Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X0624
Acta Limnologica Brasiliensia
Artigo Original

Photochemical mineralization of DOM in high humic tropical aquatic ecosystems: ambiguous regulation by watercolor

Mineralização fotoquímica da MOD em ecossistemas aquáticos tropicais húmicos: efeito ambíguo da coloração da água

André Megali Amado; Francisco de Assis Esteves; Albert Luiz Suhett; Ana Luiza Rangel Linhares Lima; Layla Mayer Fonseca; Vinicius Fortes Farjalla

Downloads: 0
Views: 136

Abstract

Aim: Photochemical mineralization is a significant pathway for the total oxidation of Dissolved Organic Carbon (DOC) in aquatic ecosystems. The concentration of DOC, watercolor, solar radiation intensity, diagenetic state of DOC, and oxygen availability are known regulating factors influencing the DOC photochemical mineralization process. However, these studies have not yet assessed the importance of these regulatory factors under extreme conditions of DOC concentration and watercolor. The aims of this study were: (1) to optimize methodological parameters for investigating the photo-degradation process in tropical humic/super-humic aquatic ecosystems; (2) to evaluate the relative importance of regulatory factors influencing photochemical mineralization in tropical humic/super-humic ecosystems; and (3) to measure photochemical mineralization rates in 20 coastal tropical humic/super-humic ecosystems and comparing them with available data worldwide.

Methods: Three types of DOC exposure experiments were conducted: (i) exposing water samples to different solar radiation intensities, (ii) exposing water samples of the same origin but with different DOC concentrations (dilutions) to sunlight and (iii) exposing water samples from a gradient of 20 environments with distinct characteristics to sunlight.

Results: Our results revealed that oxygen concentration became limiting for the photochemical mineralization process in experiments investigating super-humic ecosystems. Watercolor exhibited ambiguous effects on photochemical mineralization; in environments with colored-DOC, increased DOC watercolor favored higher potential photochemical mineralization rates, whereas in super-humic environments, increased DOC watercolor reduced the photochemical mineralization potential due to DOC self-shading.

Conclusions: We emphasize that the measured results in this study represent the highest values of photochemical mineralization ever recorded in the literature.

Keywords

 DOC; coastal lagoons; photo-oxidation; carbon cycling; self-shading

Resumo

Objetivo: A mineralização fotoquímica é uma via significativa para a mineralização de carbono orgânico dissolvido (COD) em ecossistemas aquáticos. A concentração de COD, cor da água, intensidade da radiação solar, estado diagenético do COD e disponibilidade de oxigênio são fatores reguladores conhecidos que influenciam o processo de mineralização fotoquímica do COD. Porém, esses estudos ainda não avaliaram a importância desses fatores reguladores sob condições extremas de concentração de COD e coloração da água. Os objetivos deste estudo foram: (1) otimizar parâmetros metodológicos para investigação do processo de fotodegradação em ecossistemas aquáticos húmicos/super-húmicos tropicais; (2) avaliar a importância relativa dos fatores reguladores que influenciam a mineralização fotoquímica em ecossistemas húmicos/super-húmicos tropicais e (3) medir as taxas de mineralização fotoquímica em 20 ecossistemas húmicos/super-húmicos tropicais costeiros e compará-los com dados disponíveis em todo o mundo.

Métodos: Foram realizados três tipos de experimentos de exposição ao COD: (i) exposição de amostras de água a diferentes intensidades de radiação solar, (ii) exposição de amostras de água da mesma origem, mas com diferentes concentrações (diluições) de COD e, (iii) exposição de amostras de água de um gradiente de 20 ambientes com características distintas à luz solar.

Resultados: Nossos resultados revelaram que a concentração de oxigênio foi limitante para o processo de mineralização fotoquímica em experimentos que investigam ecossistemas super-húmicos. A coloração da água exibiu efeitos ambíguos na mineralização fotoquímica; em ambientes com COD colorido, o aumento da coloração da água favoreceu maiores taxas de mineralização fotoquímica potencial, enquanto em ambientes superhúmicos, o aumento da coloração da água reduziu o potencial de mineralização fotoquímica devido ao auto-sombreamento do DOC.

Conclusões: Enfatizamos que os resultados medidos neste estudo representam os maiores valores de mineralização fotoquímica já registrados na literatura.

Palavras-chave

COD; lagoas costeiras; foto-oxidação; ciclagem de carbono; auto-sombreamento

Referências

Abril, G., Martinez, J.M., Artigas, L.P., Turcq, P.M., Benedetti, M.F., Vidal, L., Meziane, T., Kim, J.H., Bernades, M.C., Savoye, N., Deborde, J., Souza, E.L., Alberic, P., Souza, M.F.L., & Roland, F., 2014. Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 505(7483), 395-398. PMid:24336199. http://doi.org/10.1038/nature12797.

Amado, A.M., Farjalla, V.F., Esteves, F.A., & Bozelli, R.L., 2003. DOC photo-oxidation in clear water Amazonian aquatic ecosystems. Amazoniana 17(3), 513-523.

Amado, A.M., Farjalla, V.F., Esteves, F.D.A., Bozelli, R.L., Roland, F., & Enrich-Prast, A., 2006. Complementary pathways of dissolved organic carbon removal pathways in clear-water Amazonian ecosystems: photochemical degradation and bacterial uptake. FEMS Microbiol. Ecol. 56(1), 8-17. PMid:16542400. http://doi.org/10.1111/j.1574-6941.2006.00028.x.

Amado, A.M., Cotner, J.B., Suhett, A.L., Assis Esteves, F., Bozelli, R.L., & Farjalla, V.F., 2007. Contrasting interactions mediate dissolved organic matter decomposition in tropical aquatic ecosystems. Aquat. Microb. Ecol. 49(1), 25-34. http://doi.org/10.3354/ame01131.

Amado, A.M., Cotner, J.B., Cory, R.M., Edhlund, B.L., & McNeill, K., 2015. Disentangling the interactions between photochemical and bacterial degradation of dissolved organic matter: amino acids play a central role. Microb. Ecol. 69(3), 554-566. PMid:25351141. http://doi.org/10.1007/s00248-014-0512-4.

Amon, R.M., & Benner, R., 1996. Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system. Geochim. Cosmochim. Acta 60(10), 1783-1792. http://doi.org/10.1016/0016-7037(96)00055-5.

Andrews, S.S., Caron, S., & Zafiriou, O.C., 2000. Photochemical oxygen consumption in marine waters: a major sink for colored dissolved organic matter? Limnol. Oceanogr. 45(2), 267-277. http://doi.org/10.4319/lo.2000.45.2.0267.

Bertilsson, S., & Tranvik, L.J., 2000. Photochemical transformation of dissolved organic matter in lakes. Limnol. Oceanogr. 45(4), 753-762. http://doi.org/10.4319/lo.2000.45.4.0753.

Biddanda, B.A., & Cotner, J.B., 2003. Enhancement of dissolved organic matter bioavailability by sunlight and its role in the carbon cycle of Lakes Superior and Michigan. J. Great Lakes Res. 29(2), 228-241. http://doi.org/10.1016/S0380-1330(03)70429-8.

Briand, E., Pringault, O., Jacquet, S., & Torréton, J.P., 2004. The use of oxygen microprobes to measure bacterial respiration for determining bacterioplankton growth efficiency. Limnol. Oceanogr. Methods 2(12), 406-416. http://doi.org/10.4319/lom.2004.2.406.

Cole, J.J., Prairie, Y.T., Caraco, N.F., McDowell, W.H., Tranvik, L.J., Striegl, R.G., Duarte, C.M., Kortelainen, P., Downing, J.A., Middelburg, J.J., & Melack, J., 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10(1), 172-185. http://doi.org/10.1007/s10021-006-9013-8.

Cory, R.M., Cotner, J.B., & McNeill, K., 2009. Quantifying interactions between singlet oxygen and aquatic fulvic acids. Environ. Sci. Technol. 43(3), 718-723. PMid:19245007. http://doi.org/10.1021/es801847g.

Cory, R.M., Miller, M.P., McKnight, D.M., Guerard, J.J., & Miller, P.L., 2010. Effect of instrument‐specific response on the analysis of fulvic acid fluorescence spectra. Limnol. Oceanogr. Methods 8(2), 67-78. http://doi.org/10.4319/lom.2010.8.67.

Craine, J.M., Reich, P.B., David Tilman, G., Ellsworth, D., Fargione, J., Knops, J., & Naeem, S., 2003. The role of plant species in biomass production and response to elevated CO2 and N. Ecol. Lett. 6(7), 623-625. http://doi.org/10.1046/j.1461-0248.2003.00467.x.

Downing, J.A., Prairie, Y.T., Cole, J.J., Duarte, C.M., Tranvik, L.J., Striegl, R.G., McDowell, W.H., Kortelainen, P., Caraco, N.F., Melack, J.M., & Middelburg, J.J., 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51(5), 2388-2397. http://doi.org/10.4319/lo.2006.51.5.2388.

Enrich-Prast, A., Bozelli, R.L., Esteves, F.A., & Meirelles, F.P., 2004. Lagoas costeiras da restinga de Jurubatiba: Descrição de suas variáveis limnológicas. In: Rocha, C.F.D., Esteves, F.A., & Scarano, F.R., eds. Pesquisas de longa duração na restinga de Jurubatiba: ecologia, história natural e conservação. São Carlos: RIMA, 245-253.

Erickson III, D.J., Zepp, R.G., & Atlas, E., 2000. Ozone depletion and the air–sea exchange of greenhouse and chemically reactive trace gases. Chemosphere, Glob. Chang. Sci. 2(2), 137-149. http://doi.org/10.1016/S1465-9972(00)00006-4.

Esteves, F.A., 1998. Ecologia das lagoas costeiras do Parque Nacional da Restinga de Jurubatiba e do município de Macaé. Rio de Janeiro: NUPEM/UFRJ.

Esteves, F.A., 2011. Fundamentos de Limnologia. Rio de Janeiro: Interciência.

Farjalla, V.F., Amado, A.M., Laque, T., Faria, B.M., & Esteves, F.A., 2004. O estado da arte e perspectivas do estudo das bactérias planctônicas nas lagoas da Restinga de Jurubatiba. In: Rocha, C.F.D., Esteves, F.A., & Scarano, F.R., eds. Pesquisas de longa duração na restinga de Jurubatiba: ecologia, história natural e conservação. São Carlos: RIMA, 255-272.

Farjalla, V.F., Amado, A.M., Suhett, A.L., & Meirelles-Pereira, F., 2009. DOC removal paradigms in highly humic aquatic ecosystems. Environ. Sci. Pollut. Res. Int. 16(5), 531-538. PMid:19462194. http://doi.org/10.1007/s11356-009-0165-x.

Farjalla, V.F., Faria, B.M., Esteves, F.A., & Bozelli, R.L., 2001a. Bacterial density and biomass, and relations with abiotic factors, in 14 coastal lagoons of Rio de Janeiro State. In: Faria, B.M., Farjalla, V.F., & Esteves, F.A., eds. Oecologia Brasiliensis: aquatic microbial ecology in Brazil. Rio de Janeiro: UFRJ, 65-76. http://doi.org/10.4257/oeco.2001.0901.06.

Farjalla, V.F., Anesio, A.M., Bertilsson, S., & Granéli, W., 2001b. Photochemical reactivity of aquatic macrophyte leachates: abiotic transformations and bacterial response. Aquat. Microb. Ecol. 24(2), 187-195. http://doi.org/10.3354/ame024187.

Grace, J., & Malhi, Y., 2002. Global change: carbon dioxide goes with the flow. Nature 416(6881), 594. PMid:11948337. http://doi.org/10.1038/416594b.

Genovez, J.G.F., Arueira, T.D., Prado, L.A.S., Silva, G.F.L., Marinho, C.C., Fonseca, A.L.S., Minello, M., Zandonadi, D.B., Martins, R.L., Esteves, F.A., & Gripp, A.R., 2024. Sandbar breaching promotes long lasting changes on limnological dynamics along the water column of a tropical coastal lagoon. Acta Limnol. Bras. 36, e29. http://doi.org/10.1590/s2179-975x10923.

Granéli, W., Lindell, M., & Tranvik, L., 1996. Photo‐oxidative production of dissolved inorganic carbon in lakes of different humic content. Limnol. Oceanogr. 41(4), 698-706. http://doi.org/10.4319/lo.1996.41.4.0698.

Granéli, W., Lindell, M., De Faria, B.M., & de Assis Esteves, F., 1998. Photoproduction of dissolved inorganic carbon in temperate and tropical lakes–dependence on wavelength band and dissolved organic carbon concentration. Biogeochemistry 43(2), 175-195. http://doi.org/10.1023/A:1006042629565.

Gutseit, K., Berglund, O., & Granéli, W., 2007. Food quality for Daphnia in humic and clear water lakes. Freshw. Biol. 52(2), 344-356. http://doi.org/10.1111/j.1365-2427.2006.01697.x.

Hu, C., Muller-Karger, F.E., & Zepp, R.G., 2002. Absorbance, absorption coefficient, and apparent quantum yield: A comment on common ambiguity in the use of these optical concepts. Limnol. Oceanogr. 47(4), 1261-1267. http://doi.org/10.4319/lo.2002.47.4.1261.

Intergovernmental Panel on Climate Change – IPCC, 2023. Climate Change 2023: synthesis report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC. .

Jonsson, A., Meili, M., Bergström, A.K., & Jansson, M., 2001. Whole‐lake mineralization of allochthonous and autochthonous organic carbon in a large humic lake (Örträsket, N. Sweden). Limnol. Oceanogr. 46(7), 1691-1700. http://doi.org/10.4319/lo.2001.46.7.1691.

LeBreton, M., Morton, P., Larade, K., Harland, B., Clair, T., & Campbell, D., 2000. Demonstration of extraction and PCR amplification of DNA from phytoplankton of lakes with high humic acid content. Hydrobiologia 438(1-3), 91-97. http://doi.org/10.1023/A:1004114013028.

Rantakari, M., & Kortelainen, P., 2005. Interannual variation and climatic regulation of the CO2 emission from large boreal lakes. Glob. Change Biol. 11(8), 1368-1380. http://doi.org/10.1111/j.1365-2486.2005.00982.x.

Reich, P.B., Knops, J., Tilman, D., Craine, J., Ellsworth, D., Tjoelker, M., Lee, T., Wedin, D., Naeem, S., Bahauddin, D., Hendrey, G., Jose, S., Wrage, K., Goth, J., & Bengston, W., 2001. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410(6830), 809-812. PMid:11298447. http://doi.org/10.1038/35071062.

Reitner, B., Herndl, G.J., & Herzig, A., 1997. Role of ultraviolet‐B radiation on photochemical and microbial oxygen consumption in a humic‐rich shallow lake. Limnol. Oceanogr. 42(5), 950-960. http://doi.org/10.4319/lo.1997.42.5.0950.

Salonen, K., & Vähätalo, A., 1994. Photochemical ineralization of dissolved organic matter in Lake Skjervatjern. Environ. Int. 20(3), 307-312. http://doi.org/10.1016/0160-4120(94)90114-7.

Silver, W.L., Ostertag, R., & Lugo, A.E., 2000. The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands. Restor. Ecol. 8(4), 394-407. http://doi.org/10.1046/j.1526-100x.2000.80054.x.

Sobek, S., Algesten, G., Bergström, A.-K., Jansson, M., & Tranvik, L.J., 2003. The catchment and climate regulation of pCO2 in boreal lakes. Glob. Change Biol. 9(4), 630-641. http://doi.org/10.1046/j.1365-2486.2003.00619.x.

Steinberg, C.E., Kamara, S., Prokhotskaya, V.Y., Manusadžianas, L., Karasyova, T.A., Timofeyev, M.A., Jie, Z., Paul, A., Meinelt, T., Farjalla, V.F., Matsuo, A.O., Kent Burnison, B., & Menzel, R., 2006. Dissolved humic substances–ecological driving forces from the individual to the ecosystem level? Freshw. Biol. 51(7), 1189-1210. http://doi.org/10.1111/j.1365-2427.2006.01571.x.

Strome, D.J., & Miller, M.C., 1978. Photolytic changes in dissolved humic substances. Verh. Int. Ver. Theor. Angew. Limnol. 20(2), 1248-1254. http://doi.org/10.1080/03680770.1977.11896681.

Suhett, A.L., Amado, A.M., Bozelli, R.L., Esteves, F.A., & Farjalla, V.F., 2006. O papel da foto-degradação do carbono orgânico dissolvido (COD) nos ecossistemas. Oecol. Bras. 10(2), 186-204. http://doi.org/10.4257/oeco.2006.1002.06.

Suhett, A.L., Amado, A.M., Enrich-Prast, A., Esteves, F.D.A., & Farjalla, V.F., 2007. Seasonal changes of dissolved organic carbon photo-oxidation rates in a tropical humic lagoon: the role of rainfall as a major regulator. Can. J. Fish. Aquat. Sci. 64(9), 1266-1272. http://doi.org/10.1139/f07-103.

Suhett, A.L., Amado, A.M., Meirelles-Pereira, F., Scofield, V., Jacques, S.M.S., Laque, T., & Farjalla, V.F., 2013. Origin, concentration, availability and fate of dissolved organic carbon in coastal lagoons of the Rio de Janeiro State. Acta Limnol. Bras. 25(3), 326-340. http://doi.org/10.1590/S2179-975X2013000300011.

Suhett, A.L., Maccord, F., Amado, A.M., Farjalla, V.F., & Esteves, F.A., 2004. Photodegradation of dissolved organic carbon in humic coastal lagoons (RJ, Brazil). In: XII International Meeting of International Humic Substances Society. Denver: International Humic Substances Society.

Tranvik, L.J., Downing, J.A., Cotner, J.B., Loiselle, S.A., Striegl, R.G., Ballatore, T.J., Dillon, P., Finlay, K., Fortino, K., Knoll, L.B., Kortelainen, P.L., Kutser, T., Larsen, S., Laurion, I., Leech, D.M., McCallister, S.L., McKnight, D.M., Melack, J.M., Overholt, E., Porter, J.A., Prairie, Y., Renwick, W.H., Roland, F., Sherman, B.S., Schindler, D.W., Sobek, S., Tremblay, A., Vanni, M.J., Verschoor, A.M., von Wachenfeldt, E., & Weyhenmeyer, G.A., 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54(6 Part 2), 2298-2314. http://doi.org/10.4319/lo.2009.54.6_part_2.2298.

Wetzel, R.G., 1992. Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia 229(1), 181-198. http://doi.org/10.1007/BF00007000.
 


Submetido em:
22/01/2024

Aceito em:
09/09/2024

Publicado em:
11/11/2024

67321112a95395643601bbd4 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections