobiologia, 2006, 553(1), 1-14. http://dx.doi.org/10.1007/s10750-005-1393-9.

PADISÁK, J., CROSSETTI, L. and NASELLI-FLORES, L. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia, 2009, 621(1), 1-19. http://dx.doi.org/10.1007/s10750-008-9645-0.

PAERL, H.W. and OTTEN, T.G. Harmful cyanobacterial blooms: causes, consequences, and controls. Microbial Ecology, 2013, 65(4), 995-1010. http://dx.doi.org/10.1007/s00248-012-0159-y. PMid:23314096.

PAERL, H.W. and PAUL, V.L. Climate change: links to global expansion of harmful cyanobacteria. Water Research, 2012, 46(5), 1349-1363. http://dx.doi.org/10.1016/j.watres.2011.08.002. PMid:21893330.

PASZTALENIEC, A. and PONIEWOZIK, M. Phytoplankton based assessment of the ecological status of four shallow lakes (Eastern Poland) according to Water Framework Directive: a comparison of approaches. Limnologica, 2010, 40(3), 251-259. http://dx.doi.org/10.1016/j.limno.2009.07.001.

R CORE TEAM. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2018.

REYNOLDS, C.S., HUSZAR, V.L.M., KRUK, C., NASSELI-FLORES, L. and D’ÁVILA MELO, S.M. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research, 2002, 24(5), 417-428. http://dx.doi.org/10.1093/plankt/24.5.417.

SANDI, S.G., RODRIGUEZ, J.F., SAINTILAN, N., RICCARDI, G., and SACO, P.M. Rising tides, rising gates: The complex ecogeomorphic response of coastal wetlands to sea-level rise and human interventions, Adv. Water Resources, 2018, 114, 135–148. https://doi.org/10.1016/j.advwatres.2018.02.006.

SANTANA, L.M., CROSSETTI, L.O. and FERRAGUT, C. Ecological status assessment of tropical reservoirs through the assemblage index of phytoplankton functional groups. Brazilian Journal of Botany, 2017, 40(3), 695-704. http://dx.doi.org/10.1007/s40415-017-0373-4.

SEABRA, V.D., XAVIER, R.A., DAMASCENO, J. and DORNELLAS, P.C. Mapeamento do uso e cobertura do solo da bacia do rio Taperoá: região semiárida do Estado da Paraíba. Caminhos de Geografia, 2014, 15(50), 127-137.

SEVİNDİK, T.O., TUNCA, H., GÖNÜLOL, A., GÜRSOY, N., KÜÇÜKKAYA, Ş.N. and KINALI, Z. Phytoplankton dynamics and structure, and ecological status estimation by the Q assemblage index: a comparative analysis in two shallow Mediterranean lakes. Turkish Journal of Botany, 2017, 41(1), 25-36. http://dx.doi.org/10.3906/bot-1510-22.

SILVA, A.P.C. and COSTA, I.A.S. Biomonitoring ecological status of two reservoirs of the Brazilian semi-arid using phytoplankton assemblages (Q index). Acta Limnologica Brasiliensia, 2015, 27(1), 1-14. http://dx.doi.org/10.1590/S2179-975X2014.

SOUZA, A.H.F.F. and ABÍLIO, F.J.P. Zoobentos de duas lagoas intermitentes da caatinga paraibana e as influências do ciclo hidrológico. Revista de Biologia e Ciências da Terra, 2006, 6(1), 146-164.

STÜKEN, A., RÜCKER, J., ENDRULAT, T., PREUSSEL, K., HEMM, M., NIXDORF, B., KARSTEN, U. and WIEDNER, C. Distribution of three alien cyanobacterial species (Nostocales) in northeast Germany: Cylindrospermopsis raciborskii, Anabaena bergii and Aphanizomenon aphanizomenoides. Phycologia, 2006, 45(6), 696-703. http://dx.doi.org/10.2216/05-58.1.

SUN, J. and LIU, D. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research, 2003, 25(11), 1331-1346. http://dx.doi.org/10.1093/plankt/fbg096.

SZILÁGYI, F., ÁCS, E., BORICS, G., HALASI-KOVÁCS, B., JUHÁSZ, P., KISS, B., KOVÁCS, T., MÜLLER, Z., LAKATOS, G., PADISÁK, J., POMOGYI, P., STENGER-KOVÁCS, C., SZABÓ, K.E., SZALMA, E. and TÓTHMÉRÉSZ, B. Application of water framework directive in Hungary: development of biological classification systems. Water Science and Technology, 2008, 58(11), 2117-2125. http://dx.doi.org/10.2166/wst.2008.565. PMid:19092187.

TEFERI, M., DECLERCK, S.A.J., DE BIE, T., LEMMENS, P., GEBREKIDAN, A., ASMELASH, T., DEJENIE, T., GEBREHIWOT, K., BAUER, H., DECKERS, J.A., SNOEKS, J. and DE MEESTER, L. Strong effects of occasional drying on subsequent water clarity and cyanobacterial blooms in cool tropical reservoirs. Freshwater Biology, 2014, 59(4), 870-884. http://dx.doi.org/10.1111/fwb.12312.

UTERMÖHL, H. Zur vervollkommnung der quantitativen phytoplankton-methodik: Mit 1 Tabelle und 15 abbildungen im Text und auf 1 Tafel. Internationale Vereinigung für Theoretische und Angewandte Limnologie Mitteilungen, 1958, 9(1), 1-38. http://dx.doi.org/10.1080/05384680.1958.11904091.

VANSCHOENWINKEL, B., HULSMANS, A., DE ROECK, E., DE VRIES, C., SEAMAN, M. and BRENDONCK, L. Community structure in temporary freshwater pools: disentangling the effects of habitat size and hydroregime. Freshwater Biology, 2009, 54(7), 1487-1500. http://dx.doi.org/10.1111/j.1365-2427.2009.02198.x.

VIEIRA, A.C.B., RIBEIRO, L.L., SANTOS, D.P.N. and CRISPIM, M.C. Correlation between the zooplanktonic community and environmental variables in a reservoir from the Northeastern semi-arid. Acta Limnologica Brasiliensia, 2009, 21, 349-358.

WETZEL, R.G. and LIKENS, G.E. Limnological analysis. New York: Springer Verlag, 2000. http://dx.doi.org/10.1007/978-1-4757-3250-4.

WITHERS, P., NEAL, C., JARVIE, H. and DOODY, D. Agriculture and eutrophication: where do we go from here? Sustainability, 2006, 6(9), 5853-5875. http://dx.doi.org/10.3390/su6095853.

YANG, J., HONG, L.V., LIU, L., YU, X. and CHEN, H. Decline in water level boosts cyanobacteria dominance in subtropical reservoirs. The Science of the Total Environment, 2016, 557-558, 445-452. http://dx.doi.org/10.1016/j.scitotenv.2016.03.094. PMid:27016690.
 


Submitted date:
10/23/2020

Accepted date:
09/07/2021

Publication date:
10/11/2021

61642c0aa953957ff57532a3 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections