Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X0522
Acta Limnologica Brasiliensia
Original Article

Influence of nutrient levels, travel time and light availability on phytoplankton chlorophyll-a concentrations in a neotropical river basin

Influência dos níveis de nutrientes, tempo de viagem e disponibilidade de luz nas concentrações de clorofila-a fitoplanctônica em uma bacia de rio neotropical

Kennedy Francis Roche; Maria Gabriela Alves Ferreira; Débora Fernandes Calheiros

Downloads: 2
Views: 2202

Abstract

Abstract: : Aim: Knowledge of the factors influencing the biomass of phytoplankton in rivers is important with reference to the characterization of water quality and predicting the effects of environmental change on such ecosystems. The present study quantified the concentrations of chlorophyll-a in the water column of the Miranda River Basin, located in western Brazil, contributing to form the Pantanal Wetland, and attempted to identify the primary environmental influences on the phytoplankton biomass.

Methods: Temperature, depth, current speed, turbidity, Secchi transparency and concentrations of nutrients, suspended solids and chlorophyll-a were measured at approximate monthly intervals during the course of a year, at five upland and three lowland sites. Relationships between chlorophyll-a and nutrient concentrations, travel times and light availability were examined.

Results: Nutrient levels were generally low, being oligo- to mesotrophic. High levels of suspended solids were recorded (up to approximately 250 mg.L-1), especially in the rainy season at the upland sites. The latter showed low chlorophyll-a concentrations, while lowland sites, with the exception of one, showed two peaks, one in winter (dry season) and the other in summer (wet season), of 4.9 and 2.4µg.L-1, respectively, coincident with reduced concentrations of suspended solids.

Conclusions: The low nutrient levels recorded may have been due to the main land use being cattle rearing. The high solids concentrations found may have been due to the degradation of native vegetation, especially riparian, that has occurred over the past decades. Travel times of approximately three to four days may have been a factor in retarding algal abundance in the upland sites, as opposed to approximately ten days in the lowland sites, where light limitation may have been a factor reducing algal growth.

Keywords

land use, erosion, water quality, Pantanal, algae

Resumo

Resumo: : Objetivo: Um maior conhecimento sobre os fatores que influenciam a biomassa de fitoplâncton em rios é importante para a caracterização da qualidade da água, bem como para prever os efeitos de mudanças ambientais destes ecossistemas. Este estudo quantificou as concentrações de clorofila-a na coluna de água da bacia hidrográfica do rio Miranda - MS, situada na região oeste do Brasil, uma das principais formadoras do bioma Pantanal, para identificar as principais influências na biomassa do fitoplâncton.

Métodos: Temperatura, profundidade, velocidade de correnteza, turbidez, transparência por Disco de Secchi, e concentrações de nutrientes, sólidos em suspensão, e clorofila-a foram medidos a intervalos aproximadamente mensais, durante um ano, em cinco pontos do planalto e três pontos na planície. Relações entre clorofila a e concentrações de nutrientes, tempo de viagem e disponibilidade de luz foram examinados.

Resultados: Os níveis de nutrientes foram geralmente baixos, sendo oligo- a mesotrófico. Altas concentrações de sólidos em suspensão foram encontradas (até aproximadamente 250 mg.L-1), especialmente na época chuvosa nos pontos no planalto. No planalto ocorreram baixas concentrações de clorofila-a, enquanto nos pontos da planície, com exceção de um, ocorreram dois picos, no inverno (época seca) e no verão (época chuvosa), de 4,9 e 2,4 µg.L-1, respectivamente, coincidindo com concentrações reduzidas de sólidos em suspensão.

Conclusões: Os baixos níveis de nutrientes provavelmente estão relacionados ao uso da terra, principalmente para pecuária. As altas concentrações de sólidos devem estar relacionadas à degradação da vegetação nativa, especialmente da mata ciliar nas últimas décadas. O tempo de viagem de aproximadamente três a quarto dias nos pontos de planalto, comparado ao tempo de aproximadamente dez dias nos pontos da planície, podem ter sido um fator determinante na diminuição da abundância de algas no planalto, enquanto a limitação por luz poderia ter sido importante diminuindo o crescimento de algas na planície.
 

Palavras-chave

uso da terra, erosão, qualidade de água, Pantanal, algas

References

Agência Nacional de Águas - ANA, 2017. Hidroweb v3.2.6 [online]. Retrieved in 2017, September 15, from http://hidroweb.ana.gov.br.

Alho, C.J.R. & Reis, R.E., 2017. Exposure of fishery resources to environmental and socioeconomic threats within the Pantanal Wetland of South America. Int. J. Aquac. Fish. Sci., 3(2), 22-29.

Basu, B.K. & Pick, F.R., 1996. Factors regulating phytoplankton and zooplankton biomass in temperate rivers. Limnol. Oceanogr., 41(7), 1572-1577.

Bowes, M.J., Gozzard, E., Johnson, A.C., Scarlett, P.M., Roberts, C., Read, D.S., Armstrong, L.K., Harman, S.A. & Wickham, H.D., 2012. Spatial and temporal changes in chlorophyll-a concentrations in the River Thames basin, UK: are phosphorus concentrations beginning to limit phytoplankton biomass? Sci. Total Environ., 426, 45-55. PMid:22503676. http://dx.doi.org/10.1016/j.scitotenv.2012.02.056.

Bukaveckas, P.A., MacDonald, A., Aufdenkampe, A., Chick, J.H., Havel, J.E., Schultz, R., Angradi, T.R., Bolgrien, D.W., Jicha, T.M. & Taylor, D., 2011. Phytoplankton abundance and contributions to suspended particulate matter in the Ohio, Upper Mississippi and Missouri Rivers. Aquat. Sci., 73(3), 419-436. http://dx.doi.org/10.1007/s00027-011-0190-y.

Calheiros, D.F., Oliveira, M.D. & Padovani, C.R., 2012. Hydro-ecological processes and anthropogenic impacts on the ecosystem services of the Pantanal Wetland. In: Ioris, A.A.R., ed. Tropical wetland management: the South-American Pantanal and the international experience. Farnham: Ashgate, 29-58.

Castillo, M.M., 2010. Land use and topography as predictors of nutrient levels in a tropical catchment. Limnologica, 40(4), 322-329. http://dx.doi.org/10.1016/j.limno.2009.09.003.

Chen, N., Wu, J. & Hong, H., 2012. Effect of storm events on riverine nitrogen dynamics in a subtropical watershed, southeastern China. Sci. Total Environ., 431, 357-365. PMid:22705871. http://dx.doi.org/10.1016/j.scitotenv.2012.05.072.

Chua, E.M., Wilson, S.P., Vink, S. & Flint, N., 2019. The influence of riparian vegetation on water quality in a mixed land use river basin. River Res. Appl., 35(3), 259-267. http://dx.doi.org/10.1002/rra.3410.

Cole, J.J., Caraco, N.F. & Peierls, B.L., 1992. Can phytoplankton maintain a positive carbon balance in a turbid, freshwater, tidal estuary? Limnol. Oceanogr., 37(8), 1608-1617. http://dx.doi.org/10.4319/lo.1992.37.8.1608.

Cunha, D.G.F., Bottino, F. & Calijuri, M.L., 2010. Land use influence on eutrophication-related water variables: case study of tropical rivers with different degrees of anthropogenic interference. Acta Limnol. Bras., 22(1), 35-45. http://dx.doi.org/10.4322/actalb.02201005.

Delong, M.D. & Thorp, J.H., 2006. Significance of instream autotrophs in trophic dynamics of the Upper Mississippi River. Oecologia, 147(1), 76-85. PMid:16170563. http://dx.doi.org/10.1007/s00442-005-0241-y.

Descy, J.-P., Darchambeau, F., Lambert, T., Stoyneva-Gaertner, M.P., Bouillon, S. & Borges, A.V., 2017. Phytoplankton dynamics in the Congo River. Freshw. Biol., 62(1), 87-101. http://dx.doi.org/10.1111/fwb.12851.

Descy, J.-P., Servais, P., Smitz, J.S., Billen, G. & Everbecq, E., 1987. Phytoplankton biomass and production in the River Meuse (Belgium). Water Res., 21(12), 1557-1566. http://dx.doi.org/10.1016/0043-1354(87)90141-2.

Dodds, W.K., 2006. Eutrophication and trophic state in rivers and streams. Limnol. Oceanogr., 51(1 part 2), 671-680. http://dx.doi.org/10.4319/lo.2006.51.1_part_2.0671.

Dodds, W.K., Jones, J.R. & Welch, E.B., 1998. Suggested classification of stream trophic state: distribution of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Res., 32(5), 1455-1462. http://dx.doi.org/10.1016/S0043-1354(97)00370-9.

Doretto, A., Piano, E. & Larson, C.E., 2020. The river continuum concept: lessons from the past and perspectives for the future. Can. J. Fish. Aquat. Sci., 77(11), 1853-1864. http://dx.doi.org/10.1139/cjfas-2020-0039.

Estevam, L.S., Arieira, J., Zeilhofer, P. & Calheiros, D.F., 2017. 10-years land use changes decrease landscape integrity in a Brazilian hydrographic basin. J. Geogr. Inf. Syst., 9(2), 221-243. http://dx.doi.org/10.4236/jgis.2017.92014.

Esteves, K.E., Lôbo, A.V.P. & Hilsdorf, A.W.S., 2015. Abiotic features of a river from the Upper Tietê River Basin (SP, Brazil) along an environmental gradient. Acta Limnol. Bras., 27(2), 228-237. http://dx.doi.org/10.1590/S2179-975X5914.

Everbecq, E., Gosselain, V., Viroux, L. & Descy, J.-P., 2001. Potamon: a dynamic model for predicting phytoplankton composition and biomass in lowland rivers. Water Res., 35(4), 901-912. PMid:11235885. http://dx.doi.org/10.1016/S0043-1354(00)00360-2.

Ferreira Sobrinho, J.A., Calheiros, D.F. & Zeilhofer, P., 2012. Uso da terra e qualidade da água superficial na bacia do rio Miranda, MS. In: Anais do 4º Simpósio de Geotecnologias no Pantanal. Bonito: Embrapa Informática Agropecuária, 1013-1023.

Garnier, J., Billen, G. & Coste, M., 1995. Seasonal succession of diatoms and Chlorophyceae in the drainage network of the Seine River: observations and modeling. Limnol. Oceanogr., 40(4), 750-765. http://dx.doi.org/10.4319/lo.1995.40.4.0750.

Grobbelaar, J.U., 1989. The contribution of phytoplankton productivity in turbid freshwaters to their trophic status. Hydrobiologia, 173(2), 127-133. http://dx.doi.org/10.1007/BF00015522.

Hammer, Ø., Harper, D.A.T. & Ryan, P.D., 2001. PAST: Paleontological Statistics software package for education and data analysis. Palaeontol. Electronica, 4(1), 4.

Hardenbicker, P., Rolinski, S., Weitere, M. & Fischer, H., 2014. Contrasting long-term trends and shifts in phytoplankton dynamics in two large rivers. Int. Rev. Hydrobiol., 99(4), 287-299. http://dx.doi.org/10.1002/iroh.201301680.

Hilton, J., O’Hare, M., Bowes, M.J. & Jones, J.I., 2006. How green is my river? A new paradigm of eutrophication in rivers. Sci. Total Environ., 365(1-3), 66-83. PMid:16643991. http://dx.doi.org/10.1016/j.scitotenv.2006.02.055.

Houser, J.N., Bierman, D.W., Burdis, R.M. & Soeken-Gittinger, L.A., 2010. Longitudinal trends and discontinuities in nutrients, chlorophyll, and suspended solids in the Upper Mississippi River: implications for transport, processing, and export by large rivers. Hydrobiologia, 651(1), 127-144. http://dx.doi.org/10.1007/s10750-010-0282-z.

Junk, W.J. & Wantzen, K.M., 2003. The flood pulse concept: new aspects, approaches and applications - an update. In: Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries, Food and Agriculture. Bangkok: Food and Agriculture Organization, 117-140.

Kjelland, M.E., Woodley, C.M., Swannack, T.M. & Smith, D.L., 2015. A review of the potential effects of suspended sediment on fishes: potential dredging-related physiological, behavioral, and transgenerational implications. Environ. Syst. Decis., 35(3), 334-350. http://dx.doi.org/10.1007/s10669-015-9557-2.

Koenings, J.P. & Edmundson, J.A., 1991. Secchi disk and photometer estimates of light regimes in Alaskan lakes: effects of yellow color and turbidity. Limnol. Oceanogr., 36(1), 91-105. http://dx.doi.org/10.4319/lo.1991.36.1.0091.

Lamparelli, M.C., 2004. Graus de trofia em corpos d’água do estado do São Paulo: avaliação dos métodos de monitoramento [Doctoral thesis in Sciences]. São Paulo: Universidade de São Paulo.

Lee, Z., Shang, S., Du, K. & Wei, J., 2018. Resolving the long-standing puzzles about the observed Secchi depth relationships. Limnol. Oceanogr., 63(6), 2321-2336. http://dx.doi.org/10.1002/lno.10940.

Leland, H.V. & Frey, J.W., 2008. Phytoplankton growth and assembly in relation to nutrient supply and other environmental factors in the White River Basin, Indiana (U.S.). Verh. Int. Ver. Limnol., 30(1), 147-163. http://dx.doi.org/10.1080/03680770.2008.11902104.

Leland, H.V., 2003. The influence of water depth and flow regime on phytoplankton biomass and community structure in a shallow, lowland river. Hydrobiologia, 506(1-3), 247-255. http://dx.doi.org/10.1023/B:HYDR.0000008596.00382.56.

Lewis, W.M., 1988. Primary production in the Orinoco River. Ecology, 69(3), 679-692. http://dx.doi.org/10.2307/1941016.

Lind, O.T. & Davalos-Lind, L., 1999. Suspended clay: its role in reservoir productivity. In: Tundisi, J.G. & Straskraba, M., eds. Theoretical reservoir ecology and its applications. Leiden: Backhuys, 85-97.

Mackereth, F.J.H., Heron, J. & Talling, J.F., 1978. Water analysis: some revised methods for limnologists. Ambleside: Freshwater Biological Association.

Martinelli, L.A., Coletta, L.D., Ravagnani, E.C., Camargo, P.B., Ometto, J.P.H.B., Filoso, S. & Victoria, R.L., 2010. Dissolved nitrogen in rivers: comparing pristine and impacted regions in Brazil. Braz. J. Biol., 70(Suppl. 3), 709-722. PMid:21085777. http://dx.doi.org/10.1590/S1519-69842010000400003.

Mateus, L.A.F., Vaz, M.M. & Catella, A.C., 2011. Fishery and fishing resources in the Pantanal. In: Junk, W.J., Silva, C.J., Cunha, C.N. & Wantzen, K.M., eds. The Pantanal: ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Sofia: Pensoft, 621-647.

Merino, E.R., Assine, M.L. & Pupim, F.N., 2013. Estilos fluviais e evidências de mudanças ambientais na planície do rio Miranda, Pantanal. Rev. Bras. Geomorfol., 14(2), 127-134. http://dx.doi.org/10.20502/rbg.v14i2.246.

Mischke, U., Venohr, M. & Behrendt, H., 2011. Using phytoplankton to assess the trophic status of German rivers. Int. Rev. Hydrobiol., 96(5), 578-598. http://dx.doi.org/10.1002/iroh.201111304.

Nascimento, F.L. & Nakatani, K., 2005. Variação temporal e espacial de ovos e de larvas das espécies de interesse para a pesca na sub-bacia do rio Miranda, Pantanal, estado do Mato Grosso do Sul, Brasil. Acta Sci. Biol. Sci., 27(3), 251-258. http://dx.doi.org/10.4025/actascibiolsci.v27i3.1314.

Nobre, R.L.G., Caliman, A., Cabral, C.R., Araújo, F.C., Guérin, J., Dantas, F.C.C., Quesado, L.B., Venticinque, E.M., Guariento, R.D., Amado, A.M., Kelly, P., Vanni, M.J. & Carneiro, L.S., 2020. Precipitation, landscape properties and land use interactively affect water quality of tropical freshwaters. Sci. Total Environ., 716, 137044. PMid:32059302. http://dx.doi.org/10.1016/j.scitotenv.2020.137044.

Nusch, E.A., 1980. Comparison of different methods for chlorophyll and phaeopigment determination. Arch. Hydrobiol. Beih. Ergebn. Limnol., 14, 14-36.

Ochs, C.A., Pongruktham, O. & Zimba, P.V., 2013. Darkness at the break of noon: phytoplankton production in the Lower Mississippi River. Limnol. Oceanogr., 58(2), 555-568. http://dx.doi.org/10.4319/lo.2013.58.2.0555.

Oliveira, M.D. & Calheiros, D.F., 1999. Estado de conservação da bacia do rio Miranda (Pantanal-MS), baseado em estudos limnológicos. In: VII Congresso Brasileiro de Limnologia. Florianópolis: UFSC, 89.

Oliveira, M.D. & Ferreira, C.J.A., 2003. Estudos limnológicos para monitoramento da Bacia Hidrográfica do Rio Miranda, Pantanal Sul. Corumbá: Embrapa Pantanal. Boletim de Pesquisa e Desenvolvimento, 54.

Oliveira, M.D., Calheiros, D.F. & Hamilton, S.K., 2019. Mass balances of major solutes, nutrients and particulate matter as water moves through the floodplains of the Pantanal (Paraguay River, Brazil). Revista Bras. Rec. Hidr., 24, e1. http://dx.doi.org/10.1590/2318-0331.231820170169.

Pacheco, F.S., Miranda, M., Pezzi, L.P., Assireu, A., Marinho, M.M., Malafaia, M., Reis, A., Sales, M., Correia, G., Domingos, P., Iwama, A., Rudorff, C., Oliva, P. & Ometto, J.P., 2017. Water quality longitudinal profile of the Paraíba do Sul River, Brazil during an extreme drought event. Limnol. Oceanogr., 62(S1), S131-S146. http://dx.doi.org/10.1002/lno.10586.

Pereira, M.C.B., Mendes, C.A.B., Grehs, S.A., Barreto, S.R., Becker, M., Lange, M.B.R. & Dias, F.A., 2004. Bacia Hidrográfica do Rio Miranda: estado da arte. Campo Grande: UCDB.

Reynolds, C.S. & Descy, J.-P., 1996. The production, biomass and structure of phytoplankton in large rivers. Arch. Hydrobiol., 10(1-4), 161-187. http://dx.doi.org/10.1127/lr/10/1996/161.

Santana, L.M., Moraes, M.E.B., Silva, D.M.L. & Ferragut, C., 2016. Spatial and temporal variation of phytoplankton in a tropical eutrophic river. Braz. J. Biol., 76(3), 600-610. PMid:27097084. http://dx.doi.org/10.1590/1519-6984.18914.

Schöl, A., Kirchesch, V., Bergfeld, T., Schöll, F., Borcherding, J. & Müller, D., 2002. Modelling the chlorophyll a content of the River Rhine – interrelation between riverine algal production and population biomass of grazers, rotifers and the Zebra Mussel, Dreissena polymorpha. Int. Rev. Hydrobiol., 87(2-3), 295-317. http://dx.doi.org/10.1002/1522-2632(200205)87:2/3<295::AID-IROH295>3.0.CO;2-B.

Silva, J.S.V., Abdon, M.M., Silva, S.M.A. & Moraes, J.A., 2011. Evolution of deforestation in the Brazilian Pantanal and surroundings in the timeframe 1976-2008. Geografia, 36, 35-55.

Soballe, D.M. & Kimmel, B.L., 1987. A large-scale comparison of factors influencing phytoplankton abundance in rivers, lakes, and impoundments. Ecology, 68(6), 1943-1954. PMid:29357178. http://dx.doi.org/10.2307/1939885.

Taniwaki, R.H., Cassiano, C.C., Filoso, S., Ferraz, S.F.B., Camargo, P.B. & Martinelli, L.A., 2017. Impacts of converting low-intensity pastureland to high-intensity bioenergy cropland on the water quality of tropical streams in Brazil. Sci. Total Environ., 584-585, 339-347. PMid:28040217. http://dx.doi.org/10.1016/j.scitotenv.2016.12.150.

Thorp, J.H., Thoms, M.C. & Delong, M.D., 2006. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Res. Appl., 22(2), 123-147. http://dx.doi.org/10.1002/rra.901.

Townsend, S.A. & Douglas, M.M., 2017. Discharge-driven flood and seasonal patterns of phytoplankton biomass and composition of an Australian tropical savannah river. Hydrobiologia, 794(1), 203-221. http://dx.doi.org/10.1007/s10750-017-3094-6.

Valderrama, J.C., 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Mar. Chem., 10(2), 109-122. http://dx.doi.org/10.1016/0304-4203(81)90027-X.

van Steveninck, E.D.R., Admiraal, W., Breebaart, L., Tubbing, G.M.J. & van Zanten, B., 1992. Plankton in the River Rhine: structural and functional changes observed during downstream transport. J. Plankton Res., 14(10), 1351-1368. http://dx.doi.org/10.1093/plankt/14.10.1351.

Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R. & Cushing, C.E., 1980. The river continuum concept. Can. J. Fish. Aquat. Sci., 37(1), 130-137. http://dx.doi.org/10.1139/f80-017.

Wantzen, K.M., 1998. Effects of suspended sediments on aquatic organisms in streams in the Upper Rio Paraguay Basin. In: Proceedings of the 3rd SHIFT-Workshop. Bonn: BMBF, 519-528.

Wehr, J.D. & Descy, J.-P., 1998. Use of phytoplankton in large river management. J. Phycol., 34(5), 741-749. http://dx.doi.org/10.1046/j.1529-8817.1998.340741.x.

Wetzel, R.G. & Likens, G.E., 1991. Limnological analyses (2nd ed.) New York: Springer. http://dx.doi.org/10.1007/978-1-4757-4098-1.

Yang, X., Sun, W., Li, P., Mu, X., Gao, P. & Zhao, G., 2018. Reduced sediment transport in the Chinese Loess Plateau due to climate change and human activities. Sci. Total Environ., 642, 591-600. PMid:29909326. http://dx.doi.org/10.1016/j.scitotenv.2018.06.061.

Zagatto, E.A.G., Jacintho, A.O., Reis, B.F., Krug, F.J., Bergammin-Filho, H., Pessenda, L.C.R., Mortatti, J. & Giné, M.F., 1981. Manual de análises de plantas e águas empregando sistemas de injeção em fluxo. Piracicaba: Centro de Energia Nuclear na Agricultura.

Zeilhofer, P., Calheiros, D.F., Oliveira, M.D., Dores, E.F.G.C., Lima, G.A.R. & Fantin-Cruz, I., 2016. Temporal patterns of water quality in the Pantanal floodplain and its contributing Cerrado upland rivers: implications for the interpretation of freshwater integrity. Wetlands Ecol. Manage., 24(6), 697-716. http://dx.doi.org/10.1007/s11273-016-9497-8.

Zeilhofer, P., Lima, E.B.N.R. & Lima, G.A.R., 2006. Spatial patterns of water quality in the Cuiaba River basin, Central Brazil. Environ. Monit. Assess., 123(1-3), 41-62. PMid:17089078. http://dx.doi.org/10.1007/s10661-005-9114-4.

Zwolsman, J.J.G. & van Bokhoven, A.J., 2007. Impact of summer drought on water quality of the Rhine River – a preview of climate change? Water Sci. Technol., 56(4), 45-55. PMid:17851204. http://dx.doi.org/10.2166/wst.2007.535.
 


Submitted date:
01/28/2022

Accepted date:
05/27/2022

Publication date:
06/10/2022

62a3a330a953957dba2ae874 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections