Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X0924
Acta Limnologica Brasiliensia
Artigo de Revisão

Phytoplankton in lake water quality assessment: a review of scientific literature based on bibliometric and network techniques

Fitoplâncton na avaliação da qualidade da água de lagos: uma revisão da literatura científica baseada em técnicas bibliométricas e de rede

Victor Stive Flores-Gómez; Carmen Villanueva Quispe; Dennys Arpasi Ordoño; Adilson Ben da Costa; Eduardo A. Lobo

Downloads: 0
Views: 165

Abstract

Aim: This study aims to analyze the scientific literature on phytoplankton in assessing lake water quality, based on bibliometric and network techniques.

Methods: PRISMA criteria were adopted to produce reliable results. The Scopus and Web of Science databases were consulted to retrieve the documents to be studied. The number of publications, citations and bibliographic coupling were techniques used to identify relevant journals, countries, authors, and articles. The conceptual evolution was analyzed by keywords co-occurrence and thematic mapping.

Results: Based on 2429 documents selected from the 1973-2023 annual period, the main results indicated 519 journals, 6450 authors, 54907 references, and 4844 keyword authors, among others. The annual growth index was 10.27%, reflecting the upward trend at the time. Erick Jeppesen resulted as the top influential author, China leaded in publications and collaborations with The United States of America. Hydrobiologia was the top journal. Top influential articles content theme related to cyanobacterial blooms. According to the results of the analysis of the conceptual framework, phytoplankton, water quality, eutrophication, and cyanobacteria were the most relevant themes. Furthermore, the trending topics were mainly climate change and degradation.

Conclusions: This comprehensive analysis allowed us to interpret the development of research related to the subject of assessing lake water quality.

Keywords

bibliometric analysis, eutrophication, lake ecosystem, network techniques, phytoplankton, water quality

Resumo

Objetivo: Este estudo teve como objetivo a análise da literatura científica sobre o fitoplâncton na avaliação da qualidade da água de lagos, baseada em técnicas bibliométricas e de rede.

Métodos: Critérios PRISMA foram adotados para produzir resultados confiáveis. As bases de dados Scopus e Web of Science foram consultadas para recuperação dos documentos a serem estudados. O número de publicações, citações e acoplamento bibliográfico foram técnicas utilizadas para identificar periódicos, países, autores e artigos relevantes. A evolução conceitual foi analisada por meio de coocorrência de palavras-chave e mapeamento temático.

Resultados: Com base em 2429 documentos selecionados do período anual 1973-2023, os principais resultados indicaram 519 periódicos, 6450 autores, 54907 referências e 4844 autores de palavras-chave, entre outros. O índice de crescimento anual foi de 10.27%, refletindo a tendência ascendente da época. Erick Jeppesen foi apontado como o autor mais influente, a China liderou em publicações e colaborações com os Estados Unidos. Hydrobiologia foi o principal periódico. O tema de conteúdo dos artigos mais influentes foi relacionado à proliferação de cianobactérias. De acordo com os resultados da análise da estrutura conceitual, o fitoplâncton, a qualidade da água, a eutrofização e as cianobactérias foram os temas mais relevantes. Além disso, os tópicos em alta foram principalmente as alterações climáticas e a degradação.

Conclusões: Esta análise abrangente permitiu interpretar o desenvolvimento de pesquisas relacionadas ao tema do estudo.

Palavras-chave

análise bibliométrica, eutrofização, ecossistema lacustre, técnicas de rede, fitoplâncton, qualidade da água

Referências

Aba, R.P., Sbahi, S., Mugani, R., Redouane, E.M., Hejjaj, A., Azevedo, J., Moreira, C.I.T., Boo, S.F., Alexandrino, D.A.D.M., Campos, A., Vasconcelos, V., Oudra, B., Ouazzani, N., & Mandi, L., 2024. Eco-friendly management of harmful cyanobacterial blooms in eutrophic lakes through vertical flow multi-soil-layering technology. J. Hazard. Mater. 470, 134281. PMid:38626680. http://doi.org/10.1016/j.jhazmat.2024.134281.

Abell, J.M., Özkundakci, D., & Hamilton, D.P., 2010. Nitrogen and Phosphorus Limitation of Phytoplankton Growth in New Zealand Lakes: Implications for Eutrophication Control. Ecosystems (N. Y.) 13(7), 966-977. http://doi.org/10.1007/s10021-010-9367-9.

Abell, J.M., Özkundakci, D., Hamilton, D.P., & Reeves, P., 2022. Restoring shallow lakes impaired by eutrophication: Approaches, outcomes, and challenges. Crit. Rev. Environ. Sci. Technol. 52(7), 1199-1246. http://doi.org/10.1080/10643389.2020.1854564.

Adegoriola, M.I., Lai, J.H.K., Chan, E.H., & Amos, D., 2021. Heritage building maintenance management (HBMM): A bibliometric-qualitative analysis of literature. J. Build. Eng. 42, 102416. http://doi.org/10.1016/j.jobe.2021.102416.

Adler, S., & Sarstedt, M., 2021. Mapping the jungle: A bibliometric analysis of research into construal level theory. Psychol. Mark. 38(9), 1367-1383. http://doi.org/10.1002/mar.21537.

Agbo, F.J., Oyelere, S.S., Suhonen, J., & Tukiainen, M., 2021. Scientific production and thematic breakthroughs in smart learning environments: a bibliometric analysis. Smart Learn. Environ. 8(1), 1. http://doi.org/10.1186/s40561-020-00145-4.

Alcocer, J., Quiroz-Martinez, B., Merino-Ibarra, M., Oseguera, L.A., & Macek, M., 2022. Using Wavelet analysis to examine long-term variability of phytoplankton biomass in the tropical, Saline Lake Alchichica, Mexico. Water 14(9), 1346. http://doi.org/10.3390/w14091346.

Amorim, C.A., & Moura, A.D., 2021. Ecological impacts of freshwater algal blooms on water quality, plankton biodiversity, structure, and ecosystem functioning. Sci. Total Environ. 758, 143605. PMid:33248793. http://doi.org/10.1016/j.scitotenv.2020.143605.

Ansper, A., & Alikas, K., 2019. Retrieval of Chlorophyll a from Sentinel-2 MSI Data for the European Union Water Framework Directive Reporting Purposes. Remote Sens. (Basel) 11(1), 64. http://doi.org/10.3390/rs11010064.

Aria, M., & Cuccurullo, C., 2017. Bibliometrix: an R-tool for comprehensive science mapping analysis. J. Informetrics 11(4), 959-975. http://doi.org/10.1016/j.joi.2017.08.007.

Battarbee, R. W., Simpson, G. L., Shilland, E. M., Flower, R. J., Kreiser, A., Yang, H., & Clarke, G., 2014. Recovery of UK lakes from acidification: an assessment using combined palaeoecological and contemporary diatom assemblage data. Ecol. Indic. 37(Pt B), 365-380. http://doi.org/10.1016/j.ecolind.2012.10.024.

Beal, M.R.W., Wilkinson, G.M., & Block, P.J., 2023. Large scale seasonal forecasting of peak season algae metrics in the Midwest and Northeast US. Water Res. 229, 119402. PMid:36462259. http://doi.org/10.1016/j.watres.2022.119402.

Bergström, A.-K., & Jansson, M., 2006. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Glob. Change Biol. 12(4), 635-643. http://doi.org/10.1111/j.1365-2486.2006.01129.x.

Bhagowati, B., & Ahamad, K.U., 2019. A review on lake eutrophication dynamics and recent developments in lake modeling. Ecohydrol. Hydrobiol. 19(1), 155-166. http://doi.org/10.1016/j.ecohyd.2018.03.002.

Bhagowati, B., Talukdar, B., Narzary, B.K., & Ahamad, K.U., 2022. Prediction of lake eutrophication using ANN and ANFIS by artificial simulation of lake ecosystem. Model. Earth Syst. Environ. 8(4), 5289-5304. http://doi.org/10.1007/s40808-022-01377-8.

Binding, C.E., Greenberg, T.A., McCullough, G., Watson, S.B., & Page, E., 2018. An analysis of satellite-derived chlorophyll and algal bloom indices on Lake Winnipeg. J. Great Lakes Res. 44(3), 436-446. http://doi.org/10.1016/j.jglr.2018.04.001.

Birk, S., Bonne, W., Borja, A., Brucet, S., Courrat, A., Poikane, S., Solimini, A., van de Bund, W.V., Zampoukas, N., & Hering, D., 2012. Three hundred ways to assess Europe’s surface waters: an almost complete overview of biological methods to implement the Water Framework Directive. Ecol. Indic. 18, 31-41. http://doi.org/10.1016/j.ecolind.2011.10.009.

Blumberg, A.F., & Di Toro, D.M., 1990. Effects of climate warming on dissolved oxygen concentrations in lake erie. Trans. Am. Fish. Soc. 119(2), 210-223. http://doi.org/10.1577/1548-8659(1990)119<0210:EOCWOD>2.3.CO;2.

Brookfield, A.E., Hansen, A.T., Sullivan, P.L., Czuba, J.A., Kirk, M.F., Li, L., Newcomer, M.E., & Wilkinson, G., 2021. Predicting algal blooms: are we overlooking groundwater? Sci. Total Environ. 769, 144442. PMid:33482544. http://doi.org/10.1016/j.scitotenv.2020.144442.

Bruel, R., Marchetto, A., Bernard, A., Lami, A., Sabatier, P., Frossard, V., & Perga, M.-E., 2018. Seeking alternative stable states in a deep lake. Freshw. Biol. 63(6), 553-568. http://doi.org/10.1111/fwb.13093.

Bucak, T., Trolle, D., Tavsanoglu, U.N., Cakiroglu, A.I., Ozen, A., Jeppesen, E., & Beklioglu, M., 2018. Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest Turkish freshwater lake. Lake Beysehir. Sci. Total Environ. 621, 802-816. PMid:29202291. http://doi.org/10.1016/j.scitotenv.2017.11.258.

Carlson, R.E., 1977. A trophic state index for lakes. Limnol. Oceanogr. 22(2), 361-369. http://doi.org/10.4319/lo.1977.22.2.0361.

Çetin, T., 2023. A Phytoplankton Composition Index Response to Eutrophication in Turkish Lakes and Reservoirs. Water Air Soil Pollut. 234(6), 343. http://doi.org/10.1007/s11270-023-06360-2.

Chaffin, J.D., Mishra, S., Kane, D.D., Bade, D.L., Stanislawczyk, K., Slodysko, K.N., Jones, K., Parker, E.M., & Fox, E.L., 2019. Cyanobacterial blooms in the central basin of Lake Erie: potentials for cyanotoxins and environmental drivers. J. Great Lakes Res. 45(2), 277-289. http://doi.org/10.1016/j.jglr.2018.12.006.

Chao, C., Lv, T., Wang, L., Li, Y., Han, C., Yu, W., Yan, Z., Ma, X., Zhao, H., Zuo, Z., Zhang, C., Tao, M., Yu, D., & Liu, C., 2022. The spatiotemporal characteristics of water quality and phytoplankton community in a shallow eutrophic lake: implications for submerged vegetation restoration. Sci. Total Environ. 821, 153460. PMid:35093376. http://doi.org/10.1016/j.scitotenv.2022.153460.

Chernova, E., Russkikh, I., Voyakina, E., & Zhakovskaya, Z., 2016. Occurrence of microcystins and anatoxin-a in eutrophic lakes of Saint Petersburg, Northwestern Russia. Oceanol. Hydrobiol. Stud. 45(4), 466-484. http://doi.org/10.1515/ohs-2016-0040.

Conley, D.J., Paerl, H.W., Howarth, R.W., Boesch, D.F., Seitzinger, S.P., Havens, K.E., Lancelot, C., & Likens, G.E., 2009. Ecology - Controlling eutrophication: nitrogen and phosphorus. Science 323(5917), 1014-1015. PMid:19229022. http://doi.org/10.1126/science.1167755.

Corsini, F., Certomà, C., Dyer, M., & Frey, M., 2019. Participatory energy: Research, imaginaries and practices on people’ contribute to energy systems in the smart city. Technol. Forecast. Soc. Change 142, 322-332. http://doi.org/10.1016/j.techfore.2018.07.028.

Dada, O., 2018. A model of entrepreneurial autonomy in franchised outlets: a systematic review of the empirical evidence. Int. J. Manag. Rev. 20(2), 206-226. http://doi.org/10.1111/ijmr.12123.

Davis, T.W., Bullerjahn, G.S., Tuttle, T., McKay, R.M., & Watson, S.B., 2015. Effects of Increasing Nitrogen and Phosphorus Concentrations on Phytoplankton Community Growth and Toxicity During Planktothrix Blooms in Sandusky Bay, Lake Erie. Environ. Sci. Technol. 49(12), 7197-7207. PMid:25992592. http://doi.org/10.1021/acs.est.5b00799.

Della Corte, V., Del Gaudio, G., Sepe, F., & Sciarelli, F., 2019. Sustainable Tourism in the Open Innovation Realm: A Bibliometric Analysis. Sustainability (Basel) 11(21), 6114. http://doi.org/10.3390/su11216114.

Dembowska, E.A., Napiórkowski, P., Mieszczankin, T., & Józefowicz, S., 2015. Planktonic indices in the evaluation of the ecological status and the trophic state of the longest lake in Poland. Ecol. Indic. 56, 15-22. http://doi.org/10.1016/j.ecolind.2015.03.019.

Deng, J., Tang, X., Qin, B., Gao, G., Zhang, Y., Zhu, G., & Gong, Z., 2020. Decreasing nitrogen loading and climate change promotes the occurrence of nitrogen-fixing cyanobacteria in a restored city lake. Hydrobiologia 847(13), 2963-2975. http://doi.org/10.1007/s10750-020-04299-7.

Díaz-Torres, O., de Anda, J., Lugo-Melchor, O.Y., Pacheco, A., Orozco-Nunnelly, D.A., Shear, H., Senés-Guerrero, C., & Gradilla-Hernández, M.S., 2021. Rapid changes in the phytoplankton community of a subtropical, shallow, hypereutrophic lake during the rainy season. Front. Microbiol. 12, 617151. PMid:33767675. http://doi.org/10.3389/fmicb.2021.617151.

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W.M., 2021. How to conduct a bibliometric analysis: an overview and guidelines. J. Bus. Res. 133, 285-296. http://doi.org/10.1016/j.jbusres.2021.04.070.

Dornhofer, K., & Oppelt, N., 2016. Remote sensing for lake research and monitoring - Recent advances. Ecol. Indic. 64, 105-122. http://doi.org/10.1016/j.ecolind.2015.12.009.

Dörnhöfer, K., Klinger, P., Heege, T., & Oppelt, N., 2018. Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake. Sci. Total Environ. 612, 1200-1214. PMid:28892864. http://doi.org/10.1016/j.scitotenv.2017.08.219.

Doubek, J.P., Carey, C.C., & Cardinale, B.J., 2015. Anthropogenic land use is associated with N-fixing cyanobacterial dominance in lakes across the continental United States. Aquat. Sci. 77(4), 681-694. http://doi.org/10.1007/s00027-015-0411-x.

Dove, A., & Chapra, S.C., 2015. Long-term trends of nutrients and trophic response variables for the Great Lakes. Limnol. Oceanogr. 60(2), 696-721. http://doi.org/10.1002/lno.10055.

Drenner, R.W., & Hambright, K.D., 1999. Review: biomanipulation of fish assemblages as a lake restoration technique. Fundam. Appl. Limnol. 146(2), 129-165. http://doi.org/10.1127/archiv-hydrobiol/146/1999/129.

Dresti, C., Rogora, M., & Fenocchi, A., 2023. Hypolimnetic oxygen depletion in a deep oligomictic lake under climate change. Aquat. Sci. 85(1), 4. http://doi.org/10.1007/s00027-022-00902-2.

Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z.-I., Knowler, D.J., Lévêque, C., Naiman, R.J., Prieur-Richard, A.-H., Soto, D., Stiassny, M.L.J., & Sullivan, C.A., 2006. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81(2), 163-182. PMid:16336747. http://doi.org/10.1017/S1464793105006950.

Dufrêne, M., & Legendre, P., 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67(3), 345-366. http://doi.org/10.2307/2963459.

Ellegaard, O., & Wallin, J.A., 2015. The bibliometric analysis of scholarly production: how great is the impact? Scientometrics 105(3), 1809-1831. PMid:26594073. http://doi.org/10.1007/s11192-015-1645-z.

Elsayed, F.A., Okbah, M.A., El-Syed, S.M., Eissa, M.A., & Goher, M.E., 2019. Nutrient salts and eutrophication assessment in northern delta lakes: case study burullus lake. Egypt. Egypt. J. Aquat. Biol. Fish. 23(2), 145-163. http://doi.org/10.21608/ejabf.2019.30239.

Fahnenstiel, G.L., Lang, G.A., Nalepa, T.F., & Johengen, T.H., 1995. Effects of zebra mussel (Dreissena polymorpha) colonization on water quality parameters in Saginaw Bay, Lake Huron. J. Great Lakes Res. 21(4), 435-448. http://doi.org/10.1016/S0380-1330(95)71057-7.

Fan, F., Shi, X., Zhang, M., Liu, C., & Chen, K., 2019. Comparison of algal harvest and hydrogen peroxide treatment in mitigating cyanobacterial blooms via an in situ mesocosm experiment. Sci. Total Environ. 694, 133721. PMid:31400686. http://doi.org/10.1016/j.scitotenv.2019.133721.

Feng, Y., Zhu, Q., & Lai, K.H., 2017. Corporate social responsibility for supply chain management: A literature review and bibliometric analysis. J. Clean. Prod. 158, 296-307. http://doi.org/10.1016/j.jclepro.2017.05.018.

Florescu, L.I., Moldoveanu, M.M., Catană, R.D., Păceșilă, I., Dumitrache, A., Gavrilidis, A.A., & Iojă, C.I., 2022. Assessing the Effects of Phytoplankton Structure on Zooplankton Communities in Different Types of Urban Lakes. Diversity (Basel) 14(3), 231. http://doi.org/10.3390/d14030231.

Frandsen, T.F., & Rousseau, R., 2005. Article impact calculated over arbitrary periods. J. Am. Soc. Inf. Sci. Technol. 56(1), 58-62. http://doi.org/10.1002/asi.20100.

Fu, H., Cai, G., Özkan, K., Johansson, L.S., Søndergaard, M., Lauridsen, T.L., Yuan, G., & Jeppesen, E., 2024. Re-oligotrophication and warming stabilize phytoplankton networks. Water Res. 253, 121325. PMid:38367379. http://doi.org/10.1016/j.watres.2024.121325.

Gao, W., Chen, Y., Liu, Y., & Guo, H.-C., 2015. Scientometric analysis of phosphorus research in eutrophic lakes. Scientometrics 102(3), 1951-1964. http://doi.org/10.1007/s11192-014-1500-7.

Geletu, T.T., 2023. Lake eutrophication: control of phytoplankton overgrowth and invasive aquatic weeds Lakes Reserv. Lakes Reservoirs: Res. Manage. 28(1), e12425. http://doi.org/10.1111/lre.12425.

Gibbs, M.M., Roygard, J., Patterson, M., Brown, L., & Brown, D., 2024. Factors influencing cyanobacteria blooms: review of the historical monitoring data to assess management options for Lake Horowhenua. N. Z. J. Mar. Freshw. Res. 58(1), 1-27. http://doi.org/10.1080/00288330.2022.2107028.

Gomes, P., Valente, T., Geraldo, D., & Ribeiro, C., 2020. Photosynthetic pigments in acid mine drainage: seasonal patterns and associations with stressful abiotic characteristics. Chemosphere 239, 124774. PMid:31521937. http://doi.org/10.1016/j.chemosphere.2019.124774.

Graeber, D., McCarthy, M.J., Shatwell, T., Borchardt, D., Jeppesen, E., Søndergaard, M., Lauridsen, T.L., & Davidson, T.A., 2024. Consistent stoichiometric long-term relationships between nutrients and chlorophyll-a across shallow lakes. Nat. Commun. 15(1), 809. PMid:38280872. http://doi.org/10.1038/s41467-024-45115-3.

Gregersen, R., Howarth, J.D., Atalah, J., Pearman, J.K., Waters, S., Li, X., Vandergoes, M.J., & Wood, S.A., 2023. Paleo-diatom records reveal ecological change not detected using traditional measures of lake eutrophication. Sci. Total Environ. 867, 161414. PMid:36621498. http://doi.org/10.1016/j.scitotenv.2023.161414.

Grund, Y., Pan, Y., Rosenkranz, M., & Foster, E., 2022. Long-term phosphorus reduction and phytoplankton responses in an urban lake (USA). Water Biol. Secur. 1(1), 100010. http://doi.org/10.1016/j.watbs.2022.100010.

Gulati, R.D., Pires, L.M.D., & Van Donk, E., 2008. Lake restoration studies: Failures, bottlenecks and prospects of new ecotechnological measures. Limnologica 38(3–4), 233-247. http://doi.org/10.1016/j.limno.2008.05.008.

Guzmán Duxtan, A.J., 2020. Efectos en la producción científica y avances en los proyectos de investigación en el Perú en épocas de pandemia. Rev. Soc. Quím. Perú 86(4), 339-341. http://doi.org/10.37761/rsqp.v86i4.306.

Häder, D.-P., Banaszak, A.T., Villafañe, V.E., Narvarte, M.A., González, R.A., & Helbling, E.W., 2020. Anthropogenic pollution of aquatic ecosystems: emerging problems with global implications. Sci. Total Environ. 713, 136586. PMid:31955090. http://doi.org/10.1016/j.scitotenv.2020.136586.

Han, Y., Zhang, Y., Li, Q., Lurling, M., Li, W., He, H., Gu, J., & Li, K., 2022. Submerged macrophytes benefit from lanthanum modified bentonite treatment under juvenile omni-benthivorous fish disturbance: implications for shallow lake restoration. Freshw. Biol. 67(4), 672-683. http://doi.org/10.1111/fwb.13871.

Hartig, J.H., Krantzberg, G., & Alsip, P., 2020. Thirty-five years of restoring Great Lakes Areas of Concern: gradual progress, hopeful future. J. Great Lakes Res. 46(3), 429-442. http://doi.org/10.1016/j.jglr.2020.04.004.

Heo, S., Chan, A.Y., Diaz Peralta, P., Jin, L., Pereira Nunes, C.R., & Bell, M.L., 2022. Impacts of the COVID-19 pandemic on scientists’ productivity in science, technology, engineering, mathematics (STEM), and medicine fields. Humanit. Soc. Sci. Commun. 9(1), 434. PMid:36530543. http://doi.org/10.1057/s41599-022-01466-0.

Hilt, S., Alirangues Nunez, M.M., Bakker, E.S., Blindow, I., Davidson, T.A., Gillefalk, M., Hansson, L.-A., Janse, J.H., Janssen, A.B.G., Jeppesen, E., Kabus, T., Kelly, A., Koehler, J., Lauridsen, T.L., Mooij, W.M., Noordhuis, R., Phillips, G., Ruecker, J., Schuster, H.-H., & Sayer, C.D., 2018. Response of submerged macrophyte communities to external and internal restoration measures in north temperate shallow lakes. Front. Plant Sci. 9, 194. PMid:29515607. http://doi.org/10.3389/fpls.2018.00194.

Ho, J. C., Michalak, A. M., & Pahlevan, N., 2019. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 574(7780), 667-670. http://doi.org/10.1038/s41586-019-1648-7.

Ho, L., & Goethals, P., 2020. Research hotspots and current challenges of lakes and reservoirs: a bibliometric analysis. Scientometrics 124(1), 603-631. PMid:33100424. http://doi.org/10.1007/s11192-020-03453-1.

Ho, Y.-S., & Ranasinghe, P., 2022. A bibliometric analysis of highly cited insulin resistance publications in Science Citation Index Expanded. Obes. Med. 31, 100399. http://doi.org/10.1016/j.obmed.2022.100399.

Huisman, J., Codd, G.A., Paerl, H.W., Ibelings, B.W., Verspagen, J.M.H., & Visser, P.M., 2018. Cyanobacterial blooms. Nat. Rev. Microbiol. 16(8), 471-483. PMid:29946124. http://doi.org/10.1038/s41579-018-0040-1.

Isles, P.D.F., Giles, C.D., Gearhart, T.A., Xu, Y., Druschel, G.K., & Schroth, A.W., 2015. Dynamic internal drivers of a historically severe cyanobacteria bloom in Lake Champlain revealed through comprehensive monitoring. J. Great Lakes Res. 41(3), 818-829. http://doi.org/10.1016/j.jglr.2015.06.006.

Jenny, J.-P., Anneville, O., Arnaud, F., Baulaz, Y., Bouffard, D., Domaizon, I., Bocaniov, S.A., Chèvre, N., Dittrich, M., Dorioz, J.-M., Dunlop, E.S., Dur, G., Guillard, J., Guinaldo, T., Jacquet, S., Jamoneau, A., Jawed, Z., Jeppesen, E., Krantzberg, G., & Weyhenmeyer, G.A., 2020. Scientists’ Warning to Humanity: rapid degradation of the world’s large lakes. J. Great Lakes Res. 46(4), 686-702. http://doi.org/10.1016/j.jglr.2020.05.006.

Jeppesen, E., Canfield, D.E., Bachmann, R.W., Søndergaard, M., Havens, K.E., Johansson, L.S., Lauridsen, T.L., Sh, T., Rutter, R.P., Warren, G., Ji, G., & Hoyer, M.V., 2020. Toward predicting climate change effects on lakes: a comparison of 1656 shallow lakes from Florida and Denmark reveals substantial differences in nutrient dynamics, metabolism, trophic structure, and top-down control. Inland Waters 10(2), 197-211. http://doi.org/10.1080/20442041.2020.1711681.

Jeppesen, E., Kronvang, B., Meerhoff, M., Sondergaard, M., Hansen, K.M., Andersen, H.E., Lauridsen, T.L., Liboriussen, L., Beklioglu, M., Ozen, A., & Olesen, J.E., 2009. Climate Change Effects on Runoff, Catchment Phosphorus Loading and Lake Ecological State, and Potential Adaptations. J. Environ. Qual. 38(5), 1930-1941. PMid:19704137. http://doi.org/10.2134/jeq2008.0113.

Jeppesen, E., Søndergaard, M., Jensen, J.P., Havens, K.E., Anneville, O., Carvalho, L., Coveney, M.F., Deneke, R., Dokulil, M.T., Foy, B., Gerdeaux, D., Hampton, S.E., Hilt, S., Kangur, K., Köhler, J., Lammens, E.H.H.R., Lauridsen, T.L., Manca, M., Miracle, M.R., & Winder, M., 2005. Lake responses to reduced nutrient loading - An analysis of contemporary long-term data from 35 case studies. Freshw. Biol. 50(10), 1747-1771. http://doi.org/10.1111/j.1365-2427.2005.01415.x.

Jeppesen, E., Søndergaard, M., Lauridsen, T.L., Davidson, T.A., Liu, Z., Mazzeo, N., Trochine, C., Özkan, K., Jensen, H.S., Trolle, D., Starling, F., Lazzaro, X., Johansson, L.S., Bjerring, R., Liboriussen, L., Larsen, S.E., Landkildehus, F., Egemose, S., & Meerhoff, M., 2012. Chapter 6 - Biomanipulation as a restoration tool to combat eutrophication: recent advances and future challenges. In: Woodward, G., Jacob, U., & O’Gorman, E. J., eds. Global change in multispecies systems part 2. Cambridge: Academic Press, 411-488, vol. 47. http://doi.org/10.1016/B978-0-12-398315-2.00006-5.

Ji, X., Verspagen, J.M.H., de Waal, D.B., Rost, B., & Huisman, J., 2020. Phenotypic plasticity of carbon fixation stimulates cyanobacterial blooms at elevated CO2. Sci. Adv. 6(8), eaax2926. PMid:32128392. http://doi.org/10.1126/sciadv.aax2926.

Jindal, R., Thakur, R.K., Singh, U.B., & Ahluwalia, A.S., 2014. Phytoplankton dynamics and species diversity in a shallow eutrophic, natural mid-altitude lake in Himachal Pradesh (India): role of physicochemical factors. Chem. Ecol. 30(4), 328-338. http://doi.org/10.1080/02757540.2013.871267.

Kakade, A., Salama, E.-S., Han, H., Zheng, Y., Kulshrestha, S., Jalalah, M., Harraz, F.A., Alsareii, S.A., & Li, X., 2021. World eutrophic pollution of lake and river: biotreatment potential and future perspectives. Environ. Technol. Innov. 23, 101604. http://doi.org/10.1016/j.eti.2021.101604.

Kashindye, B.B., Nsinda, P., Kayanda, R., Ngupula, G.W., Mashafi, C.A., & Ezekiel, C.N., 2015. Environmental impacts of cage culture in Lake Victoria: the case of Shirati Bay-Sota, Tanzania. Springerplus 4(1), 475. PMid:26361576. http://doi.org/10.1186/s40064-015-1241-y.

Kasprzak, P., Padisak, J., Koschel, R., Krienitz, L., & Gervais, F., 2008. Chlorophyll a concentration across a trophic gradient of lakes: an estimator of phytoplankton biomass? Limnologica 38(3–4), 327-338. http://doi.org/10.1016/j.limno.2008.07.002.

Khan, A., Goodell, J.W., Hassan, M.K., & Paltrinieri, A., 2022. A bibliometric review of finance bibliometric papers. Finance Res. Lett. 47, 102520. http://doi.org/10.1016/j.frl.2021.102520.

Kolada, A., Pasztaleniec, A., Bielczynska, A., & Soszka, H., 2016. Phytoplankton, macrophytes and benthic diatoms in lake classification: consistent, congruent, redundant? Lessons learnt from WFD-compliant monitoring in Poland. Limnologica 59, 44-52. http://doi.org/10.1016/j.limno.2016.05.003.

Kosten, S., Huszar, V.L.M., Bécares, E., Costa, L.S., van Donk, E., Hansson, L.-A., Jeppesen, E., Kruk, C., Lacerot, G., Mazzeo, N., De Meester, L., Moss, B., Lürling, M., Nõges, T., Romo, S., & Scheffer, M., 2012. Warmer climates boost cyanobacterial dominance in shallow lakes. Glob. Chang. Biol. 18(1), 118-126. https://doi.org/10.1111/j.1365-2486.2011.02488.x.

Kragh, T., Martinsen, K.T., Kristensen, E., & Sand-Jensen, K., 2020. From drought to flood: sudden carbon inflow causes whole-lake anoxia and massive fish kill in a large shallow lake. Sci. Total Environ. 739, 140072. PMid:32554120. http://doi.org/10.1016/j.scitotenv.2020.140072.

Kröger, B., Selmeczy, G.B., Casper, P., Soininen, J., & Padisák, J., 2023. Long-term phytoplankton community dynamics in Lake Stechlin (north-east Germany) under sudden and heavily accelerating eutrophication. Freshw. Biol. 68(5), 737-751. http://doi.org/10.1111/fwb.14060.

Kumar, R., Singh, S., Sidhu, A.S., & Pruncu, C.I., 2021. Bibliometric analysis of specific energy consumption (Sec) in machining operations: A sustainable response. Sustainability (Basel) 13(10), 5617. http://doi.org/10.3390/su13105617.

Kyriakopoulos, G.L., Zamparas, M., Kapsalis, V.C., & Kalavrouziotis, I.K., 2022. Eutrophication control: the shift to invasive methods managing the internal nutrient loads. A bibliometric analysis. Desalin. Desalination Water Treat. 267, 177-185. http://doi.org/10.5004/dwt.2022.28708.

Lanza, W.G., Hernández, V.C., Achá, D., & Lazzaro, X., 2024. Responses of phytoplankton and periphyton community structure to an anthropic eutrophication gradient in tropical high-altitude Lake Titicaca. J. Great Lakes Res. 50(2), 102294. http://doi.org/10.1016/j.jglr.2024.102294.

Laskar, H.S., & Gupta, S., 2009. Phytoplankton diversity and dynamics of Chatla floodplain lake, Barak Valley, Assam, North East India - A seasonal study. J. Environ. Biol. 30(6), 1007-1012. PMid:20329397.

Leon, L.F., Smith, R.E.H., Hipsey, M.R., Bocaniov, S.A., Higgins, S.N., Hecky, R.E., Antenucci, J.P., Imberger, J.A., & Guildford, S.J., 2011. Application of a 3D hydrodynamic-biological model for seasonal and spatial dynamics of water quality and phytoplankton in Lake Erie. J. Great Lakes Res. 37(1), 41-53. http://doi.org/10.1016/j.jglr.2010.12.007.

Li, B., Yang, G., & Wan, R., 2020. Multidecadal water quality deterioration in the largest freshwater lake in China (Poyang Lake): implications on eutrophication management. Environ. Pollut. 260, 114033. PMid:32006887. http://doi.org/10.1016/j.envpol.2020.114033.

Li, H., Alsanea, A., Barber, M., & Goel, R., 2019. High-throughput DNA sequencing reveals the dominance of pico- and other filamentous cyanobacteria in an urban freshwater Lake. Sci. Total Environ. 661, 465-480. PMid:30677691. http://doi.org/10.1016/j.scitotenv.2019.01.141.

Li, J., Xiao, X., Xian, X., Li, S., Yu, X., & Zhang, X., 2023. Green algae outcompete cyanobacteria in a shallow lake, Longhu Lake. Water Sci. Technol. Water Supply 23(7), 2649-2661. http://doi.org/10.2166/ws.2023.154.

Li, M., Dong, J., Zhang, Y., Yang, H., Van Zwieten, L., Lu, H., Alshameri, A., Zhan, Z., Chen, X., Jiang, X., Xu, W., Bao, Y., & Wang, H., 2021a. A critical review of methods for analyzing freshwater eutrophication. Water 13(2), 225. http://doi.org/10.3390/w13020225.

Li, S., Song, K., Wang, S., Liu, G., Wen, Z., Shang, Y., Lyu, L., Chen, F., Xu, S., Tao, H., Du, Y., Fang, C., & Mu, G., 2021b. Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm. Sci. Total Environ. 778, 146271. PMid:33721636. http://doi.org/10.1016/j.scitotenv.2021.146271.

Lin, S.-S., Shen, S.-L., Zhou, A., & Lyu, H.-M., 2021. Assessment and management of lake eutrophication: A case study in Lake Erhai, China. Sci. Total Environ. 751, 141618. PMid:33167190. http://doi.org/10.1016/j.scitotenv.2020.141618.

Linnenluecke, M.K., Marrone, M., & Singh, A.K., 2019. Conducting systematic literature reviews and bibliometric analyses. Aust. J. Manag. 45(2), 175-194. http://doi.org/10.1177/0312896219877678.

Liu, Q., Zhang, Y., Wu, H., Liu, F., Peng, W., Zhang, X., Chang, F., Xie, P., & Zhang, H., 2020. A review and perspective of edna application to eutrophication and hab control in freshwater and marine ecosystems. Microorganisms 8(3), 417. PMid:32188048. http://doi.org/10.3390/microorganisms8030417.

Liu, S., Wu, F., Feng, W., Guo, W., Song, F., Wang, H., Wang, Y., He, Z., Giesy, J.P., Zhu, P., & Tang, Z., 2018. Using dual isotopes and a Bayesian isotope mixing model to evaluate sources of nitrate of Tai Lake, China. Environ. Sci. Pollut. Res. Int. 25(32), 32631-32639. PMid:30242656. http://doi.org/10.1007/s11356-018-3242-1.

Liu, Y., & Avello, M., 2021. Status of the research in fitness apps: a bibliometric analysis. Telemat. Inform. 57, 101506. PMid:34887613. http://doi.org/10.1016/j.tele.2020.101506.

Liu, Y.-F., Sun, L.-C., & Jiang, Y.-L., 2017. Bibliometric review of research on phytoplankton in water quality assessment. Acta Ecol. Sin. 37(3), 165-172. http://doi.org/10.1016/j.chnaes.2017.06.010.

Liu, Z., Yang, J., Zhang, J., Xiang, H., & Wei, H., 2019. A bibliometric analysis of research on acid rain. Sustainability (Basel) 11(11), 3077. http://doi.org/10.3390/su11113077.

Lobo, E.A., Heinrich, C.G., Schuch, M., Wetzel, C.E., & Ector, L., 2016. Diatoms as bioindicators in rivers. In: Necchi Jr, O., eds. River Algae. Cham: Springer, 245-271. http://doi.org/10.1007/978-3-319-31984-1_11.

Lyu, T., Song, L., Chen, Q., & Pan, G., 2020. Lake and river restoration: method, evaluation and management. Water 12(4), 977. http://doi.org/10.3390/w12040977.

Mahi, M., Ismail, I., Phoong, S.W., & Isa, C.R., 2021. Mapping trends and knowledge structure of energy efficiency research: what we know and where we are going. Environ. Sci. Pollut. Res. Int. 28(27), 35327-35345. PMid:34002315. http://doi.org/10.1007/s11356-021-14367-7.

Maier, D., 2022. Perspective of using green walls to achieve better energy efficiency levels. A bibliometric review of the literature. Energy Build. 264, 112070. http://doi.org/10.1016/j.enbuild.2022.112070.

Makarewicz, J.C., & Bertram, P., 1991. Evidence for the Restoration of the Lake Erie Ecosystem: water quality, oxygen levels, and pelagic function appear to be improving. Bioscience 41(4), 216-223. http://doi.org/10.2307/1311411.

Mansfield, R., Williams, A., Hendry, K., & White, K., 2014. Drivers of change in a redeveloped urban lake: long term trends in a simplified system. Fundam. Appl. Limnol. 185(1), 91-105. http://doi.org/10.1127/fal/2014/0545.

Mantzouki, E., Visser, P. M., Bormans, M., & Ibelings, B. W. 2016. Understanding the key ecological traits of cyanobacteria as a basis for their management and control in changing lakes. Aquat. Ecol. 50(3), 333-350. http://doi.org/10.1007/s10452-015-9526-3.

Matthews, M.W., 2014. Eutrophication and cyanobacterial blooms in South African inland waters: 10 years of MERIS observations. Remote Sens. Environ. 155, 161-177. http://doi.org/10.1016/j.rse.2014.08.010.

McLaughlin, A.J., 1914. The necessity for restriction and control of sewage pollution of the great lakes system. J. Am. Med. Assoc. LXIII(18), 1555-1557. http://doi.org/10.1001/jama.1914.02570180041010.

Md Khudzari, J., Kurian, J., Tartakovsky, B., & Raghavan, G.S.V., 2018. Bibliometric analysis of global research trends on microbial fuel cells using Scopus database. Biochem. Eng. J. 136, 51-60. http://doi.org/10.1016/j.bej.2018.05.002.

Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., & PRISMA Group, 2009. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Intern. Med. 151(4), 264-269, W64. PMid:19622511. http://doi.org/10.7326/0003-4819-151-4-200908180-00135.

Moss, B., Stephen, D., Alvarez, C., Becares, E., de Bund, W., Collings, S.E., Van Donk, E., De Eyto, E., Feldmann, T., Fernández-Aláez, C., Fernández-Aláez, M., Franken, R.J.M., García-Criado, F., Gross, E.M., Gyllström, M., Hansson, L.A., Irvine, K., Järvalt, A., Jensen, J.P., Jeppesen, E., Kairesalo, T., Kornijów, R., Krause, T., Künnap, H., Laas, A., Lill, E., Lorens, B., Luup, H., Miracle, M.R., Nõges, P., Nõges, T., Nykänen, M., Ott, I., Peczula, W., Peeters, E.T.H.M., Phillips, G., Romo, S., Russell, V., Salujõe, J., Scheffer, M., Siewertsen, K., Smal, H., Tesch, C., Timm, H., Tuvikene, L., Tonno, I., Virro, T., Vicente, E., & Wilson, D., 2003. The determination of ecological status in shallow lakes -: a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquat. Conserv. 13(6), 507-549. http://doi.org/10.1002/aqc.592.

Nezbrytska, I., Usenko, O., Konovets, I., Leontieva, T., Abramiuk, I., Goncharova, M., & Bilous, O., 2022. Potential use of aquatic vascular plants to control cyanobacterial blooms: a review. Water 14(11), 1727. http://doi.org/10.3390/w14111727.

Nguyen, D.H., de Leeuw, S., & Dullaert, W.E.H., 2018. Consumer behaviour and order fulfilment in online retailing: a systematic review. Int. J. Manag. Rev. 20(2), 255-276. http://doi.org/10.1111/ijmr.12129.

Niu, L., Zhao, X., Wu, F., Tang, Z., Lv, H., Wang, J., Fang, M., & Giesy, J.P., 2021. Hotpots and trends of covalent organic frameworks (COFs) in the environmental and energy field: bibliometric analysis. Sci. Total Environ. 783, 146838. PMid:33865146. http://doi.org/10.1016/j.scitotenv.2021.146838.

Nuernberg, G.K., & LaZerte, B.D., 2016. Trophic state decrease after lanthanum-modified bentonite (Phoslock) application to a hyper-eutrophic polymictic urban lake frequented by Canada geese (Branta canadensis). Lake Reserv. Manage. 32(1), 74-88. http://doi.org/10.1080/10402381.2015.1133739.

O’Neil, J.M., Davis, T.W., Burford, M.A., & Gobler, C.J., 2012. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14, 313-334. http://doi.org/10.1016/j.hal.2011.10.027.

Onandia, G., Gudimov, A., Rosa Miracle, M., & Arhonditsis, G., 2015. Towards the development of a biogeochemical model for addressing the eutrophication problems in the shallow hypertrophic lagoon of Albufera de Valencia, Spain. Ecol. Inform. 26(3), 70-89. http://doi.org/10.1016/j.ecoinf.2015.01.004.

Otten, T.G., Xu, H., Qin, B., Zhu, G., & Paerl, H.W., 2012. Spatiotemporal patterns and ecophysiology of toxigenic microcystis blooms in lake taihu, china: implications for water quality management. Environ. Sci. Technol. 46(6), 3480-3488. PMid:22324444. http://doi.org/10.1021/es2041288.

Padisák, J., Borics, G., Grigorszky, I., & Soróczki-Pintér, É., 2006. Use of phytoplankton assemblages for monitoring ecological status of lakes within the water framework directive: the assemblage index. Hydrobiologia 553(1), 1-14. http://doi.org/10.1007/s10750-005-1393-9.

Paerl, H. W., & Paul, V. J., 2012. Climate change: links to global expansion of harmful cyanobacteria. Water Res. 46(5), 1349-1363. http://doi.org/10.1016/j.watres.2011.08.002.

Paerl, H. W., 2018. Mitigating toxic planktonic cyanobacterial blooms in aquatic ecosystems facing increasing anthropogenic and climatic pressures. Toxins 10(2), 76. http://doi.org/10.3390/toxins10020076.

Paerl, H. W., Gardner, W. S., Havens, K. E., Joyner, A. R., McCarthy, M. J., Newell, S. E., Qin, B., & Scott, J. T., 2016. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae 54, 213-222. http://doi.org/10.1016/j.hal.2015.09.009.

Paerl, H. W., Havens, K. E., Xu, H., Zhu, G., McCarthy, M. J., Newell, S. E., Scott, J. T., Hall, N. S., Otten, T. G., & Qin, B., 2020. Mitigating eutrophication and toxic cyanobacterial blooms in large lakes: the evolution of a dual nutrient (N and P) reduction paradigm. Hydrobiologia 847(21), 4359-4375. http://doi.org/10.1007/s10750-019-04087-y.

Paerl, H.W., & Huisman, J., 2008. Climate: blooms like it hot. Science 320(5872), 57-58. PMid:18388279. http://doi.org/10.1126/science.1155398.

Paerl, H.W., & Otten, T.G., 2016. Duelling ‘CyanoHABs’: unravelling the environmental drivers controlling dominance and succession among diazotrophic and non-N2-fixing harmful cyanobacteria. Environ. Microbiol. 18(2), 316-324. PMid:26310611. http://doi.org/10.1111/1462-2920.13035.

Paerl, H.W., Xu, H., McCarthy, M.J., Zhu, G., Qin, B., Li, Y., & Gardner, W.S., 2011. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy. Water Res. 45(5), 1973-1983. PMid:20934736. http://doi.org/10.1016/j.watres.2010.09.018.

Parmar, T.K., Rawtani, D., & Agrawal, Y.K., 2016. Bioindicators: the natural indicator of environmental pollution. Front. Life Sci. 9(2), 110-118. http://doi.org/10.1080/21553769.2016.1162753.

Peng, G., Zhou, X., Xie, B., Huang, C., Uddin, M.M., Chen, X., & Huang, L., 2021. Ecosystem stability and water quality improvement in a eutrophic shallow lake via long-term integrated biomanipulation in Southeast China. Ecol. Eng. 159, 106119. http://doi.org/10.1016/j.ecoleng.2020.106119.

Poikane, S., Kelly, M.G., Várbíró, G., Borics, G., Erős, T., Hellsten, S., Kolada, A., Lukács, B.A., Lyche Solheim, A., Pahissa López, J., Willby, N.J., Wolfram, G., & Phillips, G., 2022. Estimating nutrient thresholds for eutrophication management: novel insights from understudied lake types. Sci. Total Environ. 827, 154242. PMid:35245557. http://doi.org/10.1016/j.scitotenv.2022.154242.

Qin, B., Zhang, Y., Zhu, G., & Gao, G., 2023. Eutrophication control of large shallow lakes in China. Sci. Total Environ. 881, 163494. PMid:37068663. http://doi.org/10.1016/j.scitotenv.2023.163494.

Ray, J.G., Santhakumaran, P., & Kookal, S., 2021. Phytoplankton communities of eutrophic freshwater bodies (Kerala, India) in relation to the physicochemical water quality parameters. Environ. Dev. Sustain. 23(1), 259-290. http://doi.org/10.1007/s10668-019-00579-y.

Reeders, H.H., & de Vaate, A., 1990. Zebra mussels (Dreissena polymorpha): a new perspective for water quality management. Hydrobiologia 200–201(1), 437-450. http://doi.org/10.1007/BF02530361.

Reynolds, C.S., Huszar, V., Kruk, C., Naselli-Flores, L., & Melo, S., 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24(5), 417-428. http://doi.org/10.1093/plankt/24.5.417.

Richardson, J., Feuchtmayr, H., Miller, C., Hunter, P.D., Maberly, S.C., & Carvalho, L., 2019. Response of cyanobacteria and phytoplankton abundance to warming, extreme rainfall events and nutrient enrichment. Glob. Change Biol. 25(10), 3365-3380. PMid:31095834. http://doi.org/10.1111/gcb.14701.

Rodríguez-Bolívar, M.P., Alcaide-Muñoz, L., & Cobo, M.J., 2018. Analyzing the scientific evolution and impact of e-Participation research in JCR journals using science mapping. Int. J. Inf. Manage. 40, 111-119. http://doi.org/10.1016/j.ijinfomgt.2017.12.011.

Rolim, S.B.A., Veettil, B.K., Vieiro, A.P., Kessler, A.B., & Gonzatti, C., 2023. Remote sensing for mapping algal blooms in freshwater lakes: a review. Environ. Sci. Pollut. Res. Int. 30(8), 19602-19616. PMid:36642774. http://doi.org/10.1007/s11356-023-25230-2.

Rosińska, J., Kozak, A., Dondajewska, R., & Gołdyn, R., 2017. Cyanobacteria blooms before and during the restoration process of a shallow urban lake. J. Environ. Manage. 198(Pt 1), 340-347. PMid:28494422. http://doi.org/10.1016/j.jenvman.2017.04.091.

Rousso, B.Z., Bertone, E., Stewart, R., & Hamilton, D.P., 2020. A systematic literature review of forecasting and predictive models for cyanobacteria blooms in freshwater lakes. Water Res. 182, 115959. PMid:32531494. http://doi.org/10.1016/j.watres.2020.115959.

Rose, R., Hölzle, K., & Björk, J., 2020. More than a quarter century of Creativity and Innovation Management: The journal’s characteristics, evolution, and a look ahead. Creativity and Innovation Management, 29(1), 5-20. https://doi.org/10.1111/caim.12361.

Sachse, R., Petzoldt, T., Blumstock, M., Moreira, S., Paetzig, M., Ruecker, J., Janse, J.H., Mooij, W.M., & Hilt, S., 2014. Extending one-dimensional models for deep lakes to simulate the impact of submerged macrophytes on water quality. Environ. Model. Softw. 61, 410-423. http://doi.org/10.1016/j.envsoft.2014.05.023.

Salmaso, N., & Tolotti, M., 2021. Phytoplankton and anthropogenic changes in pelagic environments. Hydrobiologia 848(1), 251-284. http://doi.org/10.1007/s10750-020-04323-w.

Salmaso, N., Naselli-Flores, L., & Padisak, J., 2015. Functional classifications and their application in phytoplankton ecology. Freshw. Biol. 60(4), 603-619. http://doi.org/10.1111/fwb.12520.

Salonen, K., Vuorio, K., Ketola, M., Keto, J., & Malin, I., 2023. Development of phytoplankton of Lake Vesijärvi during recovery from eutrophication. Hydrobiologia 850(4), 947-966. http://doi.org/10.1007/s10750-022-05136-9.

Scavia, D., Allan, J.D., Arend, K.K., Bartell, S., Beletsky, D., Bosch, N.S., Brandt, S.B., Briland, R.D., Daloglu, I., DePinto, J.V., Dolan, D.M., Evans, M.A., Farmer, T.M., Goto, D., Han, H., Hoeoek, T.O., Knight, R., Ludsin, S.A., Mason, D., & Zhou, Y., 2014. Assessing and addressing the re-eutrophication of Lake Erie: central basin hypoxia. J. Great Lakes Res. 40(2), 226-246. http://doi.org/10.1016/j.jglr.2014.02.004.

Scheffer, M., Hosper, S.H., Meijer, M.-L., Moss, B., & Jeppesen, E., 1993. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 8(8), 275-279. PMid:21236168. http://doi.org/10.1016/0169-5347(93)90254-M.

Schindler, D.W., 1977. Evolution of phosphorus limitation in lakes. Science 195(4275), 260-262. PMid:17787798. http://doi.org/10.1126/science.195.4275.260.

Schindler, D.W., Hecky, R.E., Findlay, D.L., Stainton, M.P., Parker, B.R., Paterson, M.J., Beaty, K.G., Lyng, M., & Kasian, S.E.M., 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proc. Natl. Acad. Sci. USA 105(32), 11254-11258. PMid:18667696. http://doi.org/10.1073/pnas.0805108105.

Secinaro, S., Calandra, D., Petricean, D., & Chmet, F., 2021. Social finance and banking research as a driver for sustainable development: A bibliometric analysis. Sustainability (Basel) 13(1), 1-18. http://doi.org/10.3390/su13010330.

Shanthala, M., Hosmani, S.P., & Hosetti, B.B., 2009. Diversity of phytoplanktons in a waste stabilization pond at Shimoga Town, Karnataka State, India. Environ. Monit. Assess. 151(1–4), 437-443. PMid:18523855. http://doi.org/10.1007/s10661-008-0287-5.

Shin, J., Lee, G., Kim, T., Cho, K.H., Hong, S.M., Kwon, D.H., Pyo, J., & Cha, Y., 2024. Deep learning-based efficient drone-borne sensing of cyanobacterial blooms using a clique-based feature extraction approach. Sci. Total Environ. 912, 169540. PMid:38145679. http://doi.org/10.1016/j.scitotenv.2023.169540.

Short, J., Tibby, J., Vandergoes, M.J., Wood, S.A., Lomax, N., Puddick, J., Pearman, J.K., Howarth, J.D., Moy, C.M., Šunde, C., Martin, R., Li, X., Moody, A., Dahl, J., Shepherd, C., & McFarlane, K., 2022. Using palaeolimnology to guide rehabilitation of a culturally significant lake in New Zealand. Aquat. Conserv. 32(6), 931-950. http://doi.org/10.1002/aqc.3808.

Shrestha, S., & Kazama, F., 2007. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environ. Model. Softw. 22(4), 464-475. http://doi.org/10.1016/j.envsoft.2006.02.001.

Smith, V.H., & Schindler, D.W., 2009. Eutrophication science: where do we go from here? Trends Ecol. Evol. 24(4), 201-207. PMid:19246117. http://doi.org/10.1016/j.tree.2008.11.009.

Smith, V.H., 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221(4611), 669-671. PMid:17787737. http://doi.org/10.1126/science.221.4611.669.

Smith, V.H., 2003. Eutrophication of freshwater and coastal marine ecosystems - A global problem. Environ. Sci. Pollut. Res. Int. 10(2), 126-139. PMid:12729046. http://doi.org/10.1065/espr2002.12.142.

Sondergaard, M., Jensen, J.P., & Jeppesen, E., 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506(1–3), 135-145. http://doi.org/10.1023/B:HYDR.0000008611.12704.dd.

Søndergaard, M., Larsen, S.E., Jørgensen, T.B., & Jeppesen, E., 2011. Using chlorophyll a and cyanobacteria in the ecological classification of lakes. Ecol. Indic. 11(5), 1403-1412. http://doi.org/10.1016/j.ecolind.2011.03.002.

Søndergaard, M., Lauridsen, T.L., Johansson, L.S., & Jeppesen, E., 2017. Nitrogen or phosphorus limitation in lakes and its impact on phytoplankton biomass and submerged macrophyte cover. Hydrobiologia 795(1), 35-48. http://doi.org/10.1007/s10750-017-3110-x.

Stamou, G., Katsiapi, M., Moustaka-Gouni, M., & Michaloudi, E., 2019. Grazing potential-a functional plankton food web metric for ecological water quality assessment in mediterranean lakes. Water 11(6), 1274. http://doi.org/10.3390/w11061274.

Sukenik, A., & Kaplan, A., 2021. Cyanobacterial harmful algal blooms in aquatic ecosystems: A comprehensive outlook on current and emerging mitigation and control approaches. Microorganisms 9(7), 1472. PMid:34361909. http://doi.org/10.3390/microorganisms9071472.

Tanvir, R.U., Hu, Z., Zhang, Y., & Lu, J., 2021. Cyanobacterial community succession and associated cyanotoxin production in hypereutrophic and eutrophic freshwaters. Environ. Pollut. 290, 118056. PMid:34488165. http://doi.org/10.1016/j.envpol.2021.118056.

Tebbs, E.J., Remedios, J.J., & Harper, D.M., 2013. Remote sensing of chlorophyll-a as a measure of cyanobacterial biomass in Lake Bogoria, a hypertrophic, saline-alkaline, flamingo lake, using Landsat ETM. Remote Sens. Environ. 135, 92-106. http://doi.org/10.1016/j.rse.2013.03.024.

Thackeray, S.J., Noges, P., Dunbar, M.J., Dudley, B.J., Skjelbred, B., Morabito, G., Carvalho, L., Phillips, G., Mischke, U., Catalan, J., de Hoyos, C., Laplace, C., Austoni, M., Padedda, B.M., Maileht, K., Pasztaleniec, A., Jarvinen, M., Solheim, A.L., & Clarke, R.T., 2013. Quantifying uncertainties in biologically-based water quality assessment: A pan-European analysis of lake phytoplankton community metrics. Ecol. Indic. 29, 34-47. http://doi.org/10.1016/j.ecolind.2012.12.010.

Thakur, R.K., Jindal, R., Singh, U.B., & Ahluwalia, A.S., 2013. Plankton diversity and water quality assessment of three freshwater lakes of Mandi (Himachal Pradesh, India) with special reference to planktonic indicators. Environ. Monit. Assess. 185(10), 8355-8373. PMid:23649473. http://doi.org/10.1007/s10661-013-3178-3.

Tong, Y., Zhang, W., Wang, X., Couture, R.-M., Larssen, T., Zhao, Y., Li, J., Liang, H., Liu, X., Bu, X., He, W., Zhang, Q., & Lin, Y., 2017. Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006. Nat. Geosci. 10(7), 507-511. http://doi.org/10.1038/ngeo2967.

Trolle, D., Hamilton, D.P., Pilditch, C.A., Duggan, I.C., & Jeppesen, E., 2011. Predicting the effects of climate change on trophic status of three morphologically varying lakes: implications for lake restoration and management. Environ. Model. Softw. 26(4), 354-370. http://doi.org/10.1016/j.envsoft.2010.08.009.

Tyler, A.N., Svab, E., Preston, T., Presing, M., & Kovacs, W.A., 2006. Remote sensing of the water quality of shallow lakes: a mixture modelling approach to quantifying phytoplankton in water characterized by high-suspended sediment. Int. J. Remote Sens. 27(8), 1521-1537. http://doi.org/10.1080/01431160500419311.

Uddin, M.G., Nash, S., & Olbert, A.I., 2021. A review of water quality index models and their use for assessing surface water quality. Ecol. Indic. 122, 107218. http://doi.org/10.1016/j.ecolind.2020.107218.

Vinçon-Leite, B., & Casenave, C., 2019. Modelling eutrophication in lake ecosystems: a review. Sci. Total Environ. 651(Pt 2), 2985-3001. PMid:30463149. http://doi.org/10.1016/j.scitotenv.2018.09.320.

Vrontis, D., & Christofi, M., 2021. R&D internationalization and innovation: A systematic review, integrative framework and future research directions. J. Bus. Res. 128, 812-823. http://doi.org/10.1016/j.jbusres.2019.03.031.

Waajen, G., van Oosterhout, F., Douglas, G., & Lurling, M., 2016. Management of eutrophication in Lake De Kuil (The Netherlands) using combined flocculant - Lanthanum modified bentonite treatment. Water Res. 97, 83-95. http://doi.org/10.1016/j.watres.2015.11.034.

Waltman, L., van Eck, N.J., & Noyons, E.C.M., 2010. A unified approach to mapping and clustering of bibliometric networks. J. Informetrics 4(4), 629-635. http://doi.org/10.1016/j.joi.2010.07.002.

Wang, J., & Chen, X., 2024. A new approach to quantify chlorophyll-a over inland water targets based on multi-source remote sensing data. Sci. Total Environ. 906, 167631. PMid:37806589. http://doi.org/10.1016/j.scitotenv.2023.167631.

Wang, Q., & Wang, S., 2021. A predictive model of chlorophyll a in western lake erie based on artificial neural network. Appl. Sci. (Basel) 11(14), 6529. http://doi.org/10.3390/app11146529.

Wang, Y., He, Q., Tang, H., Han, Y., & Li, M., 2021a. Two-year moving aeration controls cyanobacterial blooms in an extremely eutrophic shallow pond: variation in phytoplankton community and Microcystis colony size. J. Water Process Eng. 42, 102192. http://doi.org/10.1016/j.jwpe.2021.102192.

Wang, Z., Akbar, S., Sun, Y., Gu, L., Zhang, L., Lyu, K., Huang, Y., & Yang, Z., 2021b. Cyanobacterial dominance and succession: Factors, mechanisms, predictions, and managements. J. Environ. Manage. 297, 113281. PMid:34274765. http://doi.org/10.1016/j.jenvman.2021.113281.

Wang, Z., Qi, F., Liu, L., Chen, M., Sun, D., & Nan, J., 2021c. How do urban rainfall-runoff pollution control technologies develop in China? A systematic review based on bibliometric analysis and literature summary. Sci. Total Environ. 789, 148045. PMid:34062464. http://doi.org/10.1016/j.scitotenv.2021.148045.

Wang, C., Liu, J., Qiu, C., Su, X., Ma, N., Li, J., Wang, S., & Qu, S., 2024a. Identifying the drivers of chlorophyll-a dynamics in a landscape lake recharged by reclaimed water using interpretable machine learning. Sci. Total Environ. 906, 167483. PMid:37832666. http://doi.org/10.1016/j.scitotenv.2023.167483.

Wang, Y., Zhang, L., Chen, X., Li, C., Ding, S., Yan, J., Xiao, J., Wang, B., Xu, L., & Hang, X., 2024b. Algal-derived dissolved organic matter accelerates mercury methylation under cyanobacterial blooms in the sediment of eutrophic lakes. Environ. Res. 251(Pt 2), 118734. PMid:38493854. http://doi.org/10.1016/j.envres.2024.118734.

Wu, N., Dong, X., Liu, Y., Wang, C., Baattrup-Pedersen, A., & Riis, T., 2017. Using river microalgae as indicators for freshwater biomonitoring: review of published research and future directions. Ecol. Indic. 81, 124-131. http://doi.org/10.1016/j.ecolind.2017.05.066.

Xu, H., Paerl, H.W., Qin, B., Zhu, G., & Gao, G., 2010. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol. Oceanogr. 55(1), 420-432. http://doi.org/10.4319/lo.2010.55.1.0420.

Xu, H., Paerl, H.W., Qin, B., Zhu, G., Hall, N.S., & Wu, Y., 2015. Determining critical nutrient thresholds needed to control harmful cyanobacterial blooms in eutrophic Lake Taihu, China. Environ. Sci. Technol. 49(2), 1051-1059. PMid:25495555. http://doi.org/10.1021/es503744q.

Yan, D., Xu, H., Yang, M., Lan, J., Hou, W., Wang, F., Zhang, J., Zhou, K., An, Z., & Goldsmith, Y., 2019. Responses of cyanobacteria to climate and human activities at Lake Chenghai over the past 100 years. Ecol. Indic. 104, 755-763. http://doi.org/10.1016/j.ecolind.2019.03.019.

Yan, T., Shen, S.-L., & Zhou, A., 2022. Indices and models of surface water quality assessment: review and perspectives. Environ. Pollut. 308, 119611. PMid:35716892. http://doi.org/10.1016/j.envpol.2022.119611.

Yang, J., Yu, X.Q., Liu, L.M., Zhang, W.J., & Guo, P.Y., 2012. Algae community and trophic state of subtropical reservoirs in southeast Fujian, China. Environ. Sci. Pollut. Res. Int. 19(5), 1432-1442. PMid:22743992. http://doi.org/10.1007/s11356-011-0683-1.

Yao, X., Zhang, Y., Zhang, L., & Zhou, Y., 2018. A bibliometric review of nitrogen research in eutrophic lakes and reservoirs. J. Environ. Sci. (China) 66, 274-285. PMid:29628095. http://doi.org/10.1016/j.jes.2016.10.022.

Yin, C., He, W., Guo, L., Gong, L., Yang, Y., Yang, J., Ni, L., Chen, Y., & Jeppesen, E., 2022. Can top-down effects of planktivorous fish removal be used to mitigate cyanobacterial blooms in large subtropical highland lakes? Water Res. 218, 118483. PMid:35489149. http://doi.org/10.1016/j.watres.2022.118483.

Yusuf, Z.H., 2020. Phytoplankton as bioindicators of water quality in Nasarawa reservoir, Katsina State Nigeria. Acta Limnol. Bras. 32, e4. https://doi.org/10.1590/s2179-975x3319.

Zhang, J., Zhi, M., & Zhang, Y., 2021. Combined Generalized Additive model and Random Forest to evaluate the influence of environmental factors on phytoplankton biomass in a large eutrophic lake. Ecol. Indic. 130, 108082. http://doi.org/10.1016/j.ecolind.2021.108082.

Zhang, H., Yao, B., Wang, S., & Huang, Y., 2022a. Understanding the changes of optically active substances (OACs) in Hulun Lake in the past 35 years and its indication to the degradation of aquatic ecology. J. Clean. Prod. 377, 134286. http://doi.org/10.1016/j.jclepro.2022.134286.

Zhang, X., Zhao, J., Ding, L., Li, Y., Liu, H., Zhao, Y., & Fu, G., 2022b. Eutrophication evolution trajectory influenced by human activities and climate in the shallow Lake Gehu, China. Ecol. Indic. 138, 108821. http://doi.org/10.1016/j.ecolind.2022.108821.

Zhang, Y., Liu, X., Qin, B., Shi, K., Deng, J., & Zhou, Y., 2016. Aquatic vegetation in response to increased eutrophication and degraded light climate in Eastern Lake Taihu: implications for lake ecological restoration. Sci. Rep. 6(1), 23867. PMid:27041062. http://doi.org/10.1038/srep23867.

Zhao, H., Wang, Y., Yang, L., Yuan, L., & Peng, D., 2015. Relationship between phytoplankton and environmental factors in landscape water supplemented with reclaimed water. Ecol. Indic. 58, 113-121. http://doi.org/10.1016/j.ecolind.2015.03.033.

Zhu, Z., Wang, K., Lei, M., Li, X., Li, X., Jiang, L., Gao, X., Li, S., & Liang, J., 2022. Identification of priority areas for water ecosystem services by a techno-economic, social and climate change modeling framework. Water Res. 221, 118766. PMid:35759851. http://doi.org/10.1016/j.watres.2022.118766.

Zupic, I., & Čater, T., 2015. Bibliometric methods in management and organization. Organ. Res. Methods 18(3), 429-472. http://doi.org/10.1177/1094428114562629.
 


Submetido em:
25/01/2024

Aceito em:
06/08/2024

Publicado em:
07/10/2024

67041a9ea95395153d1a5612 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections