Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X0524
Acta Limnologica Brasiliensia
Original Article

Phytoplankton functional groups associated with the trophic state of tropical reservoirs

Grupos funcionais do fitoplâncton associados ao estado trófico de reservatórios tropicais

Simone Alves de Oliveira; Carla Ferragut; Carlos Eduardo de Mattos Bicudo

Downloads: 0
Views: 88

Abstract

Aim: The study investigated functional groups representing reservoirs of different trophic states, identifying eutrophication indicators.

Methods: Water samples were collected to evaluate physical and chemical characteristics and the phytoplankton composition in five reservoirs during dry and rainy periods.

Results: Low concentration of dissolved nutrients (nitrite, orthophosphate, and total dissolved phosphorus) and total phosphorus described the oligotrophic and mesotrophic reservoirs, and the opposite for the eutrophic and hypertrophic reservoirs. Twenty-four functional groups were identified, eight of which were considered descriptors due to high biomass. Functional groups were influenced by the trophic state, and secondarily by seasonality. Typical functional groups represented the hypertrophic, eutrophic, and mesotrophic reservoirs. However, an oligotrophic reservoir was represented by a functional group commonly associated with environmental eutrophic.

Conclusions: The functional groups were representative of the trophic state of systems and detected signs of early eutrophication.

Keywords

Brazil, eutrophication, environmental factors, functional classification

Resumo

Objetivo: O estudo investigou grupos funcionais representativos de reservatórios com diferentes estados tróficos e avaliou a ocorrência dos que indicassem eutrofização.

Métodos: Amostras de água de cinco reservatórios foram coletadas para avaliar as características físicas e químicas e a composição do fitoplâncton durante os períodos de seca e chuva.

Resultados: Baixas concentrações de nutrientes dissolvidos (nitrito, ortofosfato e fósforo total dissolvido) e fósforo total descreveram os reservatórios oligotrófico e mesotrófico; e o oposto para os reservatórios eutrófico e hipertrófico. Vinte e quatro grupos funcionais foram identificados, oito dos quais foram considerados descritores de reservatório devido à alta biomassa. Os grupos funcionais foram influenciados pelo estado trófico e, secundariamente, pela sazonalidade. Grupos funcionais típicos representaram os reservatórios hipertrófico, eutrófico e mesotrófico. No entanto, o reservatório oligotrófico foi representado por um grupo funcional comumente associado à eutrofia ambiental.

Conclusões: Os grupos funcionais foram representativos do estado trófico dos sistemas e detectaram sinais de eutrofização precoce.

Palavras-chave

Brasil, eutrofização, fatores ambientais, classificação funcional

Referencias

American Public Health Association – APHA, 2012. Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association, 22nd ed.

Aquino, C.A.N., Bortolini, J.C., Favaretto, C.C.R., Sebastien, N.Y., & Bueno, N.C., 2018. Functional phytoplankton distribution predicts the environmental variability between two subtropical rivers. Rev. Bras. Bot. Braz. J. Bot. 41(4), 835-847. http://doi.org/10.1007/s40415-018-0503-7.

Becker, V., Caputo, L., Ordóñez, J., Marcé, R., Armengol, J., Crossetti, L.O., & Huszar, V.L.M., 2010. Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir. Water Res. 44(11), 3345-3354. PMid:20398914. http://doi.org/10.1016/j.watres.2010.03.018.

Bomfim, E.O., Kraus, C.N., Lobo, M.T.M.P.S., Nogueira, I.S., Peres, L.G.M., Boaventura, G.R., Laques, A., Garnier, J., Seyler, P., Marques, D.M., & Bonnet, M., 2019. Trophic state index validation based on the phytoplankton functional group approach in Amazon floodplain lakes. Inland Waters 9(3), 309-319. http://doi.org/10.1080/20442041.2019.1570785.

Bortolini, C.J., Moresco, G.A., Magro de Paula, A.C., Jati, S., & Rodrigues, L.C., 2016. Functional approach based on morphology as a model of phytoplankton variability in a subtropical floodplain lake: a long-term study. Hydrobiologia 767(1), 151-163. http://doi.org/10.1007/s10750-015-2490-z.

Bortolini, C.J., Rodrigues, L.C., Jati, S., & Train, S., 2014. Phytoplankton functional and morphological groups as indicators of environmental variability in a lateral channel of the Upper Paraná River floodplain. Acta Limnol. Bras. 26(1), 98-108. http://doi.org/10.1590/S2179-975X2014000100011.

Burliga, A.L. 2010. Abordagem de grupos funcionais nos estudos do perifíton e do fitoplâncton. In: Franceschini, I.M., Burliga, A.L., Reviers, B., Prado, J.F. & Rézig, S.H., eds., Algas: uma abordagem filogenética, taxonômica e ecológica. Porto Alegre: Artmed, 233-258.

Buzelli, G.M., & Cunha-Santino, M.B., 2013. Análise e diagnóstico da qualidade da água e estado trófico do reservatório de Barra Bonita, SP. Rev. Ambient. Água 8, 186-205.

Carlson, R.E., 1977. A trophic state index for lakes. Limnol. Oceanogr. 22(2), 361-369. http://doi.org/10.4319/lo.1977.22.2.0361.

Cole, G.A.,1992. Textbook of limnology. Illinois: Waveland Press Inc.

Companhia Ambiental do Estado de São Paulo – CETESB 2013. Relatório de qualidade das águas superficiais no Estado de São Paulo. São Paulo: CETESB.

Conti, J.B., & Furlan, S.A., 2008. Geoecologia: o clima, os solos e a biota. In: Ross, J.L.S. (org.), Geografia do Brasil. São Paulo: Universidade de São Paulo, 101-108. 5th ed.

Crossetti, L.O., de Campos Bicudo, D., & Bini, L.M., 2019. Phytoplankton species interactions and invasion by Ceratium furcoides are influenced by extreme drought and water-hyacinth removal in a shallow tropical reservoir. Hydrobiologia 831(1), 71-85. http://doi.org/10.1007/s10750-018-3607-y.

Cunha, D.G.F., & Calijuri, M.C., 2011. Variação sazonal dos grupos funcionais fitoplanctônicos em braços de um reservatório tropical de usos múltiplos no Estado de São Paulo (Brasil). Acta Bot. Bras. 25(4), 822-831. http://doi.org/10.1590/S0102-33062011000400009.

Dias, A.S., & Tucci, A., 2020. Ceratium furcoides (Levander) Langhans: first record in Nova Avanhandava reservoir, Southeast Brazil. Hoehnea 47, e742019. http://doi.org/10.1590/2236-8906-74/2019.

European Committee for Standardization – ECS, 2003. Water quality: guidance standard for the routine sampling and pretreatment of benthic diatoms from rivers. EN 13946. Retrieved in 2024, January 16, from http://www.safrass.com/partners_area/BSI%20Benthic%20diatoms.pdf

Gallego, I., Davidson, T.A., Jeppesen, E., Pérez-Martinez, C., Sánchez-Castilo, P., Juan, M., Fuentes-Rodríguez, F., Léon, D., Peñalver, P., Toja, J., & Casas, J.J., 2012. Taxonomic or ecological approaches? Searching for phytoplankton surrogates in the determination of richness and assemblage composition in ponds. Ecol. Indic. 18, 575-585. http://doi.org/10.1016/j.ecolind.2012.01.002.

Gemelgo, M.C.P., Mucci, J.L.N., & Navas-Pereira, D., 2009. Population dynamics: seasonal variation of phytoplankton functional groups in Brazilian reservoirs (Billings and Guarapiranga, São Paulo). Braz. J. Biol. 69(4), 1001-1013. PMid:19967171. http://doi.org/10.1590/S1519-69842009000500004.

Graham, J.M., Arancibia-Avila, P., & Graham, L.E., 1996. Physiological ecology of a species of the filamentous green alga Mougeotia under acidic conditions: light and temperature effects on photosynthesis and respiration. Limnol. Oceanogr. 41(2), 253-262. http://doi.org/10.4319/lo.1996.41.2.0253.

Hammer, Ø., Harper, D.A.T., & Ryan, P.D., 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electronica 4, 1-9.

Hillebrand, H., Dürselen, C.D., Kirschtel, D., Pollingher, U., & Zohary, T., 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35(2), 403-424. http://doi.org/10.1046/j.1529-8817.1999.3520403.x.

Hu, R., Han, B., & Naselli-Flores, L., 2013. Comparing biological classifications of freshwater phytoplankton: a case study from South China. Hydrobiologia 701(1), 219-233. http://doi.org/10.1007/s10750-012-1277-8.

Instituto de Pesquisas Tecnológicas – IPT, 2008. Plano de bacia da Unidade de Gerenciamento de Recursos Hídricos do Sorocaba e Médio Tietê (UGRHI 10). Retrieved in 2024, January 16, from http://www.sigrh.sp.gov.br/

Kosten, S., Huszar, V.L.M., Bécares, E., Costa, L.S., van Donk, E., Hansson, L.A., Jeppesen, E., Kruk, C., Lacerot, G., Mazzeo, N., De Meester, L., Moss, B., Lürling, M., Nõges, T., Romo, S., & Scheffer, M., 2012. Warmer climate boosts cyanobacterial dominance in shallow lakes. Glob. Change Biol. 18(1), 118-126. http://doi.org/10.1111/j.1365-2486.2011.02488.x.

Kruk, C., & Segura, A.M., 2012. The habitat template of phytoplankton morphology-based functional groups. Hydrobiologia 698(1), 191-202. http://doi.org/10.1007/s10750-012-1072-6.

Kruk, C., Devercelli, M., & Huszar, V.L., 2021. Reynolds Functional Groups: a trait-based pathway from patterns to predictions. Hydrobiologia 848(1), 113-129. http://doi.org/10.1007/s10750-020-04340-9.

Lamparelli, M.C. 2004. Grau de trofia em corpos d’água do Estado de São Paulo: avaliação dos métodos de monitoramento [Tese de Doutorado em Ecologia [[Q9: Q9]]]. São Paulo: Universidade de São Paulo.

Lobo, M.T.M.P.S., Nogueira, I.S., Sgarbi, L.F., Kraus, C.N., Bomfim, E.O., Garnier, J., Marques, D.M., & Bonnet, M.P., 2018. Morphology-based functional groups as the best tool to characterize shallow lake-dwelling phytoplankton on an Amazonian floodplain. Ecol. Indic. 95, 579-588. http://doi.org/10.1016/j.ecolind.2018.07.038.

Lucinda, I. 2003. Composição de Rotífera em corpos d’água da bacia do rio Tietê, São Paulo, Brasil [Dissertação de Mestrado em Ecologia e Recursos Naturais [[Q11: Q11]]]. São Carlos: Universidade Federal de São Carlos.

McCune, B. & Mefford, M.J., 2006. PC-ORD, Multivariate analysis of ecological data. MjM Software Design, Gleneden Beach. Version 5.0. Retrieved in 2024, January 16, from https://bmccune.weebly.com/software.html

Oliveira, A.S., Ferragut, C., & Bicudo, C.E.M., 2020. Relationship between phytoplankton structure and environmental variables in tropical reservoirs with different trophic states. Acta Bot. Bras. 34(1), 83-93. http://doi.org/10.1590/0102-33062019abb0207.

Padisák, J., Crossetti, L.O., & Naselli-Flores, L., 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621(1), 1-19. http://doi.org/10.1007/s10750-008-9645-0.

Paerl, H.W., & Otten, T.G., 2013. Harmful cyanobacterial blooms: causes, consequences, and control. Microb. Ecol. 65(4), 995-1010. PMid:23314096. http://doi.org/10.1007/s00248-012-0159-y.

Reynolds, C.S., 1998. What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia 369-370, 11-26. http://doi.org/10.1023/A:1017062213207.

Reynolds, C.S., Huszar, V., Kruk, C., Naselli-Flores, L., & Melo, S., 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24(5), 417-428. http://doi.org/10.1093/plankt/24.5.417.

Salmaso, N., & Padisák, J., 2007. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578(1), 97-112. http://doi.org/10.1007/s10750-006-0437-0.

Salmaso, N., Naselli-Flores, L., & Padisák, J., 2015. Functional classifications and their application in phytoplankton ecology. Freshw. Biol. 60(4), 603-619. http://doi.org/10.1111/fwb.12520.

Santana, L.M., Weithoff, G., & Ferragut, C., 2017. Seasonal and spatial functional shifts in phytoplankton communities of five tropical reservoirs. Aquat. Ecol. 51(4), 531-543. http://doi.org/10.1007/s10452-017-9634-3.

Sartory, D.P., & Grobbelaar, J.E., 1984. Extraction of chlorophyll-a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114(3), 177-187. http://doi.org/10.1007/BF00031869.

Serviço Autônomo de Água e Esgoto de Sorocaba – SAAE, 2013. Monitoramento de manancial mensal. Retrieved in 2024, January 16, from http://www.saaesorocaba.com.br/site/?page_id=732.

Silva, A.P.C., & Costa, I.A.S., 2015. Biomonitoring ecological status of two reservoirs of the Brazilian semi-arid using phytoplankton assemblages (Q index). Acta Limnol. Bras. 27(1), 1-14. http://doi.org/10.1590/S2179-975X2014.

Silva, L.C.D., Leone, I.C., Santos-Wisniewski, M.J.D., Peret, A.C., & Rocha, O., 2012. Invasion of the dinoflagellate Ceratium furcoides (Levander) Langhans 1925 at tropical reservoir and its relation to environmental variables. Biota Neotrop. 12(2), 93-100. http://doi.org/10.1590/S1676-06032012000200010.

Souza, M.C., Crossetti, L.O., & Becker, V., 2018. Effects of temperature increase and nutrient enrichment on phytoplankton functional groups in a Brazilian semi-arid reservoir. Acta Limnol. Bras. 30(0), e215. http://doi.org/10.1590/s2179-975x7517.

Stević, F., Mihaljević, M., & Špoljarić, D., 2013. Changes of phytoplankton functional groups in a floodplain lake associated with hydrological perturbation. Hydrobiologia 709(1), 143-158. http://doi.org/10.1007/s10750-013-1444-6.

Tapolczai, K., Anneville, O., Padisák, J., Salmaso, N., Morabito, G., Zohary, T., Tadonléké, R.D., & Rimet, F., 2015. Occurrence and mass development of Mougeotia spp. (Zygnemataceae) in large, deep lakes. Hydrobiologia 745(1), 17-29. http://doi.org/10.1007/s10750-014-2086-z.

Utermöhl, H., 1958. Zur Vervolkomnung der quantitative Phytoplankton-Methodik. Mitt. Int. Vereinigung Theoretische Angew. Limnol. 9, 1-38.

Zohary, T., Alster, A., Hadas, O., & Obertegger, U., 2019. There to stay: invasive filamentous green alga Mougeotia in Lake Kinneret, Israel. Hydrobiologia 831(1), 87-100. http://doi.org/10.1007/s10750-018-3522-2.
 


Submitted date:
16/01/2024

Accepted date:
17/10/2024

Publication date:
09/12/2024

675700bba95395713151cee6 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections